Cache Optimization For Embedded Processor Cores: An Analytical Approach

Arijit Ghosh and Tony Givargis
Department of Computer Science
Center for Embedded Computer Systems
University of California, Irvine 92697
{arijitg, givargis}@ics.uci.edu

lot of attention from the research community [9][3][10].

ABSTRACT This is in part due to the large performance gained by
. . . . tuning caches to the application set of these systems. The
Embedded microprocessor cores are increasingly being, . .
:) . kinds of cache parameters explored by researchers include
used in embedded and mobile devices. The software

. X . deciding the size of a cache line (a.k.a., cache block),
running on these embedded microprocessor cores is often a

o . ; ..~ Selecting the degree of associativity, adjusting the total
priori known, thus, there is an opportunity for customizing - ; : L
. ._cache size, and selecting appropriate control policies such
the cache subsystem for improved performance. In this

work, we propose an efficient algorithm to directly compute > write-back and replacement procedures. These
caché afampeters satisfyin deqsired erforman)ée crit?eria techniques, typically, improve cache performance, in terms
P . 9 -0 P - of miss reduction, at the expense of silicon area, clock
Our approach avoids simulation and exhaustive
) . . - . latency, or energy.
exploration, and, instead, relies on an exact algorithmic - _ _ _
approach. We demonstrate the feasibility of our algorithm Traditionally, a design-simulate-analyze methodology is
by applying it to a large number of embedded systemused to achieve optimal cache performance [15][12][13]. In

benchmarks one approach, all possible cache configurations are
exhaustively simulated, using a cache simulator, to find the
KeyWOI’dS optimal solution. When the design space is too large, an

iterative heuristic is used instead. Here, to bootstrap the
Cache Optimization, Core-Based Design, Design Spaceprocess, arbitrary cache parameters are selected, the cache
Exploration, System-on-a-Chip sub-system is simulated using a cache simulator, cache

parameters are tuned based on performance results, and the
1. INTRODUCTION process is repeated until an acceptable design is obtained.

The growing demand for embedded computing platforms, Central to the design-simulate-analyze methodology is the
mobile systems, general-purpose handheld devices, andbility to quickly simulate the cache. Specifically, cache

dedicated servers coupled with shrinking time-to-market simulation takes as input a trace of memory references
windows are leading to new core-based system-on-a-chipggenerated by the application. In some of the efforts,
(SOC) architectures [6][2][5]. Specifically, microprocessor speedup is achieved by stripping the original trace to a
cores (a.k.a., embedded processors) are playing amrovably identical (from a performance point of view) but

increasing role in such systems’ design [1][9][7]. This is shorter trace [16][8]. In some of the other efforts, one-pass
primarily due to the fact that microprocessors are easy tatechniques are used in which numerous cache
program using well evolved programming languages andconfigurations are evaluated simultaneously during a single
compiler tool chains, provide high degree of functional simulation run [4][11]. While these techniques reduce the
flexibility, allow for short product design cycles, and
ultimately result in low engineering and unit costs.

v

e} e}
However, due to continued increase in system complexity %? §g %? §g
of these systems and devices, the performance of such |§Z||F*™ Instance 82||F™
embedded processors is becoming a vital design concern. v
The use of data and instruction caches has been a major Cache Algorithmic Cache
factor in improving processing speed of today’s Sl L) Instance Generator
microprocessors. Generally, a well-tuned cache hierarchy v l

and organization would eliminate the time overhead of

fetching instruction and data words from the main memory,

which in most cases resides off-chip and requires power
costly communication over the system bus that crosses chip
boundaries.

Yes

v
Optimal CachT
Instances (a)
Figure 1: Design space exploration of caches: (a)
traditional approach, (b) proposed approach.

A 4
Optimal Cach
Instances

(b)

Particularly, in embedded, mobile, and handheld systems,
optimizing of the processor cache hierarchy has received a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICCAD 03, November 11-13, 2003, San Jose, California, USA.

Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

342

Pre-processing
Q
87 » Stip | > Build BCAT
= ONlogN) | N | O(N’logN)
N
g é i Build MT y
o 0 > ul
g2 ONN'logn) [BEAT

Main Processing

Calculate Cache
InstanceO(1)

Instances

Post-Processing

Figure 2: Block diagram of proposed algorithm.

time taken to obtain cache performance metricafgiven
cache configuration, they do not solve the problem
design space exploration in general. This is prigndue to
the fact that the cache design space is too I&igere 1(a)
depicts the traditional approach to cache desigacesp
exploration.

total cache size by computimxAx_g,. Also, note that the
K desired caches misses are assumed to be thosedbeyo
the cold misses, as cold misses cannot be avoided.

In our approach, we do not consider the cache ipsvas a
varying parameter. In part, our decision is duehi fact
that a change in the cache row size would reqeidesign

of processor memory interface, bus architecturejnma
memory controller, as well as main memory orgaiozat
Thus, changing of cache row size requires a more
encompassing design space exploration. Likewisehave
assumed fixed least recently used replacement aitd- w
back policies, as these are common and often optima
choices.

Our approach can be divided into three phases, the
pre-processing phase, the main processing phasehand
post-processing phase. During the pre-processiagepiwe
read the trace file and construct a binary-trea gatcture,
called theBinary Cache Allocation Tre@CAT. In the
main processing phase, we compute khiss TableMT
during a depth first traversal of the BCAT. In thest-
processing phase, we generate the optimal cache [@ai

A), which are guaranteed to result in a miss raless than

Our approach uses an analytical model of the cacheK. A block diagram of our analytical approach iswhan

combined with an algorithm to directly and effidign
compute a cache configuration
performance constraints. Figure 1(b) depicts ooppsed
analytical approach to cache design space exporatn
our approach, we consider a design space thatrizefb by
varying cache size and degree of associativityaddition
to the trace file, our algorithm takes as input thesign
constraint in the form of the number of desired heac
misses. The output of the algorithm is a set ofheac
instances that meet the constraint.

The remainder of this paper is organized as follolns
Section 2, we outline our technical approach atadéuce
our data structures and algorithm. In Section 3 pvesent
our experiments and show our results. In Sectionvd,
conclude with some final remarks and future dicectof
research.

2. TECHNICAL APPROACH
2.1 Overview

In the following approach, we consider a desigrcephat

is obtained by varying caches def@hand the degree of
associativityA. Cache dept gives the number of rows in
the cache. In other wordeg,(D) gives the bit-width of the
index portion of the memory address.

associativity A is the amount of storage available to

accommodate data/instruction words mapping to #mes
cache row (a.k.a., cache block). Our objective islitain a
set of optimal cache pair®(A) for a given numbeK of
desired cache misses. Note that by using the aimptaD,
degree of associativitg, and line sizd_g;,, We obtain the

343

Figure 2. We next describe in detail the three phad our

meeting designers’ @lgorithm and the associated data structures.

2.2 Pre-Processing Phase

Recall that a trace df instruction/data memory references
is obtained after simulating the target applicatiom a
processor whose cache is being optimized. We rethise
trace into a set oN' unique references, whefd'<N. In
other words, the original trace contained repetgioof
theseN' memory references. As part of a running example,
consider the trace shown in Table 1 and the stdppe
version shown in Table 2.

Bs B, B, Bo

1 0 1 1

1 1 0 0

0 1 1 0

0 0 1 1

1 0 1 1 ID Bs B> B, Bo

0 1 0 0 1 1 0 1 1

1 1 0 0 2 1 1 0 0

0 0 1 1 3 0 1 1 0

1 0 1 1 4 0 0 1 1
1 1 0 5 0 1 0 0

Table 1: Original trace. Table 2: Stripped trace.

In this example, the trace contaiNs10 4-bit references.

Degree of Of those, there areN'=5 unique references. We have

assigned a numeric identifier to each of the unique
references as shown in Table 2. (At times, we niply
refer to a particular reference using its numedientifier.)
Next we describe the BCAT data structure.

A BCAT data structure fully captures how referenees
mapped onto a cache of any possible organizatioor @

{1,2,3,4,5)
Bo
{2,3,5) 1,4}
/B\ /B\
{2.5} {3} O {14}
A A
0 {2,5) {1,4) 0

/B\ /B\
{5} 2 @ {1}

Figure 3: BCAT data structure.

computing the BCAT data structure, we transform the
stripped trace into an array of zero/one sets. drnay of
zero/one sets contains a pair of sets for eacheaddit.
Specifically, for index bitB;, we compute a pair of sets
called zeraZ; and oneQ;. The setZ; contains the identifier
of all references that have a bit value of BatLikewise,
the sefO; contains the identifier of all references thatéhav
bit value of 1 atB;. For the running example, shown in
Table 1, the zero/one sets are given in Table 3.

Table 3: Zero/one sets.

z O
Bo {2,355} {1,4}
B: {2,5} {1,3,4}
B> {1.4} {2,3,5}
B; {3,455} {1,2}

Next, the zero/one sets are used to construct @%TRree.
We use these sets because the set intersectioatioper
nicely defines how references are allocated to eacie
location. For example, in a cache of depth 4 (degws),
using By and B; as the index bits, we can compute the
following Cross intersections: Lo=Zyn Z;={2,5},
Loi=ZonO1={3}, L1=OonZ;={}, and L1;=OpnO1={1,4}.
Here setslqy Lo, Lio, and Ly; contain the reference
identifiers mapped onto the 4 cache slots. Likewise a
cache of depth 8, using an additional index8jtwe cross
intersect each of these 4 sets withandO, to obtain the 8
new sets and so on. The new sets form the nodesirof
binary tree. We stop growing the tree further domimen
we reach a set with cardinality less than 2. Aldponi 1 and
Algorithm 2 recursively build a BCAT data structuas
described here.

Algorithm 1: Build-BCAT
Input: Stripped Trac@'=Ry, R; ... Ry.1
Output: BCATData Structure
for eachi 0 [M-1...0] do // assummI-bit references
Zi = Oi =0
for eachR O T’ do
ifj" bit of R is 0 then

Z:=z0{i}
else
Oj = Oj O {l}

BCATroot 0 Z, 0 Oy

344

BCAT:= Recursive-Build-BCATBCAT.root Z, O, 1)

Algorithm 2: Recursive-Build-BCAT
Input: BCATData Structure, Nodd, SetsZ/O, and leveL
Output: BCATData Structure
if IN| >= 2 then
N.leftd Nn Z,
BCAT:= Recursive-Build-BCAT{.left, Z, O, L + 1)
N.right 0 Nn O,
BCAT:= Recursive-Build-BCATY.right, Z, O, L + 1)
The complete BCAT data structure of the runningnexia
is shown in Figure 3.

Associated with each node, we maintain a tracéeatahe
Relevant Trace S®TS. The RTS of a node is a subset of
the RTS of its parent node containing only the regfees
mapped onto the current node. For the root, RT&as
original trace. For other nodes, RTS is createchdynoally
during the main processing phase. (See Algoritim 7.

2.3 Main Processing Phase

In the main processing phase, we build upNliss Table
MT data structure by processing each node as it is
encountered in a depth first traversal of the BArEE.

The MT data structure maintains, for each levedf the
BCAT, the number of misses for every associatitigng
considered, i.eA=1 to A=A, Note that each level of the
tree corresponds to a particular cache dept?-. For
example, level one of the tree (root being levetoye
corresponds to a cache of depth two. Also, the mami
associativity at a given level, which results in misses,
can be calculated by settidgto the maximum cardinality
of all nodes in the BCAT at that level. An eniyl| » gives
the number of misses at level (i.e., depthD=2") for
associativityA. For exampleMT; =15 means a cache of
dept D=2°=8 with associativityA=2 will result in 15
misses. The complete MT data structure for our ingn
example is shown in Table 4.

Table 4: MT data structure.

_Assoc=> 1 2 3 4 5
Level

0 5 4 4 2 0

1 5 2 0 0 0

2 4 0 0 0 0

3 4 0 0 0 0

4 0 0 0 0 0

The MT data structure is built using Algorithm 3.

Algorithm 3: Build-MT
Input: Original TraceT, Desired MisseK
Input: BCATData Structure
Output: MT Data Structure
MT :=0; BCAT.root.RTS T
for each nod&l 00 BCAT (depth first) do
(MT,N) := Process-Nod®(T,N,K)

Processing of each node involves updating the M da
structure and creating the RTS (explained eardisnyell as

the Memory Reference Conflict TabMRCT (explained
next) for the children nodes, as shown in Algorithm

Algorithm 4: Process-Node

Input: MT Data Structure, Nodd, and Desired Missd§

Output: MT Data Structure, Nodd

MRCT := Build-MRCT(N)

MT := Update-MTMRCTK,MT,N.leve)

N := Create-Children-RTSI)
The MRCT data structure of a nodiecaptures, for each
occurrence of a referenc® the number of unique
references that may cause a conflict with the next
occurrence ofR in the RTS ofN. In other words, the
MRCT associated with nodd is an array of vectors, one
for each unique referend® mapped toN, containing a
count of references that may cause a conflict WitiThe
MRCT data structure associated with the root nodéhe
running example is shown in Table 5.

Table 5: MRCT data structure for root node.
ID Conflict Vectors

1
2
3
4
5

Here, the reference “1011” has 3 occurrences. Tis¢ f
occurrence of “1011” is ignored as it will always & cold
miss. The second occurrence of “1011” can potdytisd a
miss due to a conflict with references “1100”, “0Llor
“0011” (i.e., the elemenRCT, ;=3). The last occurrence
of “1011” can potentially be a miss due to a canfivith
references “0100”, “1100”, or “0011” (i.e., the mient
MRCT, =3). So, the conflict vector for reference “1011”
contains two elements, namely (3,3). Algorithm Sldsu
the MRCT data structure as described above.

Algorithm 5: Build-MRCT
Input: NodeN
Output: MRCTData Structure
MRCT:=temp:=last:=0
for R 0O N.RTSdo
forR ONdo
if § #i) && (i O temp) then
MRCT]][lasfj]] := MRCT[j][las{j]] + 1
temgj] := temgj] O {i}

else
lasfj] :=lasfj] + 1
tempj] =0

To update the MT, we observe that the vaMRCT;
provides the upper bound on the degree of assatyafior
which thei™ occurrence of th@" reference will result in a
miss. To illustrate, let us look at the root of tBEAT
example with N={1,2,3,4,5}. From the MRCT data
structure we obtain the conflict vectors of thetfielement,
namelyV;,;=3 andV;,=3. Since the value d¥, is 3, we
increment our miss count at that level by 1 for all
associativities from 1 to 3. Likewise since theueabfVi,

is 3, we increment our miss count at that leveladf@econd

345

time. We repeat the same for the remaining elemarits
Note that a miss count is associated with eacheadegf
associativityA under consideration (i.e., 1, D). We
stop to consider a particular degree of associgtiviwhen
its miss count goes beyond the desired number sifate
misseK, as shown in Algorithm 6.

Algorithm 6: Update-MT
Input: MRCT Data Structure, Desired Missés
Input: MT Data Structure, Levél
Output: MT Data Structure
for each row 0 MRCTdo
for each elemeijtd MRCT[i] do
forA O [1...MRCTi][j]] do
if MT[L][A] = -1) && (MTIL][A] > K) then
MT[L][A] := -1 and break
MTIL][A] := MT[L][A] + 1
Finally, to build the RTS of the children, we folMothe
steps outlines in Algorithm 7.

Algorithm 7: Generate-Children-RTS
Input: NodeN
Output: NodeN
N.left-child.RTS= N.right-child. RTS=01
for R O N.RTSdo
if R O N.left-childthen
N.left-child.RTS= N.left-child.RTS] {R}
else
N.right-child.RTS= N.right-child.RTS] {R}

2.4 Postlude Phase

During the last phase of the algorithm, we readMifiedata
structure and output a set of cache depth and iasisdg
pairs that satisfy the desired performance in teofnghe
number of cache misses, as shown in Algorithm 8.

Algorithm 8: Calculate-Cache-Instances

Input: MT Data Structure
Print: A Set of D,A) Cache Instances
for each leveL O MT

A:=0

while MT[L][A] = -1 do

A++
print cache instance'(2)

In Algorithm 8, for depths (number of rows) equall, 2,

4, etc. we print the optimal caches having the Esal
degree of associativity to guarantee no more mifs@s

the desired valuK.

2.5 Time Complexity

For time complexity analysis, we use the size eftthceN
and the number of unique referencHs as the input
parameters. We note that in most cabess much smaller
thanN. Moreover, logl’) is bounded by the width of the
memory references (i.e., processor data-path), hwic
typically 32 or 64. We have shown the time comgienif
each part of the algorithm in Figure 2, as expladinext.

The average time taken to strip the trace amouorgsiting
the references and thusG$Ndog(N’)).

The average time taken to build the BCAT data $finecis the data structures associated with each node &an b
O(N'xlog(N")). At the root, we processes one node by deleted, after the node has been processed.

looking at theN’ unique references at a cost@(fLlxN’), at
level one, we process two nodes by lookingNd® unique

references at a cost 6f(2,><N’/2)_, at level two, we process por our experiments, we have used 14 typical emdmbdd
four nodes by looking a’/4 unique references at a cost of system applications that are part of the PowerStone
O(4xN'/4), etc. In general, at each level of the tree th penchmark applications [1]. The applications inelud
computation is bounded by R). Since the number of 3pEG decoder callggeg a modem decoder called2, a
nodes in the tree IB(N') it follows that the depth of the is ynix compression utility calledcompress a CRC
O(log(N')). Combining these, we obta®(N’ ¥og(N’)). checksum algorithm calledrc, an encryption algorithm
The average time taken to build the MT data stmacis calleddes an engine controller callezhgine an FIR filter
O(NxN'xlog(N)) which is dominated by the computation calledfir, a group three fax decoder calig8fax a sorting
involved in building the MRCTs of each node in BCAAt algorithm calleducbgsort an image rendering algorithm
the root, we process one node for which we comthee calledblit, a POCSAG communication protocol for paging
RTS data structure (takin@(N)) followed by the MRCT, applications calledpocsag and a few other embedded
which involves one pass over the RTS for each wniqu applications.

reference occurring at that node, (takidfNxN’)). At the We first compiled and executed the benchmark agiidins
next level, we process two nodes for which we caenploe on a MIPS R3000 simulator. Our processor simuléor
RTS data structure (takin@(2xN/2)) followed by the instrumented to output instruction/data memory nexfee
MRCT, which involves one pass over the RTS for each traces. The size of the tracés the number of unique
unique reference occurring at that node, (taking references\’, and the execution time of our algorithm are
O(2xN/2xN’/2)), and so on for the remaining levels. In reported for data/instruction traces in Tablea®f€ 7.
general, at each level of the tree, the computat®n Table 6: Data trace statistics.

3. EXPERIMENTS

bounded byD(NxN"). Since the number of nodes in the tree Total Unique Time

is O(N') it follows that the depth of the tree @log(N’)). Be;‘ggg“n?fk Fiesfjé': Re;SB-T (3307)

Combining these, we obta@®(NxN’xlog(N’)). bent 456 162 011
Finally, the post-processing phase of the algoritiakes Cor?]“tress 54;28580 gggé 4?627:7

constant time to output the cache instances. Cyefe C,ff: 2826 603 0.43
presented technique take®(NxN'xlog(N')) step to des 20162 2241 19.268
execute. engine 211106 225 10.786

) fir 5608 146 0.39
2.6 Final Remarks g3fax 229512 3781 221.098
. . jpeg 1311693 39302 100576

The data structure and algorithms described aboee a pocsag 13467 515 1582

presented in a manner to illustrate the logic artdition qurt 503 84 0.07
behind our analytical cache optimization technigdere, uchgsort 61939 1144 17.516
v42 649168 23942 15628

we comment on issues to be considered in an actual

implementation (such as the one used to obtaimdbelts

Table 7: Instruction trace statistics.

in our experiments section). Total ~ Unique Time
o)) Benchmark Refs.N Refs.N’ (sec)
Stripping of a trace can be improved substantiaylyusing adpcm 63255 611 12.689
a hash-table structure to keep track of uniquereefee. bent 1337 115 0.12
Moreover, the building of the MRCT data structuem de blit 22244 149 0.781
. L . compress 137832 731 23.044
performed during the stripping of the trace with no cre 37084 176 1.653
additional added time complexity if a hash-tablaged. des 121648 570 22.954
. . . . engine 409936 244 34.47
The extensive use of sets in our technique is duket fact fir 15645 327 1.60
that sets are efficient to represent, store, andipnéate on g3fax 1127387 220 67.73
a computer system using bit vectors. In additibe, use of jpeg 4594120 623 693.876
sets allows for execution of the algorithm on astgu of pgﬁftag 4170%1‘;0 i’g’g g-i’gi
machines by utilizing a distributed set libraryabling the ucbgsort 219710 321 17 165
processing of very large trace files. v42 2441985 656 389.856

The implementation of Algorithm 1 and Algorithm arc
be combined. Specifically, the BCAT does not needbe
calculated in its entirety. Instead, a depth firaversal of
the tree can be performed to reduce memory usagther,

346

We have ran these traces through our analyticalrigthgn
for various values of desired number of cache misse
Specifically, we have sé& to one of 1%, 2%, 3%, and 4%

1E+12

Analytical Time
(NxN’xlog(I\'

1E+10

1E+08 -

1E+06 -
10000 -

100 4 Actual Time

0.01

Figure 4: Analytical time complexity vs. actual rtimes.

cache misses. For brevity, we have presented thiemailp
cache instances for only one of the benchmarksghatine
data trace ofadpcmin Table 8. The correctness of the
proposed approach has been verified by subseqaehec
simulation.

In this table, the inner entries are the degreasebciativity
A necessary to ensure the desired number of cactsemi
For example, if 2% cache misses are allowed, avwap-
set associative cache of depth 1024 would suffice.

Our algorithm was executed on a Pentium Il progess
running at 1.0 GHz with 256 MB of memory. The agga
time taken to produce results for data and indondraces
is shown in the last column of tables Table @ &able 7.

In Figure 4 we have plotted the average measurad ti
taken to produce results along with the analytitade
complexity computed adlixN’'xlog(N’) on a logarithmic
scale. We note that the pattern of the plots match.

Table 8: Optimal cache instancesaofpcm

Cache Degree of AssociativityA
Depth D Desired Cache MisseK as a Percentage
1% 2% 3% 4%
2 133 133 133 133
4 115 115 115 115
8 115 115 115 115
16 62 61 61 61
32 34 34 34 33
64 20 19 19 18
128 10 10 9 9
256 6 5 5 5
512 5 3 3 3
1024 3 2 2 2
2048 1 1 1 1

4. CONCLUSION

We have proposed an efficient algorithm to directly
compute cache parameters satisfying desired peaforen
criteria. The proposed approach avoids simulatiod a
exhaustive exploration. Here, we consider a desjgprce
that is formed by varying cache size and degree of

347

associativity. For a given memory reference tracer
algorithm takes as input the design constrainbéenform of
the number of desired cache misses and outputs$ af se
optimal cache instances that meet the constraihe T
feasibility of the proposed approach has been iedrif
experimentally using the PowerStone benchmarksurut
direction of research will focus on incorporatingifacts
such as write-back policy, replacement policiese Isize,
multilevel caches, and bus architecture effects.

5. REFERENCES

[1] A. Malik, B. Moyer, D. Cermak. A Lower Power Unifle
Cache Architecture Providing Power and Performance
Flexibility. International Symposium on Low Power
Electronics and Design, 2000.

C. Kozyrakis, D. Patterson. A New Direction for Quuer

Architecture Research, IEEE Computer, 1998.

C. Su, A.M. Despain. Cache Design Trade-offs fowé&o

and Performance Optimization: A Case Study. Intiwnal

Symposium on Low Power Electronics and Design, 1995

D. Kirovski, C. Lee, M. Potkonjak, W. Mangione-Shit

Synthesis of Power Efficient Systems-on-Silicon.iafis

South Pacific Design Automation Conference, 1998.

F. Vahid, T. Givargis. The Case for a Configure-&h@cute

Paradigm. International Symposium on Low Power

Electronics and Design, 1999.

[6] International Technology Roadmap for Semiconductors

K. Suzuki, T. Arai, N. Kouhei, |. Kuroda. V830R/AV:

Embedded Multimedia Superscalar RISC ProcessorE IEE

Micro, vol. 18, No. 2, pp.36-47, 1998.

M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A.

Sangiovanni-Vincentelli. Efficient Power Estimation

Techniques for HW/SW Systems. IEEE Alessandro Volta

Memorial Workshop on Low-Power Design, 1999.

P. Petrov, A. Orailoglu. Towards Effective Embedded

Processors in Codesigns: Customizable Partitionach€s.

International Workshop on HW/SW Codesign, 2001.

[10] R. Balasubramonian, D. Albonesi, A. Buyuktosunodhy,
Dwarkadas. Memory Hierarchy Reconfiguration for iye
and Performance in General-Purpose Processor
Architectures. International Symposium on
Microarchitecture, 2000.

[11] R.L. Mattson, J. Gecsei, D.R. Slutz, I.L. Traigéraluation
Techniques for Storage Hierarchies. IBM Systemsnhiu
vol. 9, no. 2, pp. 78-117, 1970.

[12] S.J.E. Wilton, N.P. Jouppi. CACTI: An Enhanced Gach
Access and Cycle Time Model. IEEE Journal of S&idte
Circuits, vol. 31, no. 5, 1996.

[13] T. Sato. Evaluating Trace Cache on Moderate-Scale
Processors. IEEE Computer, vol. 147, no. 6, 2000.

[14] W. Shiue, C. Chakrabarti. Mem. Exploration for L&awer
Embedded Systems. Design Automation Conferenced.199

[15] Y. Li, J. Henkel. A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW
Systems. Design Automation Conference, 1998.

[16]Z. Wu, W. Wolf. Iterative Cache Simulation of Emied
CPUs with Trace Stripping. International Workshop o
HW/SW Codesign, 1999.

(2]

(4]

(5]

(8]

(9]

