
Cache Optimization For Embedded Processor Cores: An Analytical Approach

Arijit Ghosh and Tony Givargis
Department of Computer Science

Center for Embedded Computer Systems
University of California, Irvine 92697

{arijitg, givargis}@ics.uci.edu

ABSTRACT
Embedded microprocessor cores are increasingly being
used in embedded and mobile devices. The software
running on these embedded microprocessor cores is often a
priori known, thus, there is an opportunity for customizing
the cache subsystem for improved performance. In this
work, we propose an efficient algorithm to directly compute
cache parameters satisfying desired performance criteria.
Our approach avoids simulation and exhaustive
exploration, and, instead, relies on an exact algorithmic
approach. We demonstrate the feasibility of our algorithm
by applying it to a large number of embedded system
benchmarks.

Keywords
Cache Optimization, Core-Based Design, Design Space
Exploration, System-on-a-Chip

1. INTRODUCTION
The growing demand for embedded computing platforms,
mobile systems, general-purpose handheld devices, and
dedicated servers coupled with shrinking time-to-market
windows are leading to new core-based system-on-a-chip
(SOC) architectures [6][2][5]. Specifically, microprocessor
cores (a.k.a., embedded processors) are playing an
increasing role in such systems’ design [1][9][7]. This is
primarily due to the fact that microprocessors are easy to
program using well evolved programming languages and
compiler tool chains, provide high degree of functional
flexibility, allow for short product design cycles, and
ultimately result in low engineering and unit costs.
However, due to continued increase in system complexity
of these systems and devices, the performance of such
embedded processors is becoming a vital design concern.

The use of data and instruction caches has been a major
factor in improving processing speed of today’s
microprocessors. Generally, a well-tuned cache hierarchy
and organization would eliminate the time overhead of
fetching instruction and data words from the main memory,
which in most cases resides off-chip and requires power
costly communication over the system bus that crosses chip
boundaries.

Particularly, in embedded, mobile, and handheld systems,
optimizing of the processor cache hierarchy has received a

lot of attention from the research community [9][3][10].
This is in part due to the large performance gained by
tuning caches to the application set of these systems. The
kinds of cache parameters explored by researchers include
deciding the size of a cache line (a.k.a., cache block),
selecting the degree of associativity, adjusting the total
cache size, and selecting appropriate control policies such
as write-back and replacement procedures. These
techniques, typically, improve cache performance, in terms
of miss reduction, at the expense of silicon area, clock
latency, or energy.

Traditionally, a design-simulate-analyze methodology is
used to achieve optimal cache performance [15][12][13]. In
one approach, all possible cache configurations are
exhaustively simulated, using a cache simulator, to find the
optimal solution. When the design space is too large, an
iterative heuristic is used instead. Here, to bootstrap the
process, arbitrary cache parameters are selected, the cache
sub-system is simulated using a cache simulator, cache
parameters are tuned based on performance results, and the
process is repeated until an acceptable design is obtained.

Central to the design-simulate-analyze methodology is the
ability to quickly simulate the cache. Specifically, cache
simulation takes as input a trace of memory references
generated by the application. In some of the efforts,
speedup is achieved by stripping the original trace to a
provably identical (from a performance point of view) but
shorter trace [16][8]. In some of the other efforts, one-pass
techniques are used in which numerous cache
configurations are evaluated simultaneously during a single
simulation run [4][11]. While these techniques reduce the

Figure 1: Design space exploration of caches: (a)
traditional approach, (b) proposed approach.

D
e

si
re

d

M
is

se
s K

T
ra

ce

F
ile

Cache
Simulator

==

Optimal Cache
Instances

New Cache
Instance

(a) (b)

D
e

si
re

d

M
is

se
s K

T

ra
ce

F

ile

Algorithmic Cache
Instance Generator

Optimal Cache
Instances

Yes

342

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

time taken to obtain cache performance metrics for a given
cache configuration, they do not solve the problem of
design space exploration in general. This is primarily due to
the fact that the cache design space is too large. Figure 1(a)
depicts the traditional approach to cache design space
exploration.

Our approach uses an analytical model of the cache
combined with an algorithm to directly and efficiently
compute a cache configuration meeting designers’
performance constraints. Figure 1(b) depicts our proposed
analytical approach to cache design space exploration. In
our approach, we consider a design space that is formed by
varying cache size and degree of associativity. In addition
to the trace file, our algorithm takes as input the design
constraint in the form of the number of desired cache
misses. The output of the algorithm is a set of cache
instances that meet the constraint.

The remainder of this paper is organized as follows. In
Section 2, we outline our technical approach and introduce
our data structures and algorithm. In Section 3, we present
our experiments and show our results. In Section 4, we
conclude with some final remarks and future direction of
research.

2. TECHNICAL APPROACH
2.1 Overview
In the following approach, we consider a design space that
is obtained by varying caches depth D and the degree of
associativity A. Cache depth D gives the number of rows in
the cache. In other words, log2(D) gives the bit-width of the
index portion of the memory address. Degree of
associativity A is the amount of storage available to
accommodate data/instruction words mapping to the same
cache row (a.k.a., cache block). Our objective is to obtain a
set of optimal cache pairs (D, A) for a given number K of
desired cache misses. Note that by using the cache depth D,
degree of associativity A, and line size Lsize, we obtain the

total cache size by computing D×A×Lsize. Also, note that the
K desired caches misses are assumed to be those beyond
the cold misses, as cold misses cannot be avoided.

In our approach, we do not consider the cache row size as a
varying parameter. In part, our decision is due to the fact
that a change in the cache row size would require redesign
of processor memory interface, bus architecture, main
memory controller, as well as main memory organization.
Thus, changing of cache row size requires a more
encompassing design space exploration. Likewise, we have
assumed fixed least recently used replacement and write-
back policies, as these are common and often optimal
choices.

Our approach can be divided into three phases, the
pre-processing phase, the main processing phase and the
post-processing phase. During the pre-processing phase, we
read the trace file and construct a binary-tree data structure,
called the Binary Cache Allocation Tree BCAT. In the
main processing phase, we compute the Miss Table MT
during a depth first traversal of the BCAT. In the post-
processing phase, we generate the optimal cache pairs (D,
A), which are guaranteed to result in a miss rate of less than
K. A block diagram of our analytical approach is shown in
Figure 2. We next describe in detail the three phases of our
algorithm and the associated data structures.

2.2 Pre-Processing Phase
Recall that a trace of N instruction/data memory references
is obtained after simulating the target application on a
processor whose cache is being optimized. We reduce this
trace into a set of N’ unique references, where N’≤N. In
other words, the original trace contained repetitions of
these N’ memory references. As part of a running example,
consider the trace shown in Table 1 and the stripped
version shown in Table 2.

B3 B2 B1 B0
1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 1
0 1 0 0
1 1 0 0
0 0 1 1
1 0 1 1
0 1 1 0

Table 1: Original trace.

ID B3 B2 B1 B0
1 1 0 1 1
2 1 1 0 0
3 0 1 1 0
4 0 0 1 1
5 0 1 0 0

Table 2: Stripped trace.

In this example, the trace contains N=10 4-bit references.
Of those, there are N'=5 unique references. We have
assigned a numeric identifier to each of the unique
references as shown in Table 2. (At times, we may simply
refer to a particular reference using its numeric identifier.)
Next we describe the BCAT data structure.

A BCAT data structure fully captures how references are
mapped onto a cache of any possible organization. Prior to

Figure 2: Block diagram of proposed algorithm.

Pre-processing

Main Processing

Post-Processing

BCAT

Build BCAT
O(N’logN’)

Strip
O(NlogN’)

Build MT
O(NN’logN’)

MT Calculate Cache
Instance O(1)

D
e

si
re

d

M
is

se
s K

T

ra
ce

F

ile

O
p

tim
a

l C
a

ch
e

In

st
an

ce
s

N
N’

343

computing the BCAT data structure, we transform the
stripped trace into an array of zero/one sets. The array of
zero/one sets contains a pair of sets for each address bit.
Specifically, for index bit Bi, we compute a pair of sets
called zero Zi and one Oi. The set Zi contains the identifier
of all references that have a bit value of 0 at Bi. Likewise,
the set Oi contains the identifier of all references that have a
bit value of 1 at Bi. For the running example, shown in
Table 1, the zero/one sets are given in Table 3.

Table 3: Zero/one sets.
 Z O

B0 {2,3,5} {1,4}
B1 {2,5} {1,3,4}
B2 {1,4} {2,3,5}
B3 {3,4,5} {1,2}

Next, the zero/one sets are used to construct the BCAT tree.
We use these sets because the set intersection operation
nicely defines how references are allocated to each cache
location. For example, in a cache of depth 4 (i.e., 4 rows),
using B0 and B1 as the index bits, we can compute the
following cross intersections: L00=Z0∩Z1={2,5},
L01=Z0∩O1={3}, L10=O0∩Z1={}, and L11=O0∩O1={1,4}.
Here sets L00, L01, L10, and L11 contain the reference
identifiers mapped onto the 4 cache slots. Likewise, for a
cache of depth 8, using an additional index bit B2, we cross
intersect each of these 4 sets with Z2 and O2 to obtain the 8
new sets and so on. The new sets form the nodes of our
binary tree. We stop growing the tree further down when
we reach a set with cardinality less than 2. Algorithm 1 and
Algorithm 2 recursively build a BCAT data structure as
described here.

Algorithm 1: Build-BCAT
Input : Stripped Trace T’=R0, R1 … RN’-1
Output : BCAT Data Structure
for each i ∈ [M-1…0] do // assume M-bit references
 Zi := Oi := ∅
 for each Rj ∈ T’ do
 if j th bit of Rj is 0 then
 Zj := Zj ∪ { i}
 else
 Oj := Oj ∪ { i}
BCAT.root ⇐ Z0 ∪ O0

BCAT := Recursive-Build-BCAT(BCAT.root, Z, O, 1)

Algorithm 2: Recursive-Build-BCAT
Input : BCAT Data Structure, Node N, Sets Z/O, and level L
Output : BCAT Data Structure
if |N| >= 2 then
 N.left ⇐ N ∩ ZL
 BCAT := Recursive-Build-BCAT(N.left, Z, O, L + 1)
 N.right ⇐ N ∩ OL
 BCAT := Recursive-Build-BCAT(N.right, Z, O, L + 1)

The complete BCAT data structure of the running example
is shown in Figure 3.

Associated with each node, we maintain a trace, called the
Relevant Trace Set RTS. The RTS of a node is a subset of
the RTS of its parent node containing only the references
mapped onto the current node. For the root, RTS is the
original trace. For other nodes, RTS is created dynamically
during the main processing phase. (See Algorithm 7.)

2.3 Main Processing Phase
In the main processing phase, we build up the Miss Table
MT data structure by processing each node as it is
encountered in a depth first traversal of the BCAT tree.

The MT data structure maintains, for each level L of the
BCAT, the number of misses for every associativity being
considered, i.e., A=1 to A=Amax. Note that each level of the
tree corresponds to a particular cache depth D=2L. For
example, level one of the tree (root being level zero)
corresponds to a cache of depth two. Also, the maximum
associativity at a given level, which results in no misses,
can be calculated by setting A to the maximum cardinality
of all nodes in the BCAT at that level. An entry MTL,A gives
the number of misses at level L (i.e., depth D=2L) for
associativity A. For example, MT3,2=15 means a cache of
dept D=23=8 with associativity A=2 will result in 15
misses. The complete MT data structure for our running
example is shown in Table 4.

Table 4: MT data structure.
Assoc. ����

Level
1 2 3 4 5

0 5 4 4 2 0
1 5 2 0 0 0
2 4 0 0 0 0
3 4 0 0 0 0
4 0 0 0 0 0

The MT data structure is built using Algorithm 3.

Algorithm 3: Build-MT
Input : Original Trace T, Desired Misses K
Input : BCAT Data Structure
Output : MT Data Structure
MT := ∅; BCAT.root.RTS = T
for each node N ∈ BCAT (depth first) do
 (MT,N) := Process-Node(MT,N,K)

Processing of each node involves updating the MT data
structure and creating the RTS (explained earlier) as well as

Figure 3: BCAT data structure.

B0
{2,3,5} {1,4}

B1

{2,5} {3}

B1

∅ {1,4}

B2

∅ {2,5}

B2

{1,4} ∅
B3

{5} {2}

B3

{4} {1}

{1,2,3,4,5}

344

the Memory Reference Conflict Table MRCT (explained
next) for the children nodes, as shown in Algorithm 4.

Algorithm 4: Process-Node
Input : MT Data Structure, Node N, and Desired Misses K
Output : MT Data Structure, Node N
MRCT := Build-MRCT(N)
MT := Update-MT(MRCT,K,MT,N.level)
N := Create-Children-RTS(N)

The MRCT data structure of a node N captures, for each
occurrence of a reference R, the number of unique
references that may cause a conflict with the next
occurrence of R in the RTS of N. In other words, the
MRCT associated with node N is an array of vectors, one
for each unique reference R mapped to N, containing a
count of references that may cause a conflict with R. The
MRCT data structure associated with the root node of the
running example is shown in Table 5.

Table 5: MRCT data structure for root node.
ID Conflict Vectors
1 (3,3)
2 (4)
3 (4)
4 (3)
5 (0)

Here, the reference “1011” has 3 occurrences. The first
occurrence of “1011” is ignored as it will always be a cold
miss. The second occurrence of “1011” can potentially be a
miss due to a conflict with references “1100”, “0110”, or
“0011” (i.e., the element MRCT1,1=3). The last occurrence
of “1011” can potentially be a miss due to a conflict with
references “0100”, “1100”, or “0011” (i.e., the element
MRCT1,2=3). So, the conflict vector for reference “1011”
contains two elements, namely (3,3). Algorithm 5 builds
the MRCT data structure as described above.

Algorithm 5: Build-MRCT
Input : Node N
Output : MRCT Data Structure
MRCT := temp := last := ∅
for Ri ∈ N.RTS do
 for Rj ∈ N do
 if (j ≠ i) && (i ∉ tempj) then
 MRCT[j][last[j]] := MRCT[j][last[j]] + 1
 temp[j] := temp[j] ∪ { i}
 else
 last[j] := last[j] + 1
 temp[j] := ∅

To update the MT, we observe that the value MRCTi,j
provides the upper bound on the degree of associativity, for
which the i th occurrence of the j th reference will result in a
miss. To illustrate, let us look at the root of the BCAT
example with N={1,2,3,4,5}. From the MRCT data
structure we obtain the conflict vectors of the first element,
namely V11=3 and V12=3. Since the value of V11 is 3, we
increment our miss count at that level by 1 for all
associativities from 1 to 3. Likewise since the value of V12
is 3, we increment our miss count at that level for a second

time. We repeat the same for the remaining elements in N.
Note that a miss count is associated with each degree of
associativity A under consideration (i.e., 1, 2…Amax). We
stop to consider a particular degree of associativity A when
its miss count goes beyond the desired number of desired
misses K, as shown in Algorithm 6.

Algorithm 6: Update-MT
Input : MRCT Data Structure, Desired Misses K
Input : MT Data Structure, Level L
Output : MT Data Structure
for each row i ∈ MRCT do
 for each element j ∈ MRCT[i] do
 for A ∈ [1…MRCT[i][j]] do
 if (MT[L][A] != -1) && (MT[L][A] > K) then
 MT[L][A] := -1 and break
 MT[L][A] := MT[L][A] + 1

Finally, to build the RTS of the children, we follow the
steps outlines in Algorithm 7.

Algorithm 7: Generate-Children-RTS
Input : Node N
Output : Node N
N.left-child.RTS := N.right-child.RTS := ∅
for Ri ∈ N.RTS do
 if Ri ∈ N.left-child then
 N.left-child.RTS := N.left-child.RTS ∪ {Ri}
 else
 N.right-child.RTS := N.right-child.RTS ∪ {Ri}

2.4 Postlude Phase
During the last phase of the algorithm, we read the MT data
structure and output a set of cache depth and associativity
pairs that satisfy the desired performance in terms of the
number of cache misses, as shown in Algorithm 8.

Algorithm 8: Calculate-Cache-Instances
Input : MT Data Structure
Print : A Set of (D,A) Cache Instances
for each level L ∈ MT
 A := 0
 while MT[L][A] = -1 do
 A++
 print cache instance (2L,A)

In Algorithm 8, for depths (number of rows) equal to 1, 2,
4, etc. we print the optimal caches having the smallest
degree of associativity to guarantee no more misses than
the desired value K.

2.5 Time Complexity
For time complexity analysis, we use the size of the trace N
and the number of unique references N’ as the input
parameters. We note that in most cases, N’ is much smaller
than N. Moreover, log(N’) is bounded by the width of the
memory references (i.e., processor data-path), which is
typically 32 or 64. We have shown the time complexity of
each part of the algorithm in Figure 2, as explained next.

The average time taken to strip the trace amounts to sorting
the references and thus is O(N×log(N’)).

345

The average time taken to build the BCAT data structure is
O(N’×log(N’)). At the root, we processes one node by
looking at the N’ unique references at a cost of O(1×N’), at
level one, we process two nodes by looking at N’/2 unique
references at a cost of O(2×N’/2), at level two, we process
four nodes by looking at N’/4 unique references at a cost of
O(4×N’/4), etc. In general, at each level of the tree, the
computation is bounded by O(N’). Since the number of
nodes in the tree is O(N’) it follows that the depth of the is
O(log(N’)). Combining these, we obtain O(N’×log(N’)).

The average time taken to build the MT data structure is
O(N×N’×log(N’)) which is dominated by the computation
involved in building the MRCTs of each node in BCAT. At
the root, we process one node for which we compute the
RTS data structure (taking O(N)) followed by the MRCT,
which involves one pass over the RTS for each unique
reference occurring at that node, (taking O(N×N’)). At the
next level, we process two nodes for which we compute the
RTS data structure (taking O(2×N/2)) followed by the
MRCT, which involves one pass over the RTS for each
unique reference occurring at that node, (taking
O(2×N/2×N’/2)), and so on for the remaining levels. In
general, at each level of the tree, the computation is
bounded by O(N×N’). Since the number of nodes in the tree
is O(N’) it follows that the depth of the tree is O(log(N’)).
Combining these, we obtain O(N×N’×log(N’)).

Finally, the post-processing phase of the algorithm takes
constant time to output the cache instances. Overall, the
presented technique takes O(N×N’×log(N’)) step to
execute.

2.6 Final Remarks
The data structure and algorithms described above are
presented in a manner to illustrate the logic and intuition
behind our analytical cache optimization technique. Here,
we comment on issues to be considered in an actual
implementation (such as the one used to obtain the results
in our experiments section).

Stripping of a trace can be improved substantially by using
a hash-table structure to keep track of unique reference.
Moreover, the building of the MRCT data structure can be
performed during the stripping of the trace with no
additional added time complexity if a hash-table is used.

The extensive use of sets in our technique is due to the fact
that sets are efficient to represent, store, and manipulate on
a computer system using bit vectors. In addition, the use of
sets allows for execution of the algorithm on a cluster of
machines by utilizing a distributed set library, enabling the
processing of very large trace files.

The implementation of Algorithm 1 and Algorithm 7 can
be combined. Specifically, the BCAT does not need to be
calculated in its entirety. Instead, a depth first traversal of
the tree can be performed to reduce memory usage. Further,

the data structures associated with each node can be
deleted, after the node has been processed.

3. EXPERIMENTS
For our experiments, we have used 14 typical embedded
system applications that are part of the PowerStone
benchmark applications [1]. The applications include a
JPEG decoder called jpeg, a modem decoder called v42, a
Unix compression utility called compress, a CRC
checksum algorithm called crc, an encryption algorithm
called des, an engine controller called engine, an FIR filter
called fir , a group three fax decoder called g3fax, a sorting
algorithm called ucbqsort, an image rendering algorithm
called blit, a POCSAG communication protocol for paging
applications called pocsag, and a few other embedded
applications.

We first compiled and executed the benchmark applications
on a MIPS R3000 simulator. Our processor simulator is
instrumented to output instruction/data memory reference
traces. The size of the traces N, the number of unique
references N’, and the execution time of our algorithm are
reported for data/instruction traces in Table 6/Table 7.

 Table 6: Data trace statistics.

Benchmark
Total

Refs. N
Unique
Refs. N’

Time
(sec)

adpcm 18431 381 2.7
bcnt 456 162 0.11
blit 4088 2027 6.879

compress 58250 8906 466.87
crc 2826 603 0.43
des 20162 2241 19.268

engine 211106 225 10.786
fir 5608 146 0.39

g3fax 229512 3781 221.098
jpeg 1311693 39302 100576

pocsag 13467 515 1.582
qurt 503 84 0.07

ucbqsort 61939 1144 17.516
v42 649168 23942 15628

Table 7: Instruction trace statistics.

Benchmark
Total

Refs. N
Unique
Refs. N’

Time
(sec)

adpcm 63255 611 12.689
bcnt 1337 115 0.12
blit 22244 149 0.781

compress 137832 731 23.044
crc 37084 176 1.653
des 121648 570 22.954

engine 409936 244 34.47
fir 15645 327 1.60

g3fax 1127387 220 67.73
jpeg 4594120 623 693.876

pocsag 47840 560 5.988
qurt 1044 179 0.151

ucbqsort 219710 321 17.165
v42 2441985 656 389.856

We have ran these traces through our analytical algorithm
for various values of desired number of cache misses K.
Specifically, we have set K to one of 1%, 2%, 3%, and 4%

346

cache misses. For brevity, we have presented the optimal
cache instances for only one of the benchmarks, namely the
data trace of adpcm in Table 8. The correctness of the
proposed approach has been verified by subsequent cache
simulation.

In this table, the inner entries are the degree of associativity
A necessary to ensure the desired number of cache misses.
For example, if 2% cache misses are allowed, a two-way
set associative cache of depth 1024 would suffice.

Our algorithm was executed on a Pentium III processor
running at 1.0 GHz with 256 MB of memory. The average
time taken to produce results for data and instruction traces
is shown in the last column of tables Table 6 and Table 7.

In Figure 4 we have plotted the average measured time
taken to produce results along with the analytical time
complexity computed as N×N’×log(N’) on a logarithmic
scale. We note that the pattern of the plots match.

Table 8: Optimal cache instances of adpcm

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

1% 2% 3% 4%
2 133 133 133 133
4 115 115 115 115
8 115 115 115 115
16 62 61 61 61
32 34 34 34 33
64 20 19 19 18
128 10 10 9 9
256 6 5 5 5
512 5 3 3 3
1024 3 2 2 2
2048 1 1 1 1

4. CONCLUSION
We have proposed an efficient algorithm to directly
compute cache parameters satisfying desired performance
criteria. The proposed approach avoids simulation and
exhaustive exploration. Here, we consider a design space
that is formed by varying cache size and degree of

associativity. For a given memory reference trace, our
algorithm takes as input the design constraint in the form of
the number of desired cache misses and outputs a set of
optimal cache instances that meet the constraint. The
feasibility of the proposed approach has been verified
experimentally using the PowerStone benchmarks. Future
direction of research will focus on incorporating artifacts
such as write-back policy, replacement policies, line size,
multilevel caches, and bus architecture effects.

5. REFERENCES
[1] A. Malik, B. Moyer, D. Cermak. A Lower Power Unified

Cache Architecture Providing Power and Performance
Flexibility. International Symposium on Low Power
Electronics and Design, 2000.

[2] C. Kozyrakis, D. Patterson. A New Direction for Computer
Architecture Research, IEEE Computer, 1998.

[3] C. Su, A.M. Despain. Cache Design Trade-offs for Power
and Performance Optimization: A Case Study. International
Symposium on Low Power Electronics and Design, 1995.

[4] D. Kirovski, C. Lee, M. Potkonjak, W. Mangione-Smith.
Synthesis of Power Efficient Systems-on-Silicon. Asian
South Pacific Design Automation Conference, 1998.

[5] F. Vahid, T. Givargis. The Case for a Configure-and-Execute
Paradigm. International Symposium on Low Power
Electronics and Design, 1999.

[6] International Technology Roadmap for Semiconductors.
[7] K. Suzuki, T. Arai, N. Kouhei, I. Kuroda. V830R/AV:

Embedded Multimedia Superscalar RISC Processor. IEEE
Micro, vol. 18, No. 2, pp.36-47, 1998.

[8] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A.
Sangiovanni-Vincentelli. Efficient Power Estimation
Techniques for HW/SW Systems. IEEE Alessandro Volta
Memorial Workshop on Low-Power Design, 1999.

[9] P. Petrov, A. Orailoglu. Towards Effective Embedded
Processors in Codesigns: Customizable Partitioned Caches.
International Workshop on HW/SW Codesign, 2001.

[10] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S.
Dwarkadas. Memory Hierarchy Reconfiguration for Energy
and Performance in General-Purpose Processor
Architectures. International Symposium on
Microarchitecture, 2000.

[11] R.L. Mattson, J. Gecsei, D.R. Slutz, I.L. Traiger. Evaluation
Techniques for Storage Hierarchies. IBM Systems Journal,
vol. 9, no. 2, pp. 78-117, 1970.

[12] S.J.E. Wilton, N.P. Jouppi. CACTI: An Enhanced Cache
Access and Cycle Time Model. IEEE Journal of Solid State
Circuits, vol. 31, no. 5, 1996.

[13] T. Sato. Evaluating Trace Cache on Moderate-Scale
Processors. IEEE Computer, vol. 147, no. 6, 2000.

[14] W. Shiue, C. Chakrabarti. Mem. Exploration for Low Power
Embedded Systems. Design Automation Conference, 1999.

[15] Y. Li, J. Henkel. A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW
Systems. Design Automation Conference, 1998.

[16] Z. Wu, W. Wolf. Iterative Cache Simulation of Embedded
CPUs with Trace Stripping. International Workshop on
HW/SW Codesign, 1999.

0.01

1

100

10000

1E+06

1E+08

1E+10

1E+12

qu
rt

bc
nt fir cr

c

po
cs

ag

ad
pc

m bli
t

en
gin

e

uc
bq

so
rt

de
s

g3
fa

x

co
m

pr
es

s
v4

2
jpe

g

Figure 4: Analytical time complexity vs. actual run times.

Analytical Time
(N×N’×log(N’))

Actual Time
(seconds)

347

