Exploring Efficient Operating Points for Voltage Scaled
Embedded Processor Cores

Marcio Buss, Tony Givargis, and Nikil Dutt
Department of Computer Science
Center for Embedded Computer Systems
University of California, Irvine, 92697

{marcio,givargis,dutt} @ics.uci.edu

ABSTRACT

Portable and battery operated devices pose a unique design
challenge in terms of performance requirements, low power
constraints, and short design cycles. Embedded soft cores,
on the other hand, provide functional flezibility and guar-
antee rapid design and thus are gaining popularity in de-
signing such portable and battery operated devices. To ad-
dress the low power needs, dynamic voltage scaled (DVS)
processors provide a new tradeoff dimension to the designer.
This work proposes an application-specific design space ez-
ploration framework for selecting energy-efficient operating
points in an embedded soft core. Specifically, we address
the problem of selecting an appropriate number of operating
voltage/frequency points and the distribution of these points
along the wvalid voltage span of a processor, given the ap-
plication that is to be executed on the processor. Further-
more, we provide a static intra-task scheduling technique
that reduces energy consumption (4-20% in our experiments)
even when the worst-case application execution time does not
leave any slack for effective voltage scaling. We have ezper-
imentally verified our techniques on a large set of embedded
benchmarks selected from MiBench, PowerStone and Medi-
aBench.

1. INTRODUCTION

There is a growing demand for portable and battery oper-
ated devices whose functional complexity is constantly rival-
ing or even exceeding the performance demands of desktop
computing applications. Examples of such devices include
cellular phones, personal digital assistants, mobile video-
phones and a plethora of similar multi-media, communica-
tion, and networking systems. Given a familiar program-
ming model, well evolved tool chains, functional flexibility,
and often adequate performance, processor soft cores are in-
creasingly playing an important role in the design of such
portable and battery operated devices, especially under tow-
ering time-to-market pressures.

However, given their general-purpose nature and consequently
energy inefficiency, the use of processor soft cores in low
power applications poses a significant design challenge. To
address this problem, embedded processor core vendors are
offering an increasing degree of customization potential (e.g.,
data-path and memory tuning, instruction-set tailoring, reg-
ister file sizing, etc. [19][9]) in order to provide a designer
with a performance/power tradeoff space and means to bet-
ter tailor a processor core to the needs of a specific applica-
tion.

Additionally, in recent years, dynamic voltage scaled (DVS)
processors have offered a new dimension in low power design.
In a DVS processor the operating voltage (and proportion-
ally the operating frequency) can be dynamically changed
by software. In CMOS, the energy consumption of a system
is proportional to the square of the operating voltage [1],
thus, the objective of any DVS system is to run the pro-
cessor at the lowest operating voltage while meeting all task
deadlines for optimal energy use. Toward this goal, and with
much success, a large body of work has focused on static and
dynamic scheduling algorithms and design methods.

A major challenge in the use of DVS soft cores within a code-
sign flow is the determination of efficient operating points
that are tuned for specific applications. However, much
of the previous work has operated under the assumption
that a DVS processor has a fixed number N of operating
points (i.e., voltage/frequency points) which are uniformly
distributed along the valid voltage span of a processor. In
this work, we demonstrate that the choice of N and the dis-
tribution of these points along the frequency/voltage axis
is a significant design decision. Specifically, we argue that
these choices should be part of the design space of a pro-
cessor soft core and with respect to the application that is
eventually to be executed on the processor. As with other
customization potentials (e.g., data-path and memory tun-
ing, instruction-set tailoring, register file sizing, etc.), the
DVS subsystem of a processor soft core needs to be explored
in an iterative codesign methodology. In this work, we also
outline a static intra-task scheduling technique that reduces
energy consumption even when the worst-case application
execution time does not leave any slack for effective voltage
scaling.

The remainder of this paper is organized as follows. In Sec-
tion 2, we outline related work. In Section 3, we formulate

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)

0-7695-2044-8/03 $ 17.00 © 2003 IEEE

IF,F.F.

COMPUTER

SOCIETY



the problem. In Section 4, we give our solution. In Section
5, we provide our experimental results. In Section 6, we
state our conclusions and future work directions.

2. RELATED WORK

Dynamic processor voltage scaling was first exploited by
Govil et al. [3] and Weiser et al. [21]. These works ap-
plied the classical speed/energy tradeoff on a collection of
UNIX workstation benchmarks. In their works, the micro-
processor frequency was scaled in proportion to the global
processor utilization, computed in fixed intervals of time.
Hence, the granularity of voltage scaling was very high.

In later work, Yao et al. [22] have contributed an optimal
preemptive offline scheduling algorithm taking as input a set
of independent tasks with arbitrary arrival times and dead-
lines on a variable speed processor. Several researchers have
followed a slightly different path and have addressed power
issues in event-driven systems by presenting various tech-
niques for shutting down the system or parts of the system
[5][16].

Hong et al. [4] have analyzed the theoretical scheduling
of a hard real-time set of tasks, using worst-case instead
of average-case work load estimates. In their work, they
present an online scheduling algorithm that optimally sched-
ules a set of active real-time tasks. The same authors have
also described a design methodology for DVS processor core
design targeted for real-time system-on-chip architectures.
Furthermore, they have provided an offline scheduling heuris-
tic for non-preemptive real-time tasks as well as the selec-
tion of other architecture configurations (e.g., instruction
and data cache size).

Lee et al. [7] have proposed an intra-task voltage schedul-
ing strategy where each task is partitioned into fixed-length
timeslots. Although they report significant improvement
in the energy reduction, they do not provide a systematic
guideline for selecting the best program locations where volt-
age scaling instructions should be inserted.

Shin et al. [15] have proposed an intra-task voltage schedul-
ing algorithm based on a static analysis technique, in order
to convert a DVS-unaware program into a DV S-aware one.
While their approach is similar to our work, they do not con-
sider tailoring operating frequencies for a given benchmark
in a design exploration context.

Quan and Hu [14] present a technique to determine volt-
age settings for a variable voltage processor that utilizes a
fixed priority assignment to schedule jobs. Their approach
also produces the minimum constant voltage needed to fea-
sibly schedule the entire job set. In their approach, they
assume a processor whose voltage can be set to any value in
a continuous interval. In our work, we seek to discover and
analyze the number of operating points and their specific
distribution for optimal power savings.

Our work is an attempt at exploring the design tradeoffs, in
terms of energy and real-time timing constraints, presented
by the voltage scaling subsystem design. In other words,
while previous works have taken as input a prearranged N
uniformly distributed DVS points and generated optimal (or

near-optimal) schedules, our work goes a step further by
treating N and the distribution as additional design param-
eters to be optimized. Since flexibility is afforded by emerg-
ing soft processor cores, exploration of this space becomes
important for codesign of future embedded systems.

3. PROBLEM FORMULATION

3.1 Basic Terminology

We denote a real-time task 7 as having a corresponding
deadline D7. The task 7 is represented by its control flow
graph Gt = (V,E), where V is the set of basic blocks and
E corresponds to the set of control flow edges. Two distinct
basic blocks, ENTRY € V and EXIT € V, represent 7’s en-
try and exit nodes. ENTRY has no predecessor nodes and
EXIT has no successor nodes. The successor basic blocks
of any v € V are denoted by succ(v). e € E is said to be
a back edge when its destination node dominates [10] its
source node. It is usually the set of edges defining loops.

Each basic block 7 is annotated with its non-zero latency
in number of cycles at maximum frequency, C; (since the
execution time of a given basic block depends on its actual
slowdown factor, we use the block’s number of cycles as the
reference). 7; represents the slowdown factor assigned to
block i, and can be viewed as the normalized frequency:
at any given instant, 7; is the ratio of the scheduled fre-
quency to the maximum frequency of the processor. Since
the voltage/frequency scaling decisions are made statically
we ignore the time and energy overhead incurred in changing
the frequency and voltage of the processor (this overhead is
instead folded into the basic block’s execution time). Dr is
set to be equal to 7’s worst-case execution time.

3.2 Variable speed processors

A wide range of processors already support multiple voltage
and frequency levels. Among the most popular we find Intel
StrongARM processors [17], Transmeta Crusoe [2] and Intel
XScale [13]. Intel Pentium M processors, primarily used on
mobile devices, also present a proprietary DVS technology
called SpeedStep [12]. We assume that future soft cores will
therefore allow specification of voltage/frequency levels as
parameters in their instantiation.

Voltage and frequency levels are tightly coupled. When-
ever the processor’s operating frequency changes, its supply
voltage is accordingly scaled. Therefore, when we perform
a slowdown we change both the frequency and voltage of
the processor. We assume that the frequency can vary from
fmin t0 fmaz, or that m; is located in the range [min,1],
where Nmin = :

fmaz "

4. PROPOSED APPROACH

Our technique is a three-phase approach based on static tim-
ing analysis that (1) assigns an “optimal” slowdown factor
for each basic block on each task, (2) computes the set of
(tailored) operating frequencies by looking at the entire ap-
plication results, and (3) reassigns a proper speed to each
basic block such that only valid operating frequencies — pre-
viously computed during Phase 2 — are used. In other words,
the first phase computes static slowdown factors under the
assumption that the processor could run at any possible
speed ranging from fmin = 0 to fmaz. The goal here is

IF,F.F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE



to assign a speed to each basic block so that the energy con-
sumption is optimally minimized while the timing require-
ments are still satisfied. Then, during Phase 2, a sub-set of
all existing slowdown factors is chosen to serve as the ac-
tual set of operating frequencies for the application being
analyzed. This characterizes an application-tailored DVS
strategy. Finally, Phase 3 reassigns each basic block’s speed
to the smallest operating frequency that still guarantees that
timing requirements are met.

We note that the actual number of operating frequencies
to be found during Phase 2 is an input parameter to our
algorithm, which defines the solution space. In other terms,
during design space exploration, and for a given application,
we exercise the three-phase approach multiple times, each
time considering a different number of operating points to
be encountered. In this particular work we have exploited 2,
3, 4, 8, 12, and 16 operating frequencies. In the remaining
subsections, we take a look at each of these three phases in
detail.

4.1 Phase 1: Speed Assignment

The first phase of our technique is formulated as a linear
programming (LP) method. Within a given task, each basic
block ¢ has a corresponding start time S;. We say that the
block’s start time plus its execution time cannot exceed any
of its successors’ start times. The execution time of a basic
block is defined as its number of cycles C; multiplied by the
inverse of its slowdown factor 7;, defined as n; (if 7; is 0.5,
indicating 50% of fmaz, 7; is equal to 2). In mathematical
terms,

S; + Cini < Sj, for each j € succ(i), and (a)
Sentry = 0. (b)
The exit basic block has a null successor set, thus:

Sc:cit + Cezitn:::n't S D) (C)

where D is the task’s deadline and it is set to be equal
to the task’s worst-case execution time in number of cycles
(WCEQ). The bounds for the LP formulation to be solvable
are:

1< S; < D, for each i # entry, and (d)
m > 1 (e)

The objective function is to maximize each possible slack
time within the task’s boundary.

mazimize Y, ;. (f)

The objective function’s rationale is that it tries to maximize
any internal slack available within the application. This is
a simple example used in this work, however more complex
objective functions are also available in our framework.

Notice that by generating instances of Equation (a) for all
basic blocks ¢ # exit within a task 7, we are implicitly cov-
ering all possible execution paths for 7 without the need of
enumerating all of them.

Consider for example a real-time task 7 shown in Figure 1(a).
This example has been extracted from the mpeg benchmark.
Each node in Figure 1(a) represents a basic block and each
edge indicates a possible flow of control between two basic
blocks. The number within each node indicates its index,
whereas the number outside the node indicates its latency in
number of cycles. The worst-case execution cycles (WCEC)
can be computed as the cost of the longest path from EN-
TRY to EXIT. In this paper we consider that the number
of maximum loop iterations is user-provided. Therefore, we
unroll any existing loop within each task in order to get a
loop-less graph and compute the task’s WCEC. This way,
each block has exactly one start time assigned to it.

Figure 1: (a) Control-flow graph of a real-time task
7 from mpeg. (b) Computed slowdown factors.

After generating LP equations for 7, an LP solver can be
used to determine “optimal” results for all start times and
slowdown factors. These results can be back annotated
into the task’s basic blocks. Figure 1(b) shows the ob-
tained slowdown factors for 7. Notice that by assuming
deadline = WCEC a number of blocks ended up having n’
=1, or frmaz. However, it turns out that some basic blocks
belong to alternative execution paths that present an inter-
nal slack time. We call these blocks as “stretchable” nodes,
since they are located along unbalanced paths where the ex-
ecution may branch and traverse a shorter distance to the
exit node. For instance, basic block 6 in Figure 1(a) has n’
= 7.75 - the execution paths from its predecessor basic block
(5) towards the ezit node are clearly unbalanced. The same
is observed for nodes 1, 8 and 10.

The question then becomes how many of those “stretchable”
basic blocks actually exist in a typical embedded applica-
tion. If a reasonable percentage of all basic blocks belong to
this category, and if they are reasonably frequently executed
considerable energy savings can be obtained even within our
tight preliminary assumption that deadline = WCEC. Sav-
ings are achieved by slowing down the operating frequency
for those blocks where > 1. Indeed, our experiments show
that for the vast majority of the benchmarks analyzed, ap-
proximately 30% of the basic blocks have ' > 1. Further-
more, when deadline > WCEC, we can expect much larger
energy savings.

IF,F.F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE



4.2 Phase 2: Finding Operating Frequencies
Recall that Phase 1 assigns static slowdown factors for each
task’s basic blocks regardless of any constraint such as a
limited number of operating frequencies. In other words, it
assumes that the processor could run at any possible speed
ranging from fmin = 0 t0 fmae. In practice, however, only
a few operating frequencies are feasible.

Therefore, an additional step of our strategy is to determine
which sub-set of all individual slowdown factors obtained
in Phase 1 will represent the actual set of N operating fre-
quencies for the benchmark being analyzed. This tailoring
analysis is done by first grouping together all basic blocks
from all tasks 71,72, 73, .., Tm that ended up having the same
slowdown factor, and then creating a frequency distribution
graph out of these grouped results. Figure 2 shows an exam-
ple of such a graph. The y axis corresponds to the number of
occurrences of a particular slowdown factor, which in turn
are represented along the z axis. Each vertical bar, therefore,
tells us how many basic blocks within the entire benchmark
have been assigned with a specific slowdown factor. For this
analysis the actual 7 is used instead of n’.

Determining the frequency distribution graph, however, is
not sufficient. Basic blocks in general have different laten-
cies, and hence different power figures even when executing
at the same clock frequency. For instance, among the 50 ba-
sic blocks being represented by the vertical bar at n = 0.23
in Figure 2, 20 of them might have a latency of 10 cycles,
20 a latency of 5 cycles and the remaining 10, 3 cycles. Two
distinct vertical bars with the same height should therefore
not be impartially handled.

A more accurate metric is to use an estimation of the energy
consumption corresponding to each vertical bar on Figure 2,
thus creating a energy distribution graph. This estimation
does take into account the total latency for each bar. More
precisely, by using execution traces and some profile infor-
mation, we compute an energy-corresponding value while
still assuming that any slowdown factor is possible. We call
this value as the optimal (i.e., ideal) energy consumption, in
the sense that we still assume a processor with any possible
number of operating frequencies.

The energy value is proportional to TotalCycles;n; V]»z, where
TotalCycles; is the total number of cycles for vertical bar
J, and Vj is n;’s corresponding voltage. Actually, since each
individual 7; has a specific operating voltage V;, we sim-
plify this step by assuming that the energy is proportional
to TotalCycles;n;.

Figure 3 shows the energy distribution graph resulting from
Figure 2. Note that it is very similar to Figure 2, since it is
simply a weighted frequency distribution.

The next and final step of Phase 2 relies on the cumulative
energy distribution graph built on top of the energy distri-
bution graph shown in Figure 3. This is straightforwardly
done by iteratively accumulating each vertical bar’s energy
from n = 0 up to » = 1. Figure 4 shows the cumulative
energy distribution graph corresponding to Figure 3. Each
pair (z1,¥1) on the resulting curve tells us that y; percent
of the total energy consumption are due to basic blocks with

Fmquency distrbution

Num berofbasi blocks

001 005 01 015 023 03 041 05 059 06 07 075 081 05 1
Skhwdown facor

Figure 2: Frequency distribution graph.

Enewgy distrbution

!
!
<
g
§
]

001 005 01 015 023 03 041 05 059 06 07 075 081 09 1
Sbwdown factor

Figure 3: Energy distribution graph.

a slowdown factor less than or equal to z;.

In order to find the actual set of IV operating frequencies,
we divide the 0-to-100% range of the y axis into N equal in-
tervals, further projecting the corresponding y1, .., y» values
onto the z axis. The intuition here is that we want to find
those particular slowdown factors that “accumulate” each
n-th interval. The key fact for this assumption is that the
influence of those basic blocks located at the lower end of
the z axis (in Figure 4) is much smaller than that of those
blocks located at the upper end. In other words, since a
small 7 will have a corresponding small voltage level, the
impact of a particular basic block on the total energy con-
sumption is not linear along the z axis on Figure 4, but in
fact depends on its actual position on that axis. This will
lead into a non-uniform distribution of operating frequen-
cies, often clustering them at the upper end.

This is a major observation not taken into account by cur-
rent voltage scaling strategies. That is to say, existing tech-
niques consider a pair (fmin, fmaz) and then divide this
range into a number of equally sized intervals. However,
in an application-specific voltage scaling point of view, op-
erating frequencies might turn out to have a non-uniform
pattern in order to minimize the total energy consumption.

In summary, the goal of phase 2 is to find the characteris-
tic curve for a given application. Different applications will
have different curves, depending on the application’s charac-

IEEE

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE



Cum uktive enexgy distrbution

Cum uktive enexgy & )

001 005 01 015 023 03 041 05 059 06 07 075 081 05 1

Sbwdown factor

Figure 4: Cumulative energy distribution graph.

teristic (data-flow dominated, control-flow dominated, etc.)
The operating frequencies are further extracted from this
characteristic curve.

4.3 Phase 3: Speed Reassignment

Recall that the goal of Phase 2 was to find a tailored and
limited set of operating frequencies, a constraint, for a given
benchmark. The input to Phase 2, in turn, was the LP re-
sults of Phase 1, which generated an ideal number of slow-
down factors for the basic blocks regardless of such con-
straint. Therefore, an extra adjustment is required in order
to re-assign only valid operating frequencies for the entire set
of basic blocks within the application. In this paper, we use
a conservative approach where we use the smallest operat-
ing frequency that is still greater than the block’s “optimal”
slowdown factor. This assumption guarantees that no basic
block will be over-delayed.

5. EXPERIMENTAL RESULTS

We have selected eleven different benchmarks for our ex-
periments, namely those listed in Table 1. Most of these
benchmarks are from MiBench [18], Powerstone [8] and Me-
diaBench [20]. All our tools have been built on top of the
WARTS/EEL platform [6].

Our tool flow is as follows. Each benchmark is compiled by
gce. A prototype analyzer, written by us, accepts assembly
language code, disassembles it, identifies the basic blocks,
and constructs the control flow graph (CFG) for each bench-
mark. Then, given the benchmark’s CFG, our analyzer au-
tomatically generates the set of LP equations into a (“.Ip”)
file which also includes the necessary bounds and objective
function. The cplex solver is subsequently used to solve the
linear system and to emit the output (“.output”) file with
the corresponding results for each block’s slowdown factor
7;’ and start time S;. Each benchmark takes approximately
1 second to be analyzed and solved by cplex. The next step
is to read the LP results from all “.output” files and back-
annotate each benchmark’s CFG. Finally, the frequency dis-
tribution graph, energy distribution graph and cumulative
energy distribution graph (see Phase 2) are computed by
looking at all benchmarks results. The cumulative energy
distribution graph is further used in order to find a tailored
set of N operating frequencies, as explained in the previous
section. The three-phase approach is repeatedly exercised

for n = 2,3,4,8,12 and 16.

Program Description
lame MP3 encoding engine
jpeg Image compression and decompression
compress Data compression tool
engine Engine controller

mpeg Video encoder
madplay MPEG audio decoder
tiff2ps tiff to postscript conversion
gsm Speech transcoding

basicmath Basic math operations
adpcm Voice encoder
dijkstra Shortest path algorithm

Table 1: Description of benchmark programs.

For practical reasons, it is worth pointing out that, a slight
modification on Phase 2 was actually implemented in our ex-
perimental framework. Recall that in Phase 2 the y axis of
the cumulative energy graph was divided into N equal inter-
vals, and the corresponding z values were collected to form
the set of N tailored operating frequencies. In our actual
implementation, however, we took a more aggressive (and
greedy) approach. Instead, we divide the 0-to-100% range
into m >> n segments. We subsequently collect all m op-
erating frequencies at z1, z32, .., z,m and generate all possible
combinations of m elements taken N at a time. For each
combination, we computed an estimate of the actual energy
consumption that would result if that specific combination
was chosen to be the final set of N operating frequencies.
This is done by (a) carrying out Phase 3 over each combina-
tion and (b) using the set of equations presented in the pre-
vious section to compute the energy estimates. Intuitively,
we do an exhaustive search in a broader sub-set of all slow-
down factors in order to select the specific combination that
results in the lower energy consumption. Of course, there
is a computational effort limit on the value of m (we have
adopted m = 32).

The effectiveness of our technique is evaluated by comparing
the results of (tailored) voltage-scaled systems against those
of fixed-voltage systems. Figure 5 shows the amount of en-
ergy savings that can be achieved for the benchmarks listed
in Table 1 as the number of operating frequencies grows from
2 up to 16. The results shown are relative to running each
benchmark at maximum processor speed only, or 1 operat-
ing frequency. Note that these results are generated under
the assumption that deadline = WCEC for each bench-
mark. In other words, a negligible amount of savings would
be expected. However, our experiments show that savings
up to 20% can be reached even under this tight constraint.

More realistic scenarios, where a slack time is allowed for
each benchmarks, clearly would give much better results, as
shown in Figure 6. This figure depicts the different amount
of energy savings when incremental degrees of slack are al-
lowed for every task in the tiff2ps benchmark (8 operating
frequencies). WCEC corresponds to our preliminary assump-
tion that deadline = WCEC, whereas the other values are
increments of 20, 50, and 100% over the WCEC. Allowing
exactly the same relative amount of slack for every task in
the application, though, is not quite realistic.

IF,F.F.

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE



Enegysavins &)

Energy savings

P 2348160p 2348160p 2348160p
basim ath aapem atyeacm

Figure 5: Energy savings for the benchmarks listed in Table 1.

As can be seen in Figure 5, the energy savings afforded by
our technique (and voltage-scaling in general) are extremely
application dependent. The same observation has been ver-
ified in previous works [11]. For some applications, savings
of only 5% are observed, while others present values such
as 20%. The last vertical bar in each benchmark (labeled
“Op”) corresponds to the “optimal” amount of savings that
could be achieved for that benchmark. By “optimal” we
mean that an unlimited number of operating frequencies
could be provided by the processor.

Observe that the amount of energy savings increase as the
number of operating frequencies is incremented. This leads
us to the conclusion that there must exist a particular num-
ber of operating frequencies resulting in the best trade-off
between energy savings and implementation issues. Our ex-
periments show that 8 operating frequencies are generally
sufficient for the vast majority of the benchmarks analyzed.

Energy savings when deadline > WCEC

Relative deadline

Figure 6: Energy savings for tiff2ps (8 operating
frequencies) when the deadline is expanded.

For a given pair (benchmark, N), another set of interest-
ing results is associated with the specific placement (i.e.,
distribution) of the operating frequencies that returned the
greatest amount of energy savings. Table 2, Table 3, Table 4,
and Table 5 illustrated that optimal (i.e., ideal) operating
frequencies are usually non-uniformly distributed along the
frequency spectrum, suggesting a different perspective for

DVS strategies. For example, when n = 4 operating fre-
quencies are sought for jpeg benchmark, the obtained values
are 0.37 fmaz 0.623fmaz 0.86 fmaz and 1.0 fmaz.

fi f2
0627 1.0

Table 2: Operating frequencies placement for jpeg
considering 2 points.

fi f2 f3 fa
0.37 | 0.62 | 0.86 | 1.0

Table 3: Operating frequencies placement for jpeg
considering 4 points.

e I e e
0.46 | 0.8 | 1.0

Table 4: Operating frequencies placement for mpeg
considering 3 points.

In summary, in embedded system design, where the appli-
cation set is a priori known, our extensive experiments con-
firm that careful selection of the number and distribution of
operating points in a DVS processor can result in a more
efficient hardware architecture as well as more effective soft-
ware scheduler.

6. CONCLUSION

In this work, we have presented a design space exploration
strategy for DVS sub-system of embedded soft cores. Specif-
ically, we have demonstrated that the choice in the number
of processor operating points N and the distribution of these
points along the voltage axis is a significant design decision.
Moreover, we have argued and experimentally verified that
these choices should be part of the design space of a pro-
cessor soft core and with respect to the application that is
eventually to be executed on the processor. As with other
customization potentials (e.g., data-path and memory tun-
ing, instruction-set tailoring, register file sizing, etc.), the
DVS subsystem of a processor soft core needs to be explored
in an iterative codesign methodology.

IEEE

COMPUTER
SOCIETY

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE



fi fa fa fa
0.46 | 0.66 | 0.86 | 1.0

Table 5: Operating frequencies placement for mpeg
considering 4 points.

Qur future work will focus on incorporating more flexible
task timing specification, which would inevitably broaden
the design space and facilitate richer power/performance
tradeoffs. Include the enery/timing costs for frequency and
voltage changes is also an additional step required for a more
precise and realistic scenario.

7. ACKNOWLEDGEMENT

This work was generously supported, in parts, by an NSF
(grant number 0205712) and CNPq Brazilian Research Coun-
cil (grant number 200346/01-6).

. REFERENCES

[1] T. D. Burd and R. W. Brodersen. Energy efficient cmos
microprocessor design. In 28th Hawaii International
Conference on System Sciences (HICSS’95), pages
288,297, 1995.

[2] T. Cruose. Transmeta inc.

http://www.transmeta.com/technology.

[3] K. Govil, E. Chan, and H. Wasserman. Comparing

algorithms for dynamic speed-setting of a low-power cpu.

In Proc. 1st Int’l Conference on Mobile Computing and

Networking, Nov. 1995.

1. Hong, M. Potkonjak, and M. Srivastava. On-line

scheduling of hard real-time tasks on variable voltage

processors. In IEEE/ACM International Conference on

Computer-Aided Design, Nov. 1994.

[5] C. Hwang and A. Wu. A predictive system shutdown
method for energy saving of event-driven computation. In
IEEE/ACM International Conference on Computer-Aided
Design, pages 28,32, 1997.

[6] J. Larus. Wisconsin architectural research toolset.
http://www.cs.wisc.edu/ larus/eel.html.

[7] S. Lee and T. Sakurai. Run-time voltage hopping for
low-power real-time systems. In Design Automation
Conference, 2000.

[8] A. Malik, B. Moyer, and D. Cermak. A low power unified
cache architecture providing power and performance
flexibility. In International Symposium on Low Power
Electronics Design, 2000.

[9] MIPS. Mips inc. http://www.mips.com.

[10] S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers, 1997.

[11] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling
in the iparm microprocessor system. In ISLPED’00, pages
96,101, 2000.

[12] 1. P. Processors. Intel inc.
http://www.intel.com/mobile/processors/pentiumIIL.htm.

[13] I. X. Processors. Intel inc.
http://developer.intel.com/desing/intelxscale.

[14] G. Quan and X. Hu. Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors. In Proceedings of the 38th Conference on
Design Automation, pages 828,833, 2001.

[15] D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage
scheduling using static timing analysis. In Design
Automation Conference, 2001.

[16] M. Srivastava, A. Chandrakasan, and R. Brodersen.

Predictive system shutdown and other architectural

techniques for energy efficient programmable computation.

IEEE Transactions on VLSI Systems, 4(1):42,55, 1996.

4

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

[17] 1. StrongARM. Amd inc.
http://www.amd.com/armtech/StrongARM.

[18] M. B. Suite. University of michigan, ann arbor.
http://www.eecs.umich.edu/mibench.

[19] Tensilica. Tensilica inc. http://www.tensilica.com.

[20] L. A. University of California. Mediabench benchmark
suite. http://cares.icsl.ucla.edu/MediaBench.

[21] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In Proc. 1st Symp. on
Operating Systems Design and Implementation, pages
13,23, Nov. 1994.

[22] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced cpu energy. In IEEE Annual Foundations of
Computer Science, pages 374,382, 1995.

IF,F.F.

COMPUTER
SOCIETY



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


