Code Partitioning for Synthesis of
Embedded Applications with Phantom

André C. Nacul, Tony Givargis
Department of Computer Science
University of California, Irvine
{nacul, givargis} @ics.uci.edu

ABSTRACT

In a large class of embedded systems, dynamic multitask-
ing using traditional OS techniques is infeasible because of
memory and processing overheads or lack of operating sys-
tems availability for the target embedded processor. Seri-
alizing compilers have been proposed as an alternative so-
lution, enabling a designer to develop multitasking applica-
tions without the need of OS support. A serializing com-
piler is a source-to-source translator that takes a POSIX
compliant multitasking C program as input and gener-
ates an equivalent, embedded processor independent, single-
threaded ANSI C program, to be compiled using the embed-
ded processor-specific tool chain. Such serializing compilers
work by partitioning each task into blocks of code and syn-
thesizing a scheduler that dynamically switches among these
blocks. The quality of the compiled code in terms of mul-
titasking overhead and task latency is highly dependent on
the partitioning algorithm. In this work, we give our solu-
tion to the partitioning problem in the context of serializing
compilers. We show that it is possible to provide the de-
signer with a set of Pareto-Optimal solutions that trade off
multitasking overhead for task latency.

Keywords

Dynamic Multitasking, Code Generation, Scheduling, Seri-
alizing Compilers, Software Synthesis

1. INTRODUCTION

Embedded software continues to play an ever increasing
role in the design of complex embedded applications. In
part, the elevated level of abstraction provided by a high-
level programming paradigm immensely facilitates a short
design cycle, fewer design errors, design portability, and In-
tellectual Property (IP) reuse. In particular, the concurrent
programming paradigm is an ideal model of computation for
design of embedded systems, which often encompass inher-
ent concurrency.

On the other hand, embedded systems often have strin-
gent performance requirements (e.g., timing, energy, etc.)
and, consequently, require a carefully selected and perfor-
mance tuned embedded processor to meet specified design
constraints. In recent years, a plethora of highly customized
embedded processors have become available. As an example,
Tensilica [13] provides a large family of highly customized
application-specific embedded processors, the Xtensa. Like-
wise, ARM [2] and MIPS [10] provide several derivatives of
their respective core processors, in an effort to provide to

0-7803-8702-3/04/$20.00 ©2004 |IEEE.

their customers an application-specific solution.

Such embedded processors ship with cross-compilers and
the associated tool chain for application development. How-
ever, to support a multitasking application development en-
vironment, there is a need for an operating system (OS)
layer that can support task creation, task synchronization,
and task communication.

Such OS support is seldom available for each and every
variant of the base embedded processor. In part, this is due
to the lack of system memory and/or sufficient processor
performance (e.g., in the case of micro-controllers such as the
Microchip PIC [9] and the Phillips 8051 [11]) coupled with
the high performance penalty of having a full-fledged OS.
Additionally, manually porting and verifying an OS to every
embedded processor available is a high-cost job, in terms of
time and money, and yet does not guarantee correctness.

To fill the gap in realizing a multitasking application tar-
geted at a particular embedded processor, we have proposed
Phantom. Phantom provides a fully automated source-to-
source translator, taking a multitasking C program as input
and generating an equivalent, embedded processor indepen-
dent, single-threaded ANSI C program, to be compiled using
the embedded processor-specific tool chain. The output of
Phantom is a highly tuned, correct (i.e., by construction)
ANSI C program that embodies the application-specific em-
bedded scheduler and dynamic multitasking infrastructure
along with the user code.

One important issue in code generation with Phantom is
that of code partitioning. In order to implement multitask-
ing with a single-threaded ANSI C code, Phantom makes
use of compile time information, and partitions the code into
non-preemptive units of execution, which are call atomic ex-
ecution blocks (AEBs). Some of these partitions are manda-
tory to maintain the correct execution of the application,
such as those implied by synchronization points. Others are
not mandatory, but directly affect response time, latency,
and the multitasking overheads. In this paper, we specifi-
cally address the partitioning issue in Phantom, discussing
the impact of partitioning on the final generated code, met-
rics to measure the quality of different partitions, and algo-
rithms to explore the different possible partitions.

As for related work, we can identify three different
approaches that address some of the issues solved with
Phantom, namely a Virtual Machine (VM) based tech-
nique, template-based OS generation techniques, and static
scheduling techniques. In the VM approach, portability is
achieved, but with the overhead imposed by the VM layer.
Moreover, the VM has to be ported to each new platform.

D
BB
CFG

Generic
Source » Front-End > Phia;tort:.()alls
Code (C) Compiler lentifier

Partitioning
Phantom i Module
—®» Code Generation >
Support
System GAEE:] T
raphs
A
ANSIC Live Variable
Single-threaded Analysis
Application

Figure 1: Phantom Compiler Architecture

To improve on these, solutions like JITs[3] and customized
VMs for embedded platforms[15] have been proposed. In
the template based OS generation, a custom OS is gener-
ated from a generic library of templates [6][7][14]. However,
no single generic OS template can be used in the variety of
embedded processors available. Finally, the static schedul-
ing techniques [4][5][8] solve the static, a priori known, tasks
class of problems, without addressing the dynamic multi-
tasking issues.

Phantom is a new approach in addressing the challenge
of multitasking support for embedded applications. We are
unaware of any work that addresses the partitioning problem
as stated in this work.

The remainder of this work is organized as follows. In
Section 2, we briefly describe Phantom, the source to source
translator. In section 3, we discuss the partitioning issues
related to code generation with Phantom. In Section 4, we
show experimental results. Finally, in Section 5, we state
our conclusions.

2. THE PHANTOM APPROACH

2.1 Introduction

Input to Phantom is a multitasking program Pjnput, Writ-
ten in C. The multitasking is supported through the native
Phantom API, which complies with the standard POSIX
interface[12]. These primitives provide functions for task
creation and management (e.g., task_create, task_join, etc.)
as well as a set of synchronization variables (e.g., mutex_t,
sema._t, etc.). Output of Phantom is a single-threaded strict
ANSI C program Poyipue that is equivalent in function to
Pinput. More specifically, Poutput does not require any OS
support and can be compiled by any ANSI C compiler into
a self sufficient binary for a target embedded processor.

Figure 1 is the block diagram of Phantom. The multi-
tasking C application is compiled with a generic front-end
compiler to obtain the basic block (BB) control flow graph
(CFG) representation. This intermediate BB representation
is annotated, identifying Phantom primitives. The resulting
structure is used by a partitioning module to generate non-
preemptive blocks of code, which are called atomic execution
blocks AEBs, to be executed by the scheduler. Every task
in the original code is partitioned into many AEBs, gener-
ating an AEB Graph. Then, a live variable analysis is per-
formed on the AEB graphs and the result is fed back to the

191

typedef struct {
int id;
pthread_mutex_t *lock;

pthread_mutex_t *unlock;

}game_t;

int winner;

void *game(void *arg) { /* THREAD */
game_t g = (game_t *)arg;

int num;

while (1) {
pthread _mutex_lock (g->lock);
if (winner) {

pthread_mutex_unlock (g->unlock) ;

return NULL;
}

else {

int main(int argc, char **argv) ({
pthread_t tl1, t2;
int r;
struct game_t gl, g2;
pthread_mutex_t ml, m2;

pthread_mutex_init (&ml, NULL);
&ml) ;
&m2, NULL);

. (
pthread_mutex_lock (
pthread_mutex_init (
pthread_mutex_lock (&m2) ;
gl.id = 1;

g2.id = 2;

gl.lock = g2.unlock = &ml;

g2.lock = gl.unlock = &m2;

winner = 0;

pthread_create (&tl, NULL, game, &gl);

pthread_create (st2, NULL, game, &g2);

num = rand(); pthread_mutex_unlock (&ml);
pthread_join(tl, NULL);

pthread_join(t2, NULL);

if (num == g->id)
winner = g->id;
pthread_mutex_unlock (g->unlock) ;

) printf ("Winner is %d\n", winner);

Figure 2: Code Example

partitioning module to refine the partitions until acceptable
preemption, timing, and latency are achieved. The resulting
AEB graphs are then passed to the code generator to out-
put the corresponding ANSI C code for each AEB node. In
addition, the embedded scheduler, along with other C data
structures and synchronization APIs are included from the
Phantom system support library, resulting in the final ANSI
C single-threaded code.

In the current version, Phantom is able to handle soft,
firm, and event-driven real-time applications. All the mod-
ules pictured in Figure 1 are implemented and can be used
in the automatic code generation process.

Next, we briefly present the major components of Phan-
tom. Throughout the next sections, we will be referring to
our running example shown in Figure 2. Our running exam-
ple implements a simple game between two tasks that are
picking up random numbers until one of them picks its own
id, making it the winner of the game.

2.2 Preemption and Scheduling

Since the output of Phantom is a single-threaded program,
there is a need for a context switching mechanism and a basic
unit of execution in order to achieve multitasking. As men-
tioned earlier, we define the basic unit of execution, sched-
uled by the scheduler, an atomic execution block (AEB). An
AEB is a block of code that is executed in its entirety prior
to scheduling the next AEB. A task T; is partitioned into
an AEB graph whose nodes are AEBs and edges represent
control flow. For example, Figure 3 pictures the CFG trans-
formations for the function game of our running example.
Figure 3(a) shows the output of the compiler front-end that
is fed to the partitioning module. The partitioner adds two
control basic blocks, setup and cleanup, as shown in Figure
3(b), and subsequently divides the code into a number of
AEBs, as shown in Figure 3(c).

Figure 3(c) shows the AEB graph of function game as be-
ing composed of AEBs aeb_0, aeb_1, aeb_2, aeb_3, aeb_/
and aeb_5. Within an AEB graph, each node is imple-
mented as an ANSI C function with no return value. For in-
stance, aeb-3 implementation is shown in Figure 4 (function
game_aeb3). The termination of an AEB function trans-
fers the control back to the scheduler (Figure 4, function

Partitioner
Step Il

Partitioner
Step |

—

Q@<
@

(a)

Figure 3: CFG Transformations for Function game

phantom_scheduler). The scheduler, then, has a chance to
activate the next AEB, from either the same task or from
another task that is ready to run.

It may happen that a function in the original input code
is partitioned into more than one AEB, each one of them
being implemented as a separate ANSI C function. In that
case, there is a need for a mechanism to save the variables
that are live on transition from one AEB to the other, so
that the transfer of one AEB to another is transparent to the
task code. Phantom solves this issue by storing the values
of local variables of the original C function in a structure
inside the task context, emulating the concept of a function
frame. The frame is initialized in the first AEB of a given
function (i.e., setup), and cleaned up in the last AEB of the
same function (i.e., cleanup). These operations are included
by the partitioner for every function that needs to be phan-
tomized, i.e., divided into AEBs. They are represented by
the dark nodes in Figure 3(b). For an example of the gen-
erated ANSI C code, refer to Figure 4, functions game, for
setup, and game_aebb, for cleanup.

During runtime, there is a need to maintain, among oth-
ers, a pointer to the next AEB node that is to be executed
in the future, called next_aeb, in the context information
for each task that has been created (Figure 4, structure
task-t). When a task is created, the context is allocated,
the next_aeb field is initialized to the entry AEB of the task,
and the task context is pushed onto a queue of existing task,
called tasks, to be processed by the embedded scheduler.

The embedded scheduler is responsible for selecting and
executing the next task, by calling the corresponding AEB
function of the task to be executed. The next_aeb pointer of
a task T; is used to resume the execution of T; by making a
function call to the function corresponding to the next AEB
of T;. At termination, every AEB updates the next_aeb of
the currently running task to point to the successor AEB
according to the tasks’s AEB Graph. A zeroed next_aeb
indicates that T} has reached its termination point, and thus

192

void game(void *arg, void **ret_val) {
// allocate and setup frame
frame = malloc(...);

typedef struct {

int id;

status_t status;

frame->arg = arg; task_info_t info;

// save the ret_val in the frame stack_t

heap;

frame->ret = ret_val; join_info_t Jjoin_info;
// setup next aeb aeb_t next_aeb;
curr_thr->next_aeb = game_aebl; void *ret;
push (curr_thr->frames, frame); Jtask_t;

) task_t *curr_thr;
void game_aeb3 (void) { static queue_t tasks;
int num; static void phantom_scheduler () {
> 0) {

curr_thr = queue_pop (&tasks);

// restore locals from frame while (queue_size (stasks)
frame = top(current->frames);
game_t g = frame->g; if (curr_thr->next_aeb != 0) {
if(twinner) goto bb_4; curr_thr->next_aeb () ;

curr_thr->next_aeb = game_aebd; if (curr_thr—>status == RUNNABLE)

pthread_mutex_unlock (g->unlock) ;
goto exit;

bb_4:
num = rand();
if(num != g->id) goto bb_7;
winner = g->id;

bb_7:

curr_thr->next_aeb = game_aeb2;

queue_push (&tasks, curr_thr);
}
else
terminate_task (curr_thr->ret);
}
}
void game_aeb2 (void) {

// restore locals from frame
pthread_mutex_unlock (g->unlock) ;

- frame = top (current->frames);
exit:
game_t g = frame->g;
' if()d

d b5 d
void game_aeb5 (void) { curr_thr->next_aeb = game_aeb3;

pthread_mutex_lock (g->1lock) ;
}
}

// clean up frame structure
frame = pop (current->frames);
free(frame);

}

Figure 4: Excerpt of the Generated Code

is removed from the queue of existing tasks.

The scheduling algorithm in Phantom is a priority based
scheme, as defined by POSIX. The way priorities are as-
signed to tasks, as they are created, can enforce alternate
scheduling schemes, such as round-robin, in the case of all
tasks having equal priority, or earliest deadline first (EDF),
in the case of tasks having priority equal to the inverse of
their deadline, priority inversion, and so on. Additionally,
priorities can also be changed at run-time, so that scheduling
algorithms based on dynamic priorities can be implemented.

2.3 Synchronization

Phantom implements the basic semaphore (sema_t in
POSIX) synchronization primitive, upon which any other
synchronization construct can be built. A semaphore is
an integer variable with two operations, wait and signal
(sema_wait and sema_post in POSIX). A task T; calling wait
on a semaphore S will be blocked if the S’s integer value is
zero. Otherwise, S’s integer value is decremented and T; is
allowed to continue. T; calling signal on S will increment S’s
integer value and unblock one task that is currently blocked
waiting on S. To implement semaphores, there is a need to
add to a task T;’s context an additional field called status.
Status is one of blocked or runnable and is set appropriately
when a task is blocked waiting on a semaphore.

A semaphore operation, as well as a task creation and
joining, is what is called a synchronization point. Synchro-
nization points are identified by a gray node in Figure 3. At
every synchronization point a modification in the state of
at least one task in the system might happen. Either the
current task is blocked, if a semaphore is not available, or
a higher priority task is released on a semaphore signal, for
example. Therefore, a function is always partitioned into
AFEBs when synchronization points are encountered, and a
call to a synchronization function is always the last state-
ment in its AEB. The scheduler must regain control and
remove the current task from execution in case it became

blocked or is preempted by a higher priority task.

Right before any synchronization, an AEB will set the
task’s next_aeb to the successor AEB according to the AEB
Graph. If the task is not blocked at the synchronization, it
will continue and the next_aeb will be executed next. Other-
wise, the next_aeb will be postponed, and it will be executed
as soon as the task is released on the synchronization point.

2.4 Interrupts

Preempting an AEB when an interrupt occurs would
break the principle that every AEB executes until comple-
tion without preemption. Instead, in Phantom, the code for
an interrupt service routine [is treated as a task, with its
associated AEBs. On an interrupt destined for I, a corre-
sponding task is created, having a priority higher than all
existing tasks. Note that if multiple interrupts destined for
I occur, multiple tasks will be created and scheduled for ex-
ecution. This is a uniform and powerful mechanism for han-
dling interrupts in a multitasking environment. However,
the latency for handling the interrupt will depend on the
average execution time of the AEBs, which in turn depends
on the partitioning scheme used.

2.5 Experiments with Phantom

The Phantom approach has been successfully applied to
a number of applications developed for testing the trans-
lation flow. In summary, Phantom outperforms standard
POSIX implementations, being 2 to 3 times faster in exe-
cution time. On the average, multitasking with Phantom
achieves a speed-up of 2.3, with a maximum of 2.9. In
general, multitasking applications synthesized with Phan-
tom show a much improved performance (i.e., low operating
overhead). The reason is two fold. First, the generated ap-
plication encompass a highly tuned multitasking framework
that meets the application-specific needs. Second, the mul-
titasking infrastructure itself is very compact and efficient,
resulting in a much lighter overhead for context switching,
task creation, and synchronization.

3. PARTITIONING

As described earlier, the partitioning of the code into AEB
graphs is the key to implementing multitasking at a high-
level of abstraction. Recall that boundaries of AEB repre-
sent the points where tasks might be preempted or resumed
for execution. Some partitions are unavoidable and must be
performed for correctness, specifically, when a task invokes
a synchronization operation, or when a task creates another
task. In the case when a task invokes a synchronization op-
eration and thus is blocked, the embedded scheduler must
regain and transfer control to one of the runnable tasks.
Likewise, when a task creates another, possibly higher pri-
ority task, the embedded scheduler must regain and possibly
transfer control to the new task in accordance with the prior-
ity based scheduling scheme. Additionally, the programmer
can specify points in the code where a context switch should
happen by calling the yield function of the Phantom API.

Any original multitasking C program is composed of a set
of functions (or routines). In Phantom, and for correctness,
all functions that are the entry point of a task need to be
partittioned. In addition, and for correctness, any function
that invokes a synchronization primitive also needs to be
partitioned. We call the process of partitioning functions
into AEBs phantomization. Finally, and for correctness, a

193

function that calls a phantomized function also needs to be
phantomized. However, partitioning beyond what is needed
for correctness impacts timing issues as described next.

In general, partitioning will determine the granularity
level of the scheduling (i.e., the time quantum), as well as
the task latency. A good partitioning of the tasks into AEBs
would be one where all AEBs have approximately the same
average case execution time p and a relatively low deviation
0 from the average, which can be computed if the average
case execution time of each AEB is known. In this case,
the application would have a very predictable and stable
behavior in terms of timing.

The range of partitioning granularities is marked by two
scenarios. On one end of the spectrum, partitioning is per-
formed only for correctness, and yields cooperative multi-
tasking!. On the other end of the spectrum, every basic
block is placed in its own partition, resulting in a preemptive
multitasking with extremely low latency, but high overhead.
Specifically, to evaluate a partition we can apply the fol-
lowing metrics, average, minimum, and maximum latency;
standard deviation of latency; and context switch overhead.
Clearly, to shorten latency, there is need to context switch
more often, and thus pay a penalty in terms of overhead. In
this work, we explore the range of partitioning possibilities.

In the next sections, we define a strategy for clustering
and an exploration framework for obtaining a set of Pareto-
Optimal partitions.

3.1 Strategy for Clustering

The generic clustering algorithm used to group basic
blocks into partitions that correspond to AEBs is based on
two algorithms traditionally used for data flow analysis by
compilers, namely interval partitioning and interval graphs
[1]. The generic clustering algorithm takes as input a CFG,
and returns a set of disjoint clusters, each cluster grouping
one or more of the basic blocks of the original CFG. The
generic clustering algorithm ensures that a cluster of basic
blocks has a single entry point (i.e., the head of the clus-
ter), but possibly multiple exit points. This requirement is
necessary since every cluster is implemented as an ANSI C
function in Phantom.

Our generic clustering technique is shown in Algorithm 1.
Initially, for a given CFG and its entry basic block ng, a set
of clusters is computed, each containing one (reachable from
ng) basic block of the CFG (line 3). Subsequently, pairs of
clusters c¢;,c; are merged if all of ¢;’s predecessors are in
cluster ¢;. The predecessors of ¢; are all clusters containing
one or more basic block(s) that are predecessor(s) of at least
one basic block in ¢;. The algorithm iterates until no more
clusters can be merged.

Note that if Algorithm 1 were to run on a CFG it would
cluster all the basic blocks into a single partition, as ex-
pected. Therefore, we introduce a mechanism to modify the
input CFG such that, using Algorithm 1, we obtain a desired
partitioning for correctness and timing. The mechanism is
to modify the original CFG with two special empty basic
blocks, synch-mark and time-mark. Neither of these marker
basic blocks are reachable from the entry basic block ng,
and are, for that reason, not a member of a cluster (line 3).
All points of partitioning that are required for correctness
or timing will be pointed to by one of the markers prior to

1Cooperative multitasking is when tasks explicitly yield to each
other or are preempted by a synchronization primitive.

Algorithm 1 The Generic Clustering Algorithm

1: Input: c¢fg,no € cfg the entry point of the CFG
2: Output: clusters c1,c2,...,cn

3: clust « {c¢; < bi|b; € cfg and reachable from ng}
4: changed «+— 1

5: while changed =1 do

6: changed «— 0

7: for each c;, c; € clust do

8: if every pred. of ¢; is in ¢; then

9: Cnew < C; U ¢y

10: clust — (clust — ¢; — ¢j) U{cnew}

11: changed «— 1

12: end if

13: end for

14: end while

running Algorithm 1.

Figure 5 shows, step-by-step, the working of the cluster-
ing algorithm. Figure 5(a) is the CFG for the function game,
augmented with the setup and cleanup basic blocks, where
gray nodes represent those basic blocks with a synchroniza-
tion point. Figure 5(b) shows the addition of the synch-
mark basic block s. Next, every reachable basic block b; of
the CFG is assigned to cluster ¢; as shown in Figure 5(c).
Then, by successive iterations, clusters are merged until the
final partitioning is reached, as shown in Figure 5(c)-(f).

The introduction of the synch-mark block is taken care
of by the Phantom compiler. The introduction of the time-
mark is performed by the exploration framework, to be de-
scribed later. In other words, the exploration of the differ-
ent partitions and the search for the Pareto-Optimal set of
tradeoffs is a matter of determining the set of basic blocks
that the time-mark points to.

3.2 Exploration Framework

Our overall exploration framework is pictured in Figure 6
and works as follows. Initially, the multitasking application
is processed by the Phantom compiler, as shown in Figure 1,
using the cooperative partitioning scheme. Then, the gen-
erated code is instrumented with profiling instructions (i.e.,
basic block execution counters). Next, the instrumented
code is executed and a trace containing profiling informa-
tion is retrieved. Moreover, traces obtained from multiple
runs of the same instrumented code but different input are
merged to obtain a single representative trace (i.e., by aver-
aging the basic block counts). The trace is then processed
to extract performance numbers for each possible partition.

A partition is defined in terms of a set of edges from the
time-mark basic block to the basic blocks of the original
CFG. Thus, given a CFG with N basic blocks, there are an
exponential number of ways to introduce such edges, hence
there are an exponential number of possible partitions. For
each partition, and using the profiling data, we can quickly
compute all the evaluation metrics. Our search goal is to
obtain a set of Pareto-Optimal ? partitions that tradeoff
latency, context switch overhead, and other metrics.

Our exploration technique employs a simple heuristic to
obtain different clusters and is shown in Algorithm 2. For a
CFG with N basic blocks, Algorithm 2 attempt K random

’Ina multi-objective optimization problem, a Pareto-Optimal set
contains design instances where each design instance is guaran-
teed to be optimal with respect to at least one objective.

194

Instrumented
Single-Threaded

Phantom
Compiler

Source
Code (C)

Execute

Partitioning
Explorer

Pareto-
Optimal
Partitions

User Intervention

Phantom
Compiler

Partition

I
I
I

Constrains N
Selection !
I
I
I

Cost Function

Single-Threaded

Generated
Code (C)

Figure 6: Clustering Exploration Methodology

placements of 1,2,... N edges from the time-mark to basic
blocks of the CFG. The parameter K is an arbitrary num-
ber and depends on the amount of compute time available
for exploration. Clearly, larger values for K are expected
to yield a better approximation of the Pareto-Optimal set.
Although simple, this heuristic allows us to quickly reach
a reasonably good number of partitions and obtain a fairly
good approximation of the Pareto-Optimal set.

Algorithm 2 The Search Heuristic

1: Input: cfg

2: Input: K {number of tries}

3: Output: c¢fgi,cfge,...,cfgn where n = |cfg]
4: N « |cfg| {number of basic blocks in cfg}

5: for i =1 to N do

6: for j=1to K do

7 pick ¢ random basic blocks in cfg

8: place an edge from time_mark to basic block ¢
9: execute Algorithm 1 and evaluate metrics
10: end for

11: end for

Once the Pareto-Optimal set is computed, there is the
final process of selecting the best cluster to meet the appli-
cation constraints. To do this, there are three different pos-
sibilities. The first is to have the designer select the desired
partition by examining the Pareto-Optimal set. Another
alternative is to apply a single constraint (e.g., specifying
either a minimum latency, or maximum overhead) and let
the tool select the partition that meets the constraint while
optimizing the other metrics. Finally, it is possible to define
a cost function (e.g., a weighted sum of the various metrics)
to compute a unique goodness measure for each point in the
Pareto-Optimal set, allowing the tool to select the partition
with the minimum cost.

4. EXPERIMENTAL RESULTS

Eight different applications were implemented using the
Phantom POSIX interface, in order to test the Phantom
compiler and partitioner. The application benchmarks used
in our experiments are described in Table 1.

Our exploration methodology was applied to all the ap-
plication benchmarks. Figures 7, 8, 9, and 10 show the
resulting Pareto-Optimal partitions for the most interest-

Figure 5: Execution of Clustering Algorithm

Table 1: Application Benchmarks

[Description |

Name

client_server Client-Server implementation of

a calculator. Communication
through shared memory.

100 servers and 2000 clients.

Classical consumer producer problem,
100 consumers and 100 producers.

Buffer with 1000 entries.

consumer,producer

dct Multitask implementation of
8x8 dct. One task for each point
in the result matrix.

deep_stack Multiple recursive tasks. Tests

the cost of recursive function calls
in the Phantom system.

Multitask implementation of
matrix multiplication. Resulting
matrix is 150x150 elements.

One task per element in the result.

matrix_-mul

quick_sort Multitask implementation of
the traditional sorting algorithm.
vim Multitask simulator for a simple
processor.
watch Time-keeper application, used to

test timing behavior of the
generated code.

ing cases. In these figures, each point represents a different
partition, showing the latency and context-switch overhead
of an especific partitioning solution.The rightmost point in
each graph is the cooperative schedule, while the leftmost
point is the most responsive scenario, where each AEB has
only one basic block.

Overall, we observe the trend of increased overhead as la-
tency is reduced (i.e., more partitions are created). Further-
more, by using different partitioning schemes, it is possible
to modify latency by as much as two orders of magnitude at
the expense of an overhead increase by a factor of 120.

Figure 7 shows the Pareto-Optimal partitions for the func-
tion server in the client_server benchmark. In this exam-
ple, there is a fairly regular behavior. The maximum and

195

Table 2: Partitioning quick_sort
part min max avg std ctx_sw
number | latency | latency | latency | deviation | overhead
0 4 100.7 20.2 32.9 5.5
1 4 87.2 19.4 26.5 6.0
2 4 34.3 9.3 9.3 10.3
13 4 12.3 6.5 3.3 18.9
16 4 11.0 5.9 3.2 23.3
18 4 11.0 5.6 3.4 25.0

the minimum partitions differ by a factor of 3 in latency, and
by a factor of 3.5 in performance. The range of latencies is
covered reasonably well by our partitioning methodology.

A completely different picture is shown in Figure 8, the
Pareto-Optimal partitions for function fpixel in DCT.
Here, latency ranges from a large 720 instruction delay to a
tiny 5 instruction delay on the other extreme. The overhead
also changes significantly, from a minimal number of con-
text switches in one case to a large overhead in the other.
Moreover, it is possible to detect islands of partitions as we
break the code in different parts.

Figures 9 and 10 show yet different scenario as a result of
partitioning. Clearly, the trade off between latency and con-
text switch overhead is variable with different applications.

Table 2 details the minimum, maximum, and average la-
tency; standard deviation; and context switching overhead
for some of the partitions explored in the quick_sort func-
tion. The table shows that, for the larger partitions, the
average latency is high, but standard deviation is also high,
due to the highly irregular sizes of each cluster, while the
overhead due to context switching is minimal. Then, as the
clustering methodology explores different partitions, one can
see that the latency and the standard deviation are reduced
significantly, resulting in a more uniform clustering.

5. CONCLUSIONS

In this work, we have presented our solution to the parti-
tioning problem in the context of serializing compilers. A se-
rializing compiler is a source-to-source translator that takes

ClientServer-server Exploration
20000

—_ *Xe
8 15000 x
g -
= e
H
x -
B 10000 F
] ;
[
<
2 5000 x
]
0
0 2 4 6 8 10 12
Latency (instructions)
Figure 7: Client Server - server
dct-fpixel Exploration
250
M
% 200
[0
2
]
Z 150
; %
)
® 100
(]
=
5}
>
S 50
"
Mo
0 x| o x x
0 100 200 300 400 500 600 700

Latency (instructions)

Figure 8: DCT - fpixel

a POSIX compliant multitasking C program as input and
generates an equivalent, embedded processor independent,
single-threaded ANSI C program, to be compiled using the
embedded processor-specific tool chain. Serializing compil-
ers have been proposed as an alternative solution, enabling
a designer to develop multitasking applications without the
need of OS support. We have shown that it is possible to
provide the designer with a set of Pareto-Optimal solutions
that tradeoff multitasking overhead, task latency, and other
metrics when serializing compilers are used. Our results
show that it is possible to reduce latency (from the coop-
erative multitasking scheme) by as much as two orders of
magnitude at the expense of an increase in the overhead by
a factor of up to 120.

Our future direction of research is to investigate ap-
proaches where the task latency and multitasking overhead
are balanced during execution time. In other words, we are
interested in introducing mechanisms for context switching
between multiple tasks at arbitrary points (i.e., determined
dynamically) during execution.

6. ACKNOWLEDGEMENTS

This work was supported by the National Science Foun-
dation award number CCR-0205712 and by CAPES Foun-
dation, Brazil, award number BEX1054/01-5.

7. REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers
Principles, Techniques and Tools. Addison-Wesley,
Reading, Massachusetts, 1988.

[2] ARM Inc. http://www.arm.com.

196

ConsumerProducer-main Exploration

3000

KKK X

2500

2000

1500

1000

Overhead (ctx switches)

* % ox o

500

10
Latency (instructions)

15 20

Figure 9: Consumer Producer - main

quick-sort Exploration

30

_. 25 %
[*
S 2 x
£ .
> *
3 15 ”
3 o
2 10 T
3
>
3 L
0
0 5 10 15 20 25

Latency (instructions)

Figure 10: Quick Sort - quick_sort

[3] J. Aycock. A Brief History of Just-In-Time. ACM
Computing Surveys, 35(2):97-113, Jun. 2003.
J. Cortadella et. al. Task Generation and
Compile-Time Scheduling for Mixed Data-Control
Embedded Software. In Proc. of DAC, Jun. 2000.
S. Edwards. Tutorial: Compiling Concurrent
Languages for Sequential Processors. ACM TODAES,
8(2):141-187, Apr. 2003.
L. Gauthier, S. Yoo, and A. Jerraya. Automatic
Generation and Targeting of Application-Specific
Operating Systems and Embedded Systems Software.
IEEE TCAD, 20(11):1293-1301, Nov. 2001.
A. Gerstlauer, H. Yu, and D. Gajski. RTOS Modeling
for System Level Design. In Proc. of DATE, Mar.
2003.
B. Lin. Efficient Compilation of Process-Based
Concurrent Programs without Run-Time Scheduling.
In Proc. of DATE, Feb. 1998.
Microchip Inc. http://www.microchip.com.
MIPS Inc. http://www.mips.com.
Phillips Inc. http://www.phillips.com.
POSIX Open Group. http://www.opengroup.org.
Tensilica Inc. http://www.tensilica.com.
S. Vercauteren, B. Lin, and H. D. Man. A Strategy for
Real-Time Kernel Support in Application-Specific
HW/SW Embedded Architectures. In Proc. of DAC,
Jun. 1996.
[15] V. Verdiere, S. Cros, C. Fabre, R. Guider, and
S. Yovine. Speedup Prediction for Selective
Compilation of Embedded Java Programs. In Proc. of
EMSOFT, Oct. 2002.

[4]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

