
Equivalence Checking of Arithmetic Expressions
using Fast Evaluation

Mohammad Ali Ghodrat, Tony Givargis, Alex Nicolau
Department of Computer Science

Center for Embedded Computer Systems
University of California, Irvine

{mghodrat, givargis, nicolau}@ics.uci.edu

ABSTRACT
Arithmetic expressions are the fundamental building blocks
of hardware and software systems. An important prob-
lem in computational theory is to decide if two arithmetic
expressions are equivalent. However, the general problem
of equivalence checking, in digital computers, belongs to
the NP Hard class of problems. Moreover, existing gen-
eral techniques for solving this decision problem are applica-
ble to very simple expressions and impractical when applied
to more complex expressions found in programs written in
high-level languages. In this paper we propose a method for
solving the arithmetic expression equivalence problem using
partial evaluation. In particular, our technique is specifi-
cally designed to solve the problem of equivalence checking
of arithmetic expressions obtained from high-level language
descriptions of hardware/software systems, which consists of
regular arithmetic operators (+, −, ×) and logical operators
(and, or, not). In our method, we use interval analysis to
substantially prune the domain space of arithmetic expres-
sions and limit the evaluation effort to a sufficiently limited
set of subspaces. Our results show that the proposed method
is fast enough to be of use in practice.

Categories and Subject Descriptors
I.1 [Computing Methodologies]: SYMBOLIC AND
ALGEBRAIC MANIPULATION; C.3 [Computer Sys-
tems Organization]: SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS

General Terms
Algorithms, Verification

Keywords
Expression equivalence, Mutual exclusion, Interval analy-
sis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05, September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

1. INTRODUCTION AND MOTIVATION
Arithmetic expressions are the fundamental building

blocks of hardware and software systems. In hardware,
arithmetic expressions form the core of data-path designs.
In software, arithmetic expressions form the core of basic
blocks. A fundamental problem in computational theory
is to decide if two expressions are equivalent [11, 8]. In
hardware and software systems, expression equivalence is
uniquely characterized by operating on finite precision in-
tegers. Furthermore, the general problem of equivalence
checking, as related to hardware and software systems, be-
longs to the NP Hard class of problems [7].

Efficiently solving the equivalence problem between two
arithmetic expressions will have a profound impact in the ar-
eas of formal verification [10], complex code generation and
technology mapping [6], resource scheduling [3], code trans-
formation [4], synthesis technologies [20], compiler tech-
niques [1], reconfigurable computing methodologies, extensi-
ble processors, VLIW and multiple-processor-on-a-chip com-
pilers.

In this paper we propose a method for solving the expres-
sion equivalence problem using partial evaluation. In our
method, we use interval analysis [21] to substantially prune
the domain space of arithmetic expressions and limit the
evaluation effort to a limited set of subspaces. Our results
show that the proposed method is fast enough to be of use
in practice.

Let us motivate the expression equivalence problem with
a specific example. Consider the famous problem of mutual
exclusion in hardware synthesis [23] [3] [16] [18, 19] [24].
Mutual exclusion is a special instance of the equivalence
checking problem. Here, if E1 and E2 are two arithmetic
expression, we say that E1 and E2 are mutually exclusive if
the condition E1 = E2 is false for all values of E1 and E2.
We say that E1 and E2 are not mutually exclusive if for at
least some point in the domain of E1 or E2, the expression
E1 = E2 evaluates to true. This is indeed the problem
of equivalence checking. If C1 and C2 are two conditional
expressions (e.g., x < 0 and x > 255), we say the C1 and C2

are mutually exclusive if the condition C1&&C2 evaluates
to false for all points in the domain of C1 and C2.

The remainder of this paper is organized as follows. In
Section 2 we show the previous work. In Section 3, we for-
mulate the problem of expression equivalence. In Section 4,
we give our solution for this problem when we have only
one simple arithmetic expression. In Section 5 we extend
our solution for more complex arithmetic expressions which

147

have boolean operators also. In Section 6 we present our
experimental results. Finally, in Section 7, we give our con-
clusion.

2. PREVIOUS WORK
Most of the work on equivalence checking is done in the

domain of formal verification. The most commonly used
methods to do formal verification of circuits use binary de-
cision diagrams (BDD) [2] and its derivatives, namely or-
dered BDD (OBDD), ordered functional decision diagrams
(OFDD), multi terminal BDD (MTBDD), binary moment
diagram (BMD), edge-valued BDD (EVBDD), and multi-
plicative BMD (*BMD). These approaches differ mainly in
bit vs. word level scope and composition rules.

BDD, OBDD, and OFDD are bit-level decision dia-
grams, while the rest are word-level decision diagrams (bit-
level decision diagrams represent boolean functions f :
{0, 1}n → {0, 1}m, while word-level decision diagrams rep-
resents integer-valued functions f : {0, 1}n → Z). These de-
cision diagram based approaches also differ in the type of de-
composition rule used, specifically, Shannon (BDD, OBDD,
and K*BMD), positive-Davio (OFDD and K*BMD), or
negative-Davio (K*BMD). Among those decision diagrams
that are word-level, a further difference is in the place where
the integer weights are inserted, either in leaves (MTBDD
and BMD) or edges (EVBDD, *BMD and K*BMD). A de-
tailed survey of BDD and its derivatives can be found in
[9].

Due to exponential complexity, bit-level decision diagrams
are only applicable to simple boolean expressions and are
not feasible when applied to arithmetic expressions. Word-
level decision diagrams can be applied to simple arithmetic
expressions (e.g. datapath segments [15]), however, they
can only be used to determine the equivalence of arithmetic
expressions. Conversely, our method, in addition to checking
equivalence, can also partition the domain space into regions
and define the arithmetic relations (less-than, greater-than,
and equal) present in those regions.

In related work, Wakabayashi et al. [23] have used the no-
tion of a condition vector to find mutual exclusion between
two boolean conditions. Two conditional expressions are
mutually exclusive if it can be shown that they can never
be evaluated to true at the same time. Likewise, Juan et
al. [16] have proposed condition graphs, a form of syntax
pattern matching, to find mutual exclusion between two re-
stricted boolean conditions. Further, Jian et al. [18, 19]
have used timed decision table (TDT) to find three possible
types of mutual exclusion between a pair of conditional ex-
pressions, namely structural, behavioral and dataflow. Also,
Xie et al. [24] used a branch labeling method to find the mu-
tual exclusion properties between two boolean expressions.
Finally, Camposano [3], in his path-based scheduling tech-
nique, has proposed a method for determining mutual ex-
clusion based on an exhaustive traversal of all paths in a
control flow graph.

The problem of mutual exclusion between two boolean
conditions, as solved previously, is a special case of the prob-
lem solved in our work. The main limitation of existing
works in this area is the restriction imposed on the grammar
and the lack of support for mixed arithmetic and boolean
expressions. The problem solved in our work applies to gen-
eral arithmetic expressions with arbitrary complexity.

Zhou et al. [25] have proposed a formal verification sys-

tem, called conditional term rewriting on attribute syntax
trees (ConTRAST) for verifying the equivalence between
two differently synthesized data-paths. In their approach,
they maintain attributes (e.g., real bounds) associated with
each node of the syntax trees of the two data-paths and com-
bine this with term rewriting to establish equivalence. Their
approach differs from ours in that they focus on computation
precision of real values as an element of comparison.

Cheung et al. [5] have used bit-slicing of binary decision
diagrams (BDDs) to establish equivalence between two ex-
pressions. The main limitation of their approach is scalabil-
ity, as representing general and arbitrary arithmetic expres-
sions as a BDD is not feasible in terms of space and time
requirements.

3. PROBLEM DEFINITION
An arithmetic expression is formed over the language (+,
−, ×, integer-constant, integer-variable). A simple condi-
tion is in the form of (expr1 ROP expr2). Here, expr1 and
expr2 are arithmetic expressions and ROP is a relational
operator (=, 6=, <, ≤, >, ≥). Without loss of generality
we can assume all simple conditions to be of the form of
(expr ROP 0). This normalization is achieved by convert-
ing (expr1 ROP expr2) to (expr1 − expr2 ROP 0). Hence,
(expr ROP 0) is called a normalized simple condition. For
the remainder of this work, we refer to a normalized simple
condition as a simple condition.

We define an n-dimensional space to be a box-shaped re-
gion defined by the cartesian product [l0, u0]× [l1, u1]× ...×
[ln−1, un−1]. In a simple condition, all integer-constants
and integer-variables are assumed to be bounded between
min and max values1. Hence, the domain of a simple
condition C with n integer-variables x0, x1, ..., xn−1 is
an n-dimensional space defined by the cartesian product
[min, max]× [min, max]× ... × [min, max].

Given a simple condition C with integer-variables x0, x1,
..., xn−1, the domain space partitioning problem for a sim-
ple condition is to partition the domain space of C into a
minimal set of n-dimensional spaces s1, s2, ..., sk with each
space si having one of true, false, or unknown truth value.
If space si has a truth value of true, then C evaluates to true
for every point in space si. If space si has a truth value of
false, then C evaluates to false for every point in space si. If
space si has a truth value of unknown, then C may evaluate
to true for some points in space si and false for others.

For example, consider C : 2 × x0 + x1 + 4 > 0. Let us
assume min = −5 and max = 5. Therefore, the domain of
C is a 2-dimensional space defined by the cartesian product
[−5, 5] × [−5, 5]. Figure 1 shows the partitioned domain
space and the corresponding truth values for this example
using our solution to the domain space partitioning problem.

The problem of equivalence checking can be reduced to
that of arithmetic expression evaluation. Specifically, given
two expressions E1 and E2, by evaluating the condition E1−
E2 = 0, we can establish the equivalence of E1 and E2 (i.e.,
E1 and E2 are not equivalent if the condition evaluates to
false for a point in the domain of E1 and E2). We give
our solution to the domain space partitioning problem for a
simple condition in section 4.

A complex condition is either a simple condition or two

1Typically, in a computer system, min and max values are
determined by the width of the processor data-path.

148

Figure 1: Partitioned Domain of C : 2x0 + x1 + 4 > 0

complex conditions merged using logical operators (&&, ||,
!). Specifically !C computes the negation of the complex
condition C; (C1&&C2) computes logical-and of complex
conditions C1 and C2; and (C1||C2) computes logical-or of
complex conditions C1 and C2.

The domain of a complex condition C with n integer-
variables x0, x1, ..., xn−1 is an n-dimensional space defined
by the cartesian product [min, max] × [min, max] × ... ×
[min, max].

Similar to the domain space partitioning problem for sim-
ple conditions, given a complex condition C with integer-
variables x0, x1, ..., xn−1, the domain space partitioning
problem for complex conditions is to partition the domain
space of C into a minimal set of n-dimensional spaces
s1, s2, ..., sk with each space si having one of true, false,
or unknown truth value. If space si has a truth value of
true, then C evaluates to true for every point in space si. If
space si has a truth value of false, then C evaluates to false
for every point in space si. If space si has a truth value of
unknown, then C may evaluate to true for some points in
space si and false for others.

The general problem of equivalence checking between two
expressions expr1 and expr2 with bounded variables2 can be
expressed in terms of the domain space partitioning problem
for complex conditions. As an example, consider checking
equivalence between expr1 = 2 × x0 and expr2 = −x1 − 4.
Further, let us assume x0 and x1 are 3-bit two’s complement
integers. We can construct the following complex condition:

((2 × x0)− (−x1 − 4) = 0)

&& (x0 + 4 ≥ 0)

&& (x0 − 3 ≤ 0)

&& (x1 + 4 ≥ 0)

&& (x1 − 3 ≤ 0).

Here, (2 × x0) − (−x1 − 4) = 0 evaluates to true, for
values of x0 and x1 where expr1 and expr2 are equivalent.
The remaining expressions (i.e., x0 + 4 ≥ 0, x0 − 3 ≤ 0,
x1 +4 ≥ 0, and x1−3 ≤ 0) evaluate to true when x0 and x1

are within the 3-bit two’s complement bounds. To establish

2The ability to bound integer variables is necessary when
considering hardware/software implementations.

equivalence, we solve the domain space partitioning problem
and check that the entire region is marked as true. We give
our solution to the domain space partitioning problem for a
complex condition in section 5.

4. DOMAIN SPACE PARTITIONING FOR
SIMPLE CONDITION

Our overall domain space partitioning strategy is depicted
in Figure 2. On input, the arithmetic expression of the sim-
ple condition is parsed to obtain an equivalent polynomial
representation. Any arbitrary arithmetic expression can be
rewritten as an n-variable polynomial with degree D using
the general form shown in Equation 1.

D
X

i0,i1,...,in−1=0

ci0,i1,...,in−1 × xi0
0
× xi1

1
× ... × x

in−1
n−1

(1)

Figure 2: Space Partitioning Strategy

For example, the expression 2 × x0 + x1 + 4 of Figure 1
can be rewritten as 2× x0

1x1
0 + x0

0x1
1 + 4× x0

0x1
0 (zero

coefficient terms not shown) with n = 2 and D = 1. We
describe the remaining domain space partitioning steps in
the following subsections.

4.1 Computing Root-spaces
During this phase, we operate on an n-variable polynomial

P and obtain a set of minimally sized spaces (root-spaces)
that contain the roots of P , as outlined in Algorithm 1.
We achieve this by finding the roots of P using interval
analysis [21]. Let us first give an overview of the interval
analysis technique.

A real interval of the form [a, b] represents all possible
values in the range a to b. The operations (+, −, ×, /)
can be defined on two real intervals [a, b] and [c, d] as shown
below:

[a, b] + [c, d] =[a + c, b + d] (2)

[a, b]− [c, d] =[a− d, b− c] (3)

[a, b]× [c, d] =[min (a× c, a× d, b× c, b× d),

max (a× c, a× d, b× c, b× d)]
(4)

[a, b]/[c, d] =

(

[a, b] × [1/d, 1/c] 0 /∈ [c, d]

[−∞,∞] 0 ∈ [c, d].
(5)

149

Next, we describe our strategy (Algorithm 1) for comput-
ing the root-spaces. Algorithm 1 operates as follows:

Algorithm 1 Compute Root-spaces

1: Input: a n-variable polynomial P
2: Output: a set R of minimally sized root-spaces
3: R← ∅

4: S ← 〈[min, max], [min, max], ..., [min, max]〉 {|S| = n}
5: Q.push(S)
6: while Q.not empty() do
7: S ← Q.pop()
8: changed← 0
9: for all xi ∈ P do

10: P ′ ← convert P to a polynomial with xi as the only
variable and xj = vj (vj ∈ S)

11: roots← P ′.solve()
12: for all r ∈ roots do
13: if r 6= vi (vi ∈ S) then
14: changed← 1
15: r← r ∩ vi {Intersect new root with old one}
16: Q.push(〈v0, ..., r, ..., vn−1〉) {replace vi with r}
17: end if
18: end for
19: end for
20: if changed = 0 then
21: R← R ∪ {S}
22: end if
23: end while
24: for all Ri ∈ R do
25: Ri ← convert Ri to smallest bounding integer space
26: end for

1. Initialization Phase (lines 3-5): We start by creat-
ing a single root-space S that covers the entire domain
of P . Specifically, S is an n-dimensional space with
each dimension initialized to the interval [min, max].
Clearly, the roots of P (if any) are within S, however,
S may not be minimally sized. To minimize S, we
push S onto a queue Q to be processed by the itera-
tive phase of the algorithm. In our running example
2 × x0

1x1
0 + x0

0x1
1 + 4 × x0

0x1
0 (min = −5 and

max = 5), S is initialized to 〈[−5, 5], [−5, 5]〉.

2. Iterative Phase (lines 6-23): We pop a space S
from the queue Q and split S into smaller spaces
S0, S2, ..., Sk−1. If S0 ∪ S1... ∪ Sk−1 = S, then S can
not be minimized, thus, we add S to the output list
of root-spaces R. If S0 ∪ S1... ∪ Sk−1 ⊂ S, then we
push S0, S1, ..., Sk−1 onto the queue Q and discard S.
This process iterates until the queue Q is empty. This
phase proceeds as follows:

(a) As long as the queue Q is not empty, we pop a
space S from the queue Q and clear a flag called
changed (lines 7-8).

(b) For each variable xi in P , we compute a single
variable polynomial P ′ by setting all variables xj

(j 6= i) to the corresponding intervals vj ∈ S.
Next, we solve P ′ using any root finding algo-
rithm (e.g., Newton-Raphson Method [22]), im-
plemented using interval analysis to obtain a set
of one or more disjoint root-spaces (i.e. roots, line

9-11). In our running example, P ′ is computed
twice during the run of the for loop starting on
line 9. In the first round, with x0 as the vari-
able, P ′ is 2× x0

1 + [−5, 5] + [4, 4]. Since P ′ is a
polynomial of degree 1, we compute the root as
[−4.5, 0.5].

(c) We compare each of r0, r1, ... to the present value
of xi in space S, namely vi. If any root r0, r1, ...
is not equal to vi, we create a new space and
push it onto the queue Q for further process-
ing. Moreover, we set the flag changed to sig-
nal that S should not be recorded in the output
set R (lines 12-18). In our running example, root
r0 = [−4.5, .5] is not equal to v0 = [−5, 5], thus
we create a new space S0 = 〈[−4.5,−.5], [−5, 5]〉.

(d) Once steps (b) and (c) are completed, if the flag
changed is not set, S can not be further mini-
mized, thus we push it on the output set R (lines
20-22).

As an optimization, we use a method to help reach to
shorter intervals for each root space computed in step
2 of our algorithm. Shorter interval helps in faster con-
vergence for the algorithm. Specifically if a root space
[lb, ub] contains 0 (i.e., lb < 0 < ub) we divide it into
three intervals [lb,−1], [0, 0] and [1, ub]. For example
in the running example, after computing the root for
x1, we reach to the interval [−5, 5]. Then, we divide
this interval into three disjoint intervals [−5,−1], [0, 0],
and [1, 5] to be pushed on the queue Q for processing
during the following iteration of the algorithm.

3. Quantization Phase (lines 24-26): Finally, we con-
vert each root-space in the output set R to the smallest
bounding integer space. Table 1 gives the final output
set R for our running example. This result is shown
graphically in Figure 3. All the shaded areas are the
root-spaces, and as shown in Figure 3, the equation
2x0 + x1 + 4 = 0 passes through all of them.

Table 1: Root-spaces of 2x0 + x1 + 4
Final Real Results Final Integer Results
[0, 0][−4,−4] [0, 0][−4,−4]
[−1.5,−1][−2,−1] [−1,−1][−2,−1]
[−4.5,−2.5][1, 5] [−4,−3][1, 5]
[−2,−2][0, 0] [−2,−2][0, 0]

4.2 Partitioning
Given the root-spaces for an expression Ex (correspond-

ing to a normalized simple condition Ex ROP 0), the en-
tire domain of Ex can be partitioned into a number of dis-
joint spaces. This is accomplished by extending the bound-
aries of each root-space to the limits (min and max) of
the entire domain to establish the borders between the dis-
joint spaces. For our running example, the boundary points
{0,−1,−4,−3,−2} for x0 and {−4,−2,−1, 1, 5, 0} for x1

(see Table 1) partition the entire domain space as shown in
Figure 4. In Figure 4, the root-spaces are shown in shaded
color.

For each disjoint space si, and si not overlapping with
any of the root-spaces, it must be the case that evaluating

150

Figure 3: Root-spaces of 2x0 + x1 + 4

Figure 4: Partitioned Spaces for 2x0 + x1 + 4

the corresponding expression for any point in si will yield
only positive results or only negative results, but not both
(otherwise, si would contain a root and thus will have an
overlap with one of the root-spaces). In Figure 4, all spaces
that are not shaded have this property. For example, the
point (3, 3) in space 〈[1, 5][1, 5]〉 will make the expression
2x0 + x1 + 4 positive. Furthermore, this is true for all the
points in space 〈[1, 5][1, 5]〉.

4.3 Evaluation
After partitioning the domain space, each disjoint space

si, and si not overlapping with any of the root-spaces, can
be evaluated separately. This is done by picking an arbitrary
point in si and evaluating the simple condition C. This will
yield either a true or a false result. Accordingly, space si can
be marked as true or false. For a disjoint space sj , and sj

overlapping with one of the root-spaces, such evaluation can
not be performed, therefore, sj must be marked as unknown.
For example, evaluating 2x0 +x1 +4 > 0 with the arbitrary
point (3, 3) in space 〈[1, 5], [1, 5]〉 yields a true value, thus,
the entire space 〈[1, 5], [1, 5]〉 is marked as true (see Figure 5).
Conversely, evaluating 2x0 + x1 + 4 > 0 with the arbitrary
point (−3,−2) in space 〈[−4,−3], [−2,−1]〉 yields a false

value, thus, the entire space 〈[−4,−3], [−2,−1]〉 is marked
as false (see Figure 5).

Figure 5: Evaluated Spaces for 2x0 + x1 + 4 > 0

4.4 Merging
When two n-dimensional spaces have the same truth value

and share n− 1 common borders, then these two spaces can
be merged. For example, in Figure 5, space 〈[−1,−1], [0, 0]〉
and 〈[−1,−1], [1, 5]〉 share the common border [−1,−1] and
thus can be merged into a single space 〈[−1,−1], [0, 5]〉.

In our proposed technique (i.e., Figure 2), the overall run-
ning time is bounded by the running time of the merging
step. Given k disjoint n-dimensional spaces, a brute-force
approach can be used to solve the merging problem. To do
so, we take each pair of spaces (i.e., O(k2)) and look for n−1
common borders (i.e., O(n)), for a total cost of O(k2 × n).
Here, in the worst case, one pair of spaces may be merged,
reducing the total number of spaces to k − 1. Then, the
process repeats, k times, until a single space remains. Thus,
the total running time takes O(k3 × n). The dimensionality
n is the number of variables in the simple condition and is
usually small (e.g., less than 8) for manually written pro-
grams. Hence, the effective running time of the brute-force
merging algorithm is O(k3).

Alternatively, we can use a divide-and-conquer heuristic
to do this in O(k2). The idea is to sub divide the k dis-
joint sets into two equal clusters and recursively merge each
cluster. In turn, each of these two clusters will be broken
further, until the size of the cluster is less than or equal to
two. There are exactly O(k/2) = O(k) such leaf clusters,
and, merging a leaf cluster takes O(1), for a total of O(k).
The above procedure would, in the worst case, merge a sin-
gle pair during each iteration, reducing the total number of
clusters to k − 1. Repeating, as long as some clusters have
merged, would take O(k) iterations. Thus, the final run time
is bounded by O(k2).

Figure 6 shows the result of merge operation on Figure 5.

5. DOMAIN SPACE PARTITIONING FOR
COMPLEX CONDITION

Our overall strategy for solving the domain space parti-
tioning problem for complex conditions is depicted in Fig-
ure 7. The steps involved include parsing, evaluating leaf

151

Figure 6: Merged Spaces for 2x0 + x1 + 4 > 0

nodes, and domain space propagation/merging. These steps
will be described in detail in the following sections.

Figure 7: Solution Strategy for Domain Space Par-
titioning for Complex Condition

5.1 Parsing
To capture a complex condition, we use a DAG represen-

tation with internal nodes of types (&&, ||, !) and leaf nodes
of type simple conditions. As mentioned in Section 3, the
simple condition is captured as a multi-variable polynomial
ROP 0. As a running example, consider the complex condi-
tion (2× x0 + x1 + 4 > 0) || ((x0 − 2 < 0) && !(x1 − 3 > 0)
) and its DAG representation shown in Figure 8.

5.2 Evaluating Leaf Nodes
Each leaf node in the DAG representation is a simple con-

dition and is evaluated as outlined in section 4. Specifically,
each leaf node in the DAG representation corresponds to
one instance of the domain space partitioning problem for
simple conditions. Figure 9 shows the partitioned domain
spaces for the leaf nodes of our running example.

5.3 Domain Space Propagation and Merging
After computing the partitioned domain spaces for leaf

Figure 8: The DAG Representation

Figure 9: Partitioned Domain Spaces for Leaf Nodes

nodes, merging of these domain spaces is performed accord-
ing to the rules listed in Figure 10. These rules define how
two sets of domain spaces are combined under the logical
operators (&&, ||, !).

For the logical not operator (!), the truth value of a space
marked as true or false is inverted. A space marked as un-
known is unchanged. Figure 11 shows the DAG representa-
tion after applying logical not operator (!) to the (x1−3 > 0)
leaf node.

For the logical and operator (&&), the merging is per-
formed on those spaces that have an overlap region. Let us
assume L and R are two partitioned domain spaces. Let us
further assume that sl ∈ L and sr ∈ R are two overlapping
spaces in those domains. If space sp is the overlapping space
between sl and sr, then sp will be added to the result of the
logical and. The truth value of sp is computed using the
merge rules given in Figure 10. This procedure is shown in
Algorithm 2. Figure 12 shows an example of the logical and
merging of two partitioned domain spaces. In Figure 12,
two spaces sl1 and sr1 are overlapping and their overlap is
space sp1, with its truth value set to false. In the same way,

152

Figure 10: Merge Rules for Operators &&, ||, !

Figure 11: Applying Logical Not Operator (!) to
Leaf Nodes

the overlap of two spaces sl1 and sr2 is space sp2, with its
truth value set to true.

Figure 12: Applying Logical And Operator (&&) to
Leaf Nodes

Algorithm 2, with two nested for loops, has O(N 2) run-
ning time. To improve on this algorithm, instead of compar-
ing all the pairs of spaces in each domain space to see if they
are overlapped or not, we use the R-tree data structure [14]
to make the search job faster. An R-tree as defined in [14]
is a height-balanced tree suitable for handling spatial data
in multidimensional spaces. Figure 13 shows a partitioned
domain space and the way it is represented using the R-tree
structure.

Algorithm 3 uses the R-tree data structure to make Al-
gorithm 2 faster. Specifically, Algorithm 3 uses an R-tree
representation of the domain spaces to efficiently find all
overlapping regions. The running time of Algorithm 3 is
O(N × log(N)). Finally, the logical or operator can be per-
formed in a way similar to the logical and operator.

Algorithm 2 Logical-AND Space Merging-Exhaustive way

1: Input: Partitioned domain spaces Sl and Sr

2: Output: Merged domain space Sp

3: for all spaces l ∈ Sl do
4: for all spaces r ∈ Sr do
5: p← l ∩ r {Intersection of the two subspaces}
6: if (p 6= φ) then
7: p.truth← fmergerule(l.truth, r.truth) {Fig 10}
8: Sp.push(p)
9: end if

10: end for
11: end for
12: Sp.merge()
13: return Sp

Figure 13: Partitioned Domain Space Representa-
tion Using R-tree

Using the not logical operator and the merge algorithms
for logical operations and and or, the DAG representation
is recursively merged in a bottom-up traversal. Figure 14
shows the result of merging the spaces of Figure 9 in three
steps. Figure 14(a) shows the initial state after evaluating
the leaf nodes, Figure 14(b) shows the result after applying
the ! operator and Figure 14(c) and Figure 14(d) show the
result after merging using && and || operators.

6. EXPERIMENTS
We tested our tool, using two different approaches. In the

first approach we picked some random simple and complex
conditions from Mediabench [17] applications. In the sec-
ond approach we evaluated our tool using some synthetic
examples with more aggressive combination of supported

Algorithm 3 Logical-AND Space Merging-Using R-tree

1: Input: Partitioned domain spaces Sl and Sr

2: Output: Merged domain space Sp

3: rT = make an R-tree using Sr

4: for all spaces l ∈ Sl do
5: overlappedRegion = rT.overlap(l)
6: for all spaces o ∈ overlappedRegion do
7: p← l ∩ o {Intersection of the two subspaces}
8: p.truth← fmergerule(l.truth, o.truth) {Fig 10}
9: Sp.push(p)

10: end for
11: end for
12: Sp.merge()
13: return Sp

153

Figure 14: Merging and Propagation of Spaces for Figure 9: (a)- Initial State (b)- After Applying ! Operator
(c)- After Merging Using && (d)- After Merging Using ||

arithmetic and logical operators. The results of these two
sets of experiments are in the following subsections:

6.1 Mediabench Examples
In our first set of experiments, we randomly selected a

number of simple and complex conditions from Mediabench
applications [17]. Table 2 gives some basic statistics for the
selected conditions, namely, the total number of simple and
complex conditions (#Exp), average number of variables per
condition (Avg. #Var), average number of arithmetic op-
erations per condition (Avg. #Arith), average number of
logical operations per condition (Avg. #Logic), and the av-
erage CPU time for evaluating a condition (Time) .

Table 3 shows the ratio of truth values for Mediabench
examples, as computed by our technique. On the average,
about 92.7% of the whole domain of each condition is eval-
uated to true or false and about 7.30% is evaluated to un-
known. Note that, the portion of the domain space that is
evaluated to true or false (i.e., 92.7%), represent the amount
of pruning (with respect to evaluating the condition for all
possible domain values) achieved by our algorithm. Con-
versely, the portion of the domain space that is evaluated to
unknown (i.e., 7.30%) would require exhaustive evaluation
to resolve the truth value of the condition.

Table 2: Operation Complexity for Mediabench Ap-
plications.

Benchmark #Exp Avg. Avg. Avg. Time (ms)

#Var #Arith #Logic

ADPCM 22 1.23 0.68 0.45 0.454545

EPIC 86 1.25 0.55 0.38 1.046510

G721 47 1.34 1.97 1.59 4.255320

GHSTSCR 14 3 1.71 2.07 3.571430

GSM 29 1.24 1.65 1.41 1.034480

JPEG 32 1.5 2.31 1.59 1.875000

MPG-DEC 11 1.54 2 1.36 0.909091

MPG-ENC 12 2.75 2.58 2.08 4.166670

PEGWIT 15 1.33 2.86 2.6 1.333330

PGP 14 1.92 2.42 3.35 5.000000

RASTA 15 2.11 2.33 2.33 3.333330

6.2 Synthetic Examples
In our second set of experiments, we evaluated our tool us-

ing some synthetic examples with more aggressive combina-
tion of supported arithmetic operators. We generated a to-
tal of 500 synthetic single and complex conditions, of those,
a partial list of simple conditions is presented in Table 4.

154

Table 3: Results for Mediabench Applications
Benchmark True (%) False (%) Unknown (%)

ADPCM 23.8636 73.8636 2.27273

EPIC 54.3605 38.6628 6.97674

G721 25.0002 71.8082 3.19156

GHSTSCR 28.5714 53.1250 18.3036

GSM 13.7933 81.0343 5.17241

JPEG 15.6250 76.5625 7.81250

MPG-DEC 27.2727 63.6364 9.09090

MPG-ENC 23.6197 54.5747 21.8055

PEGWIT 9.72228 86.6666 3.61111

PGP 21.4286 78.5714 0.00000

RASTA 15.2778 81.9444 2.77778

Table 4: Partial List of Synthetic Simple Condition
Examples
Simple Condition #Spaces Time (sec)
(x0 + x1 + x2 == 100) 441 0.05

(x0 ∗ x1 + x2 < 100) 326 0.02

(x0 ∗ x0 + x1 ∗ x1 ∗ x2 < 100) 298 0.02

(x0 ∗ x0 ∗ x1 ∗ x2 + x0 < 100) 248 0.01

(x0 ∗ x0 ∗ x1 ∗ x2 == 100) 114 0

(x0 ∗ x0 ∗ x1 ∗ x1 + x2 == 100) 76 0.01

(x0 + x1 + x2 + x3 == 100) 7158 1.58

((x0 ∗ x0) + (x1 ∗ x2) + x3 == 100) 5341 1.34

(x0 ∗ x0 + x1 ∗ x1 + x2 + x3 < 100) 4597 2.35

(x0 ∗ x1 ∗ x2 + x3 < 100) 3209 0.74

(x0 ∗ x1 ∗ x2 ∗ x3 < 100) 2036 0.21

(x0 ∗ x1 + x2 ∗ x3 == 100) 1296 0.16

(x0 ∗ x0 ∗ x1 ∗ x1 + x2 ∗ x3 == 100) 678 0.08

(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 ∗ x3 == 100) 345 0.05

(x0 + x1 + x2 + x3 + x4 == 100) 171975 95.58

(x0 ∗ x1 ∗ x2 + x3 + x4 < 100) 97802 47.99

((x0 ∗ x0 ∗ x1 ∗ x2) + x3 + x4 == 100) 84499 42.14

((x0 ∗ x0) + (x1 ∗ x1) + x2 + x3 + x4 == 100) 63296 144.97

((x0 ∗ x0) + (x1 ∗ x2 ∗ x3 ∗ x4) < 100) 38456 10.72

((x0 ∗ x0) + (x1 ∗ x2) + (x3 ∗ x4) < 100) 24057 10.02

(x0 ∗ x0 ∗ x1) + (x2 ∗ x3 ∗ x4) < 100) 10616 2.63

(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 ∗ x3 ∗ x4 < 100) 6336 1.1

((x0 ∗ x0 ∗ x1 ∗ x1) + x2 + x3 + x4 < 100) 3272 1.29

Table 4 gives some basic statistics for the synthetic simple
conditions, namely, the actual example (Single Condition),
the generated number of unmerged spaces (#Spaces), and
the CPU time for evaluating the synthetic single condition
(Time). In our strategy for generating these examples, we
considered the number of variables ranging from 1 to 5, the
number of arithmetic operations (+, −, ×) from 1 to 5, the
number of relational operators from 2 to 3 and the number
of logical operators from 1 to 2. For a complete list of ap-
plied synthetic examples for single and complex conditions
refer to [13] and [12].

Figure 15 and Figure 16 show the CPU time for running
our algorithm on those simple condition examples with four
or five variables.

Figure 17 and Figure 18 show the CPU time for running
our algorithm on those complex condition examples with
3 variables, 2 or 3 relational operators and 1 or 2 logical
operators. Our results show that the CPU time for running
our algorithm is proportional to the number of spaces into

which the domain of the condition that is being evaluated
is partitioned.

7. CONCLUSION
In this paper we have proposed a method for solving the

expression equivalence problem using partial evaluation. In
our method, we used interval analysis to substantially prune
the domain space of arithmetic expressions (and conditional
expressions) and limited the evaluation effort to a sufficiently
small number of minimally sized spaces within the domain
of the expression. Then, we extend the technique to incorpo-
rate arbitrary use of logic operators and, or, and not within
arithmetic expressions. Our results show that the proposed
method is fast enough to be of use in practice.

8. ACKNOWLEDGMENT
This work was supported, in part, by the National Science

Foundation award number CCR-0205712.

9. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers

principles, techniques and tools. Addison Wesley,
Reading, Massachusetts, 1988.

[2] S.B. Akers. Binary decision diagrams. IEEE
Transactions on Computers, 27(6):509–516, 1978.

[3] R. Camposano. Path-based scheduling for synthesis.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 10(1):85–93, 1991.

[4] V. Chaiyakul, D. Gajski, and L. Ramachandran.
High-level transformations for minimizing syntactic
variances. In Design Automation Conference, June
1993.

[5] N. Cheung, S. Parameswaran, J. Henkel, and J. Chan.
Mince: matching instructions using combinational
equivalence for extensible processor. In Conference on
Design, Automation and Test in Europe, pages
1020–1025, 2004.

[6] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and
J. Yang. Spectral transforms for large boolean
functions with applications to technology mapping. In
Design Automation Conference, June 1993.

[7] N. Dershowitz. Rewrite systems. Handbook of
Theoretical Computer Science, Elsevier Science
Publishers, 1990.

[8] P.J. Downey, R. Sethi, and R.E. Tarjan. Variations on
the common subexpression problem. Journal of the
ACM, 27(4):758–771, 1980.

[9] R. Drechsler. Formal verification of circuits. Kluwer
Academic Publishers, The Nederlands, 2000.

[10] R. Drechsler. Advanced formal verification. Kluwer
Academic Publisher, The Nederlands, 2004.

[11] J. Ferrante and C.W. Rackoff. The computational
complexity of logical theories. Lecture Notes in
Mathematics, 718, 1979.

[12] M.A. Ghodrat and T. Givargis. Equivalence checking
of arithmetic expressions using fast evaluation. Center
for Embedded Computer System Technical Report
CECS-05-07, 2005.

[13] M.A. Ghodrat and T. Givargis. Expression equivalence
checking using interval analysis. Center for Embedded
Computer System Technical Report CECS-05-06, 2005.

155

Figure 15: Time vs. Number of Spaces –
#Var.=4

Figure 16: Time vs. Number of Spaces –
#Var.=5

Figure 17: Time vs. Number of Spaces –
#Var.=3, #Rel Op=2, #Logic Op=1

Figure 18: Time vs. Number of Spaces –
#Var.=3, #Rel Op=3, #Logic Op=2

[14] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM
SIGMOD international conference on Management of
data, pages 47 – 57, 1984.

[15] S. Horeth and R. Drechsler. Formal verification of
word-level specifications. In Conference on Design,
Automation and Test in Europe, pages 52 – 58, 1999.

[16] H.P. Juan, V. Chaiyakul, and D. D. Gajski. Condition
graphs for high-quality behavioral synthesis. In
International Conference on Computer-Aided Design,
pages 170–174, 1994.

[17] C. Lee, M. Potkonjak, and W.H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems. In
International Symposium on Microarchitecture, pages
330–335, 1997.

[18] J. Li and R.K. Gupta. An algorithm to determine
mutually exclusive operations in behavioral
descriptions. In Conference on Design, Automation
and Test in Europe, pages 457 – 465, 1998.

[19] J. Li and R.K. Gupta. Hdl pre-synthesis optimizations
using a tabular model. IEEE Transactions on Very
Large Scale Integration Systems, 8(4):369–387, 2000.

[20] G. De Micheli. Synthesis and optimization of digital
circuits. McGraw Hill, Hightstown NJ, 1994.

[21] R.E. Moore. Interval analysis. Prentice-Hall,
Englewood Cliffs, N. J., 1966.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical recipes in C. Cambridge
University Press, University of Cambridge, 1992.

[23] K. Wakabayashi and T. Yoshimura. A resource
sharing and control synthesis method for conditional
branches. In International Conference on
Computer-Aided Design, pages 62–65, 1989.

[24] Y. Xie and W. Wolf. Allocation and scheduling of
conditional task graph in hardware/software
co-synthesis. In Conference on Design, Automation
and Test in Europe, pages 620–625, 2001.

[25] Z. Zhou and W. Burleson. Equivalence checking of
datapaths based on canonical arithmetic expressions.
In Design Automation Conference, pages 546 – 551,
1995.

156

