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Abstract— In an era of powerful general-purpose embedded compute
platforms, the migration of system functionality from application spe-
cific integrated circuits (ASICs) to software has become a promising
trend toward addressing the system complexity and shrinking time-
to-market window challenges. Hence, in modern embedded systems,
software development plays an increasingly vital role. On the other hand,
the real-time concurrent programming model provides the high level
abstractions necessary to effectively design complex software. Support
for real-time concurrent programming is typically provided by a real-
time operating system. We propose an alternate solution, the Phantom
serializing compiler, to support the real-time concurrent programming
model. The Phantom serializing compiler generates a single-threaded
monolithic executable, from the multi-threaded application software,
capable of directly executing on the underlying embedded compute
platform. Further, the generated executable is tuned for maximum
performance and efficiency, yielding an application-specific solution. In
this paper, we give an overview of the Phantom serializing compiler and
demonstrate its feasibility with some experimental results.

I. INTRODUCTION

Design and development of modern embedded systems pose a

number of unique engineering challenges. The shelf-time of consumer

embedded devices is rapidly shrinking, forcing designers to develop

products within a very short time frame. On the other hand, as a

requirement for success, designers of embedded systems are increas-

ingly forced to use innovation in product design to gain a competitive

edge in the market [1]. Clearly, the complexity of embedded devices

is rising at a rapid pace. The increased complexity of embedded

devices is in part due to an increased user demand for features

and functions, the need to support a large number of emerging

communication protocols, the requirement to provide multimedia

support, the necessity to address emerging security/privacy issues,

and the general desire to implement innovative features and functions.

The hardware platform of today’s embedded systems is fre-

quently amortized over multiple products, intended to be highly

programmable, and made reliant on one or more embedded processor
core(s). In recent years, a plethora of highly capable embedded

processor cores have become available. Companies such as Tensil-

ica [2], ARM [3], and Intel [4] each provide large families of highly

tuned embedded processor cores. These embedded processor cores

are shipped with optimizing compilers that support the sequential

programming model of computation.

In order to cope with the complexity of systems, engineers are

turning to software. In part, well established programming models,

highly evolved tool chains, ease of software reuse, availability of

open-source software, and expeditious nature of the design-compile-
execute paradigm make developing a new feature in software more

favorable [5]. It is assumed that, in coming years, more than 70% of

product features are going to be supported by software [6].

Embedded software is characterized by a set of concurrent,

deadline-driven, synchronized, and communicating tasks [7]. Hence,

embedded software is best captured using the real-time concurrent

programming model. The support for real-time concurrent program-

ming is usually provided by a real-time operating system (RTOS). In

general, an RTOS is a generic framework which can be used across

a large number of processors and applications. An RTOS provides

coarse grained timing support, and is loosely coupled to the running

tasks. As a result, an RTOS is seldom optimized for any particular

application. Additionally, the overhead of an RTOS prohibits its use

in applications where the hardware platform is based on low-end

microcontrollers.

In this work, we propose an alternative to an RTOS based on the

idea of serializing compilers. A serializing compiler is an automated

software synthesis methodology that can transform a multitasking

application into an equivalent and optimized monolithic sequential

code, to be compiled with the embedded processor’s native optimizing

compiler, effectively replacing the RTOS. The serializing compiler

can analyze the tasks at compile time and generate a fine-tuned,

application specific infrastructure to support multitasking, resulting

in a more efficient executable than one that is intended to run on top

of a generic RTOS. By having control over the application execution

and context switches, the serializing compiler enables the fine grain

control of task timing while enhancing overall performance.

Traditional compilers are efficient in generating code for sequential

applications. They can use platform specific resources, generate an

optimized instructions, and explore pipelines and memory hierarchies.

More recently, with VLIW and simultaneous multithreading (SMT)

architectures, compilers have started to support the generation of con-

current code [8] [9]. However, compilers have a limited understanding

of tasks, and completely lack support for timing constraints of real-

time applications. Our serializing compiler technology strengthens

existing compilers, making them timing and task-aware.

The Phantom Compiler [10] [11], our implementation of a serializ-

ing compiler, provides a fully automated mechanism to synthesize a

single threaded, ANSI C/C++ program from a multithreaded C/C++

(extended with POSIX [12]) program. The Phantom generated code

is highly tuned for the input application.

This paper is organized as follows. Section II discusses related

approaches to the serializing compiler. Section III presents the Phan-

tom Compiler, while Section IV introduces our solution to support

timing constraints. Experimental results are presented in Section V.

We conclude the paper in Section VI.

II. RELATED WORK

Some of the features provided by the Phantom compiler are

partially achieved by other approaches as well. In terms of code

portability, Phantom generates a strict ANSI C code, which can

be compiled with any standard compiler toolchain. The concept

of Virtual Machines addresses this issue by providing an abstract

machine that is simulated in every platform. The performance of the

virtual machine is the main drawback of this approach, which also
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requires that the virtual machine is ported to the target platform. Some

of the performance issues are addressed with JIT [13] and customized

embedded virtual machines [14].

In the template-based RTOS generation techniques, a reference

RTOS is used as a template in generating customized derivatives

of the RTOS for particular embedded processor cores. This class of

techniques mainly relies on inclusion or exclusion of RTOS features

depending on application requirements and embedded processor core

resource availabilities. The disadvantage of this class of techniques

is that no single generic RTOS template can be used in the variety

of embedded processor cores available. Instead, for optimal perfor-

mance, a rather customized RTOS template must be made available

for each line or family of embedded processor. In addition, for each

specific embedded processor within a family, an architecture model

must be provided to the generator engine. On template-based code

generation, some approaches generate a simulated RTOS from a

system-level language description as input [15] [16] [17] [18]. Other

works actually synthesize a customized RTOS code [19].

Another related line of research presents the generation of statically

scheduled code [20] [21] [22]. A good survey on the topic is presented

by Edwards [23]. In the static scheduling based techniques, it is

assumed that the application program consists of a static and a

priori known set of tasks. Given this assumption, it is possible to

compute a static execution schedule, in other words, an interleaved

execution order and generate an equivalent monolithic program. The

advantage of this class of approaches is that the generated program

is application-specific and thus highly efficient. The disadvantage is

that dynamic multitasking is not possible.

In the application domain of control-dominated embedded systems,

POLIS [24] is another framework developed to synthesize embedded

software, but restricted to reactive systems. Polychronopoulos et

al. [25] explores the concept of auto-scheduling, which is a dynamic

scheduling technique for parallel tasks. In auto-scheduling, task

granularity can be controlled during the synthesis process [26].

The approach that is closest to the Phantom compiler is presented

by Dean [27]. In his work, he proposes Software Thread Integration

(STI), integrating multiple threads in a single execution flow. STI

prioritizes the primary task, considered real-time, and statically

schedules the secondary tasks in the available idle cycles. Timing

is only guaranteed for the primary task, while secondary tasks run

in a best-effort scheduling. In Phantom, we allow global timing

constraints which affects all the tasks.

III. THE PHANTOM COMPILER

This section presents an overview of the Phantom Compiler and

its code synthesis process. For a complete and detailed description,

refer to the previously published work [11] [10].

Input to Phantom is a multitasking program Pinput, written in C.

The multitasking is supported through the native Phantom API, which

is a subset of the standard POSIX interface [12]. These primitives

provide functions for task creation and management as well as a set

of synchronization variables. Output of Phantom is a single-threaded

strict ANSI C++ program Poutput that is equivalent in functionality

to Pinput. More specifically, Poutput does not require any OS support

and can be compiled by any ANSI C++ compiler into a self sufficient

binary for a target embedded processor.

Figure 1 is the block diagram of Phantom. The multitasking C

application is compiled with a generic front-end compiler to obtain

the basic block (BB) control flow graph (CFG) representation. This

intermediate BB representation is annotated, identifying Phantom
primitives. The resulting structure is used by a partitioning module
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Fig. 1. Phantom Compiler Architecture
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Fig. 2. Example of CFG Transformations

to generate non-preemptive blocks of code, which are called atomic

execution blocks (AEBs), to be executed by the scheduler. Every

task in the original code is partitioned into AEBs, generating an

AEB Graph. The timing partitioning module analyzes the AEBs for

timing constraints, and refines the partitions of the AEBs that violate

any constraint. The resulting AEB graphs are then passed to the

code generator to output the corresponding ANSI C++ code for each

AEB node. In addition, the embedded scheduler, along with other

multitasking data structures and synchronization APIs are included

from the Phantom system support library, resulting in the final ANSI

C++ single-threaded code.

A. Scheduling and Synchronization

We define the basic unit of execution, scheduled by the scheduler,

an atomic execution block (AEB). An AEB is a block of code that

is executed in its entirety prior to scheduling the next AEB. A task

Ti is partitioned into an AEB graph whose nodes are AEBs and

edges represent control flow. Figure 2(a) shows the CFG output by

the compiler front-end, annotated with the Phantom primitives. The

partitioner adds two control basic blocks, setup and cleanup (Figure

2(b)), and subsequently divides the function code into a number of

AEBs, as shown in Figure 2(c), in a process we call phantomization.

The termination of an AEB transfers the control back to the

scheduler. The scheduler, then, activates the next AEB, from either the

same task or from another task ready to run. The scheduling algorithm

in Phantom is priority based. The way priorities are assigned to tasks,
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as they are created, can enforce alternate scheduling schemes, such as

round-robin or earliest deadline first (EDF). Additionally, priorities

can also be changed at run-time, so that scheduling algorithms based

on dynamic priorities can be implemented.

Every function f that is phantomized generates AEBs that are

implemented as a separate region of code. Therefore, Phantom needs

to provide a mechanism to store f ’s live variables at the transition

between AEBs, when a context switch happens. Also, every task must

maintain its own copy of local variables during the execution of f on

its context. Phantom solves this issue by creating an object for each

phantomized function, whose attributes are the local variables of f ,

emulating the concept of a function frame. The frame of a function

f is created in the fsetup block, and cleaned up in the last AEB of

f . They are represented by the dark nodes in Figure 2(b).

During runtime, there is a need to maintain, among others, a

reference to the next AEB node to be executed when the task regains

the processor, called next aeb, in the context information for each

task that has been created. When a task is created, the context object

is allocated, the next aeb field is initialized to the entry AEB of

the task, and the task context is pushed onto the queue of existing

tasks to be processed by the embedded scheduler.

The embedded scheduler is responsible for selecting and executing

the next task, by activating the corresponding AEB of the task to be

executed. The next aeb reference of a task Ti is used to resume the

execution of Ti by jumping to the region of code corresponding to the

next AEB of Ti. At termination, every AEB updates the next aeb
of the currently running task to refer to the successor AEB according

to the tasks’s AEB Graph.

Phantom implements the semaphore synchronization primitive,

upon which other synchronization constructs can be built. To imple-

ment semaphores, there is a need to add to a task Ti’s context an ad-

ditional field called status. Status is either blocked or runnable
and is set appropriately when a task operates on a semaphore.

A semaphore operation, as well as a task creation and joining, is

what is a synchronization point (gray nodes in Figure 2). At every

synchronization point, a modification in the state of at least one task

in the system can happen. Either the current task is blocked, if a

semaphore is not available, or a higher priority task is released on

a semaphore signal, for example. Therefore, a function is always

phantomized when synchronization points are encountered, and a call

to a synchronization function is always the last statement in its AEB.

IV. CODE PARTITIONING

Partitioning is central to the correctness and the performance of

the generated code [11]. Boundaries of AEB represent the points

where task preemption occurs. Every application is partitioned, so

that context switching, synchronization, and scheduling are possible.

Partitioning at synchronization points is mandatory, and is required

to maintain correctness. Partitioning beyond synchronization points

impacts the timing response of the code. In general, partitioning will

determine the granularity of scheduling (i.e., the time quantum), as

well as the task latency, response time, and the multitasking overhead.

The multitasking overhead accounts for the time spent executing

code that is not directly related to the original application. Instead,

the code is executed to control task scheduling and interactions.

Typically, the multitasking overhead is due to run-time scheduling

decisions, semaphores and mutexes checks, and interrupt handling.

Ideally, one wants to minimize the multitasking overhead of the

application.

An important timing characteristic in real-time applications is

the response time. It can be defined as the maximum amount of

 1 void task() {

 2

 3 int a, b;

 4 

 5 a=10;

 6 b=0;

 7

 8 while(a>b) {

 9   b=rand();

10   print(b);

11 }

12 print(a);

13 ...

}

Fig. 3. Sample Code Segment

time between two scheduler activations, and is used to estimate the

maximum period of time until an event is serviced in the system.

With Phantom, where tasks are preempted only at specific points in

the code, a smaller response time has an impact on the overall system

performance. Smaller response times mean more frequent scheduler

activations and event checking in the system, and consequently

require smaller AEBs to be generated. However, every scheduler

activation increases the total execution time of the multitasking code,

as a result of the added overhead.

The timing behavior, and consequently the responsiveness of the

Phantom code, is determined by the partitioning process, since tasks

can only be preempted at the border of AEBs. On one end, there

is the so-called cooperative schedule, where the code is partitioned

only at the points mandatory for synthesizing a functionally correct

application. On the other end, it is possible to generate a partition

where every basic block is one AEB by itself, and every basic block

transition is interlocked by a scheduler invocation. While this is the

most responsive system possible, it carries a lot of overhead due to

the large number of context switches.

Between these extremes, there are lots of partitioning schemes.

Different partitions result in different timing behavior, AEB sizes,

number of context switches and so on. It is desirable to obtain the

partition that meets the required constraints while minimizing the

multitasking overhead of the application.

For AEBs with straight sequence of code, i.e., no loops, this is

not difficult to do. If an AEB ai is too large, i.e., does not meet the

timing constraints, it is always possible to partition ai into ai1 and

ai2, reducing the size of the original ai. Here, there is an increase

by one in the number of context switches on every execution of ai,

which is acceptable to meet the timing constraints.

Partitioning an AEB with loops, however, is not as trivial. Particu-

larly, unbounded loops are critical, as the one shown in Figure 3, lines

8-10. In general, three partitioning schemes are possible. Firstly, the

loop can be entirely contained inside the AEB, including loop body

and control into the same AEB, shown in Figure 4. Alternatively,

the partitioner can separate the loop back-edge to be (logically)

executed by the scheduler, forcing a context switch at every loop

iteration, as illustrated in Figure 5. Finally, the partitioner is able to

organize the loop body and back-edge into the same AEB, adding

extra control instructions to allow a context switch during the loop

execution (Figure 6).

AEBs that contain unbounded loops, as in Figure 4, can execute

for a long time. While the AEB executes, all other tasks are

waiting, as is the scheduler. Therefore, events cannot be checked,

and timely execution of other tasks is not guaranteed. Nevertheless,

the multitasking overhead is small, since the scheduler is activated
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 1 aeb1:

 2    a=10;

 3    b=0;

 4 loop:

 5   if(a>b) {

 6     b=rand();

 7     print(b);

 8     goto loop;

 9   }

10   print(a);

11   next_aeb=2;

12   return;

13 aeb2:

   ...

(b) Code Segment

Fig. 4. Loop inside AEB
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(a) Partitioning Diagram

 1 aeb1:

 2   a=10;

 3   b=0;

 4   next_aeb=2;

 5   return;

 6 aeb2:

 7   if(a>b) {

 8     b=rand();

 9     print(b);

10     return;

11   }

12   next_aeb=3;

13   return;

14 aeb3:

15   print(a);

16   next_aeb=4;

17   return;

18 aeb4:

   ...

(b) Code Segment

Fig. 5. Loop in Multiple AEBs

only after the AEB (and consequently the loop) completes.

The separation of the loop back-edge, enforcing a context switch

at every iteration, reduces the response time of the application.

Note that the loop condition (line 7 in Figure 5(b)) is checked on

every loop iteration. Also note that once the loop body (lines 8-

10) does not modify the next aeb of the current task. Therefore,

when the task regains the processor, aeb2 will be executed again,

effectively traversing the loop back-edge via the scheduler. Here,

the time between scheduler invocations is likely smaller than the

timing constraints. However, the overhead is large, specially if the

loop iterates many times, each of them executing a short loop body.

Therefore, it is possible for the loop body to iterate N times before

being preempted. It can meet the timing constraints, not increasing

the multitasking overhead excessively. This is the solution pictured

in Figure 6. The loop body is enclosed within an external for loop,

which repeats the AEB execution N times before returning to the

scheduler. Later, the scheduler activates the task again, the loop body

is resumed and allowed to execute another N times, if necessary.

Using the approach depicted in Figure 6, it is possible to control

the execution time of an AEB more precisely, with a finer granularity.

With such partition, there is a balance between multitasking overhead

and timely execution of tasks. In order to implement it, one needs

to determine the value of N , representing the number of consecutive

loop iterations before the AEB is preempted. The execution time of a

loop body can vary between iterations, and it is not usually possible

to have all iterations to execute for exactly the same time. The value

Loop Body

Loop
Condition

Post Loop
Basic Block

Loop Initialization

True

False

S
cheduler

Scheduler

From Scheduler

To Scheduler

AEB
Repetition

Rep < N

Rep >= N

(a) Partitioning Diagram

 1 aeb1:

 2   a=10;

 3   b=0;

 4   next_aeb=2;

 5   return;

 6 aeb2:

 7   for(i=0;i<N;i++) {

 8     if(a>b) {

 9       b=rand();

10       print(b);

11       continue;

12     }

13     next_aeb=3;

14     return;

15   }

16   return;

17 aeb3:

18   print(a);

19   next_aeb=4;

20   return;

21 aeb4:

   ...

(b) Code Segment

Fig. 6. Preempting Loops After N Iterations

of N can be computed from an average execution time of the loop

body, in case of soft time constraints. If worst case timing guarantees

are necessary, such as in a hard real-time system, the value of N is

determined by the Worst Case Execution Time of the loop body.

A. Timing Analysis Framework

The synthesis of code that adheres to specified timing constraints

requires an analysis of the application code and appropriate parti-

tioning. As there is no preemption during an AEB, reaching the right

AEB size for all AEBs is key to obtain the desired timing behavior

of an application. In this section, we present the timing analysis

framework developed to analyze AEBs and generate the appropriate

code partition given a set of timing constraints.

Our timing analysis framework is shown in Figure 7. The original C

application, extended with POSIX, is compiled by Phantom and par-

titioned with the cooperative scheduling model. Phantom instruments

the generated code with timing probes, to obtain profiling information

for each AEB. The phantomized code is executed and the generated

profile is analyzed in the Timing Analyzer tool.

The Timing Analyzer checks for the constraints specified by the

application designer, and outputs a list of the AEBs that do not meet

the timing constraints. Each of these AEBs is processed by the Loop

Partitioner, which searches for loops in the AEB and appropriately

partitions the AEB into multiple AEBs with modified, and correct,

new versions of the loop.

The new partition is processed again by the Phantom compiler,

which synthesizes the corresponding C code for the new AEBs. The

process is repeated until all the AEBs meet the timing constraints.

When all constraints are met, the Phantom compiler synthesizes the

final version of the code, without the timing probes.

When searching an AEB for loops to be partitioned , the algorithm

will select the outermost loop of an AEB in case there are nested

loops within one AEB . Otherwise, if an inner loop is selected, all the

enclosing outer loops will be partitioned, in addition to the selected

loop. Therefore, multitasking overhead will be excessively increased.

If the new partition still does not meet the constraints, the next nesting

level will be analyzed, an so the algorithm works inwards in the

nested loop structure.

Note that since we rely on profiling information for partitioning, the

approach is not applicable to hard real-time applications. However,

it is possible to replace the profiling method for a static analysis

1921



Source
Code (C)

Phantom
Compiler

Loop
Partitioner

Single Threaded
Code with 

Time Probes
Execution

Timing

Timing
Analyzer

Meet
Constraints?

Constraints

Phantom Single 
Threaded Code (C) 

Execute

No

Yes

AEB 1 1ms

AEB 2 7ms

AEB 3 4ms

AEB .. 2ms

Per AEB Info
(Execution Time)

AEB 1

AEB 2

AEB 3

AEB ..

Fig. 7. Timing Analysis Framework

 1

 10

 100

 1000

 10000

 100000

654321

R
es

po
ns

e 
T

im
e 

(μ
s)

Matrix Mult. -- Response Time

(a) Response Time

 0

 1

 2

 3

 4

654321

C
on

te
xt

 S
w

itc
he

s 
(x

10
6 )

Matrix Mul -- Execution Time

(b) Multitasking Overhead

Fig. 8. Matrix Multiplication Timing

considering the WCET of each basic block, which would provide

much stricter guarantees on the execution of the synthesized code.

V. RESULTS

Eight application benchmarks were implemented to test the overall

performance of the code synthesized with the Phantom compiler, as

well as its capability of meeting timing constraints. The applications

were designed with POSIX threads, and include multithreaded ver-

sions of traditional algorithms such as quick sort, consumer producer,

matrix multiplication, and dct. The benchmarks also include a virtual
machine simulator, a watch, and deep stack, a recursive application

that exhausts the system stack. Table I summarizes the benchmarks.

We have previously reported on the overall performance of Phan-
tom code when compared to traditional OS-supported multitasking

[11]. In summary, Phantom outperforms standard Linux/POSIX im-

plementations, being 2 to 3 times faster in execution time. On the

average, multitasking with Phantom achieves a speed-up of 2.3, with

a maximum of 2.9. In general, multitasking applications synthesized

with Phantom show a much improved performance (i.e., low operat-

ing overhead). The reason is two fold. First, the generated application

encompass a highly tuned multitasking framework that meets the

application-specific needs. Second, the multitasking infrastructure it-

self is very compact and efficient, resulting in a much lighter overhead

for context switching, task creation, and synchronization [10].

We have also experimented with the timing analysis framework

presented in this work. Different response time were specified

for each benchmark. Table I summarizes the performance of the

benchmarks when synthesized with the timing constraints. Note that

the response times specified are very small, significantly less than

traditionally supported in standard operating systems. Table I shows

the multitasking overhead of each application for these specific

constraints. The multitasking overhead imposed on the system varies

with different constraints, and is highly dependent on the application.

Figure 8 shows the iterations of the timing analysis framework with

the matrix multiplication algorithm. A maximum response time of

6.25μs, was specified as the timing constraint. Figure 8(a) illustrates

the reduction in the maximum response time of the application. After

6 iterations, the timing constraint was met (straight line in Figure

8(a)). Figure 8(b) shows the variation in the execution time associated

to each partition generated. Partition 1, the cooperative scheduling,

is the fastest to complete execution (0.91s), but results in a very high

response time (400ms). As our timing analysis tool executes, large

AEBs are divided into smaller ones. Loops are also restructured, so

that it is possible to preempt an AEB while executing loops.

The final partition was achieved after 6 iterations. The resulting

partition has a response time of 4.9μs and executes in 1.58s. Al-

though the final execution time was 73% larger than the cooperative

scheduler, the response time was reduced by 5 orders of magnitude.

Our benchmark applications also included a software modem

example. A software modem is a real-time application, since it must

read data from and write data to the telephone system with a certain

frequency, otherwise an error occurs in the transmission. In case

of voice modems, which use the 4KHz voice channel on regular

telephone systems, they must sample the line at 8Khz, resulting in a

period of 125μs. In order to allow a 5% variation in the period, the

response time for the modem was set to 6.25μs. Phantom was able to

synthesize the corresponding code, which included a 27% overhead.

VI. CONCLUSION

We provided an overview of the Phantom serializing compiler,

which allows the generation of single threaded code from POSIX-

based multitasking applications. The synthesized code tightly couples

the tasks, and is highly customized for the input application, allowing

for a more efficient multitasking execution when compared to the

traditional RTOS-based approach. Additionally, the generated code

is platform-independent and can be compiled to any target platform,

enabling multitasking even for low-end microcontrollers.

This work introduced a framework to support real-time constraints

in the code synthesis process. In the current version, we allowed tasks

to specify the maximum response time expected from the system,

and we were able to effectively synthesize code that meets such

constraints. Our experiments show that a very fine granularity is

possible in the final application, in opposition to the usually coarse

grained concurrency supported in traditional approaches.

There is still a number of opportunities for improvement and fur-

ther development in the Phantom serializing compiler. Our immediate

plans include extending the real-time support in the system, with the

incorporation of periodic tasks, deadlines, and different scheduling
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TABLE I

APPLICATION BENCHMARKS

Name Description
Response Execution Multitasking

Time (input) Time Overhead

consumer producer Classical consumer producer problem, 12.5 μs 4.50s 50.2%
100 consumers and 100 producers.
Buffer with 1000 entries.

dct Multitask implementation of 31.2μs 0.78s 13.5%
8x8 dct. One task for each point
in the result matrix.

deep stack Multiple recursive tasks. Tests 9.3 μs 2.02s 23.4%
the cost of recursive function calls
in the Phantom system.

matrix mul Multitask implementation of 6.25μs 1.59s 27.3%
matrix multiplication. Resulting
matrix is 150x150 elements.
One task per element in the result.

quick sort Multitask implementation of 1.88μs 43.9ms 2.3%
the traditional sorting algorithm.

vm Multitask simulator for a simple 31.2μs 27.6s 8.2%
processor.

watch Time-keeper application, used to 50μs 67s 1.6%
test timing behavior of the
generated code.

algorithms in addition to the current priority-based scheduling. Ad-

ditionally, we plan on generating code with different optimization

objectives in mind, such as low energy and small memory footprint.

Further into the Phantom compiler development, we intend to

investigate the possibility of generating architecture-specific code, by

integrating Architecture Description Languages into the set of inputs

used by the compiler. We believe it is possible to optimize some

parts of the code generation process if we target it to one determined

architecture. We also intend to investigate the issues of determinism

and predictability of the synthesized code. There are multiple levels

to determinism, from guaranteeing deadline compliance to ensuring

the exact sequence of instructions executed. We believe providing

some level of determinism to the execution of the code would be

valuable, specially in hard real-time systems.
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