
System Architecture for Software Peripherals

Siddharth Choudhuri Tony Givargis

Center for Embedded Computer Systems Center for Embedded Computer Systems
University of California University of California
Irvine, CA 92617, USA Irvine, CA 92617, USA

e-mail: sid@cecs.uci.edu e-mail givargis@uci.edu

Abstract— Software peripherals [1] have been proposed as a
design alternative to traditional peripherals. We propose a soft-
ware architecture, design methodology and scheduling scheme
for implementing software peripherals on general purpose pro-
cessors, with fast context switch and high resolution timers. Our
design flow automatically generates code for scheduling software
peripherals. We demonstrate the feasibility of our proposed work
by experimenting with a set of five software peripherals scheduled
to execute on a MIPS processor. Our performance evaluations
show that the performance impact of the software peripherals on
user-level tasks is minimal (i.e., 10.11% on a 100 MHz processor
) – strongly suggesting that with the right architecture, software
peripherals can be efficiently accomodated in typical embedded
applications.

I. INTRODUCTION

The complexity of embedded systems is on the rise. This is
driven by several factors such as, the possibility of integrating
multi functional components into a single system i.e., System-
on-Chip (SoC) [2], the demand from consumer and other in-
dustry segments to have end products that serve more than one
purpose (for example cell phones morphing into personal dig-
ital assistants, communication device, gaming device). The
complexity of systems coupled with increasing time pressure to
launch newer products has lead to the design of embedded sys-
tems that are highly tuned for specific target applications. Such
embedded systems are based on a tightly coupled processor-
peripheral platform.

Ideally, a processor-peripheral platform is designed for flex-
ibility, cost and performance. Flexibility leads to design reuse
and shorter time to market when developing new products de-
rived out of existing, well known and tested platforms. Flexi-
bility also reduces non-recurring engineering (NRE) costs. A
single platform consisting of processor-peripheral helps in cost
savings during manufacturing. Performance is required to run
complex software applications on these platforms.

Software peripherals [1, 3] have been proposed to meet the
challenges of flexibility and cost in processor-peripheral plat-
forms, while still meeting performance requirements. Software
peripherals emulate the implementation of peripherals in soft-
ware (processor) with minimal hardware support, if any. The
software implementation produces bit patterns using the pro-
cessor I/O pins such that the pattern generated has the same
frequency as the hardware implementation of the peripheral.
This leads to greater flexibility, lower cost (reduced hardware)

and easier functional upgrades. System design translates into
a processor with minimal hardware support that can be con-
figured to have a combination of peripherals, each running on
the processor as a software task. With growing speeds of em-
bedded processors, the performance requirements can be met
while accommodating software peripheral tasks.

In this paper, we present software architecture and schedul-
ing for software peripherals. To our knowledge, the proposed
approach is a first step towards implementation of software pe-
ripherals on general purpose processor architecture with sup-
port for fast context switch and high resolution timer. Further,
we propose a design flow to automatically generate a sched-
ule layout based on interrupts followed by experimental results
from simulation.

The remainder of this paper is organized as follows: The
next section discusses related work and our contributions. The
details of system architecture is described in section 3. The
results and analysis of results is provided in section 4 followed
by summary and conclusion.

II. RELATED WORK

The idea of software peripherals was proposed in [1, 4]. The
focus in [1, 4] was on proposing the idea of software periph-
erals, its usefulness and estimating the processor overhead im-
posed by software peripherals. This work used a simplified
model of peripherals to calculate the processor utilization for
each peripheral in isolation. However, to realize a feasible sys-
tem based on the idea of software peripherals would require
scheduling multiple peripherals as software tasks and a detailed
model for each peripheral. In our work, we address the follow-
ing issues (i) a methodology and design flow to implement soft-
ware peripherals (ii) scheduling scheme that outputs a schedule
layout to be invoked with the help of a high resolution timer
(interrupt) (iii) a detailed model of peripheral that implements
the functionality of peripheral as a software task (iv) system
overhead from simulation.

Ubicom [5, 6, 3] has an implementation of software periph-
erals targeted for networking devices. Ubicom processors pro-
vide an almost zero context switch overhead resulting in an ex-
tremely efficient implementation of software peripherals. Ev-
ery fetch-decode cycle is preceeded by a software peripheral
task instruction. In our work, we explore the possiblities of
realizing software peripherals on conventional processor archi-
tectures that do not have a datapath specifically designed for
software peripherals.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

1B-5

56

Triscend provides configurable processor based on standard
microcontroller or microprocessor architectures. Users can add
desired peripherals using a GUI based tool (FastChip configu-
ration). Once designed, the peripherals are implemented as
cores. Thus, the flexibility is only at the design phase and de-
sign reuse is not an option.

There has been a growing trend of implementing conven-
tional peripherals in software and reconfigurable hardware in
order to attain greater flexibility in design and reuse. Some of
the examples are software modem, software defined radio and
several other reconfigurable architectures [7, 8, 9, 10]. How-
ever, implementing peripherals in reconfigurable hardware is
orthogonal to our work, though the goal is to have flexibility
and reusability in design. Our goal is to have minimal hard-
ware, if any, and push the peripheral functionality to software
(processor).

III. TECHNICAL APPROACH

The implementation of peripherals in software is transpar-
ent to the user applications. Writing data to a peripheral at
the application level translates into a write request made by the
device driver to the software peripheral implementation. The
software peripheral implementation translates the data it gets
from device driver into a sequence of bit patterns. This bit
pattern is sent to the physical I/O of the processor at a certain
rate, resulting in a sequence of 1s and 0s at the output pins
of the processor that excatly mimics the peripheral function-
ality in frequency and sequence. Similarly, the software pe-
ripheral is also responsible for reading I/O pins at a specific,
pre-determined frequency and notifying the higher level tasks
of any input events. Software peripherals run in the context of
an OS. This is due to the fact that the implementation requires
low level, privileged access to pin I/O routines and interrupt
handlers, details of which are provided in the next section.

A. System Architecture

Figure 1 shows our proposed architecture for software im-
plementation of peripherals. In general, a peripheral’s opera-
tion can be divided into: (i) Computation task that implements
the functionality and (ii) Communication task that deals with
bit I/O at the hardware interface.

In our proposed architecture, the High Level Peripheral
(HLP) Task is responsible for the computation part of a given
peripheral. It contains the implementation of the peripheral
(which in a conventional architecture would have been in a
dedicated hardware). In case of a write request, the output of
the HLP task is a sequence of bit pattern written to peripheral
memory buffer. During a read request to a peripheral, the HLP
task reads a sequence of bit pattern from the peripheral mem-
ory buffer, processes the bit pattern and returns the result to
the device driver. Note that, the driver gets the same data that
would have been returned by a hardware peripheral.

The Peripheral Memory Buffer is a shared memory region
between the HLP task and the Low Level Peripheral (LLP)
task. It is a pool of buffers wherein each instance of a peripheral
has a read buffer and a write buffer, depending on the periph-

eral functionality 1. The content of buffers are bit patterns with
start and end pointers maintained by the HLP and LLP tasks.

Fig. 1. Software Peripheral Architecture

Low Level Peripheral (LLP) Task : The LLP task is respon-
sible for pin wiggling and reading the pin inputs (i.e., bit input-
output). In case of a peripheral write operations, the LLP task
reads the bit pattern from peripheral memory buffer and outputs
it to the processor I/O pins. Similarly, during a read operation,
the LLP reads the status of processor I/O pins and appends it
to the appropriate buffer. The LLP task has stringent require-
ments in terms of its periodicity. Not invoking LLP task at right
time(s) can lead to incorrect outputs and incorrect interpreta-
tion of data read by the peripheral. This requirement makes the
LLP task a hard realtime task. Since the peripheral character-
istics are known apriori, LLP task is statically scheduled. Due
to the nature of the LLP task, it has to run on a high priority
interrupt timer. The LLP task is invoked atleast as frequently
as the fastest peripheral.

The rationale behind dividing the peripheral functionality
into HLP and LLP task is that a peripheral task needs to be
invoked atleast as frequently as the highest frequency periph-
eral. However, most of such invocations would be to read/write
bit patterns (communication) and a few that implement the pe-
ripheral functionality (computation). Given the high rate of in-
vocation, a small interrupt service routine would suffice to do
the pin I/O. On the other hand, a software task with peripheral
implementation will need to be invoked less often but such a
task would be computation intensive. Note that the HLP and
LLP tasks have a producer-consumer relationship depending
on a write or read operation being performed.

In order to implement the LLP task, certain architecture sup-
port is required. An extremely high resolution timer interrupt is
required to invoke the LLP task at high frequencies. Also, the
context-switch overhead needs to be minimal or close to zero.
An almost zero context switch is possible by using processor
architectures that support register banking. One set of regis-
ter bank can be dedicated to execute LLP task. Thus context
switch overhead amounts to switching from one bank to an-
other. Register banks is not a new concept and has been used in
architectures like 8051 and ARC processor [11, 12]. Architec-

1Eg: keypad only requires a read buffer, whereas serial port requires both
read and write buffer

1B-5

57

ture support is also required in terms of A/D and D/A convert-
ers to realize an implementation of peripherals that have analog
interface.

B. Scheduling LLP Tasks

Each peripheral’s low level bit input-output is modeled as a
realtime task < p, e, d > with periodicity p, execution time e
and deadline d. The periodicity is the rate at which the periph-
eral operates. Execution time is the the number of instructions
in the LLP task. Deadline is derived from data-sheet specifica-
tion, depending on how much delay is tolerable. In most cases,
deadline is equal to the execution time. However, for periph-
erals where a certain amount of delay is tolerable, deadline is
greater than execution time.

A sample schedule for software peripherals is shown in Fig-
ure 2. Here, two peripherals with low level task characteris-
tics, P1 = < 9, 0.5, 0.5 > and P2 = < 11, 0.5, 0.5 > are
shown as examples. These two tasks are statically scheduled.
Note that (a) The LLP tasks run with the highest priority, (b)
The execution time of LLP task is much smaller than any other
tasks. (c) ResponseT ime is defined with respect to the appli-
cations. An application, during its course of executtion, might
get pre-empted due to an LLP task interrupt. The response time
is defined as the duration of time that an application is in pre-
empted state due to invocation of an LLP task. (d) Slack is
also defined with respect to the applications. It is the amount
of processor time an application gets between two consecutive
invocations of LLP task interrupts.

The inputs to the LLP task scheduler are a set of N tasks
{T1, T2, · · · , TN} corresponding to N peripherals and the con-
text switch overhead of the given processor, CS. The output of
the algorithm is a schedule layout if successful. The scheduling
is based on a scheme of iterating through every combination of
peripherals till all combinations are exhausted or a valid sched-
ule is found.

Step 1 tests for schedulability based on [13] followed by
step 2 that calculates the hyperperiod of the task set. Note
that the length of schedule layout is equal to the hyperperiod
i.e., |L| = H . Step 3 explores every possible combination
of the task set until either all combinations are exhausted or a
valid schedule is found (step 17). Step 4, schedules the first
task. This is followed by scheduling rest of the tasks in steps
5 through 16. Each task Ti has H/pi instances that need to be
scheduled in the layout. Steps 7 though 11 try to schedule each
of this instance. If an instance of task cannot be scheduled at
a certain time (because there exists some other task whose in-
stance is already scheduled), the deadline information is used
to determine if a slack is tolerable. This is done in step 9. If
any instance of task cannot be scheduled, the existing layout
is cleared (step 13) and the next combination of tasks is tried
starting at step 3.

Input Tasks T = T1, T2, ..., TN , Context Switch Overhead CS
Output Schedule layout if successful
1. Test schedulability of T using U > N(21/N − 1)
2. Calculate Hyperperiod H = LCM(T1, T2, ..., TN)
3. For each combination of task set Tc = permute(T)
4. Schedule T1 ∈ Tc at t = 0, add Ti to layout L[0]
5. For each task Ti = 2 to N
6. For j = 1 to (H/pi)

7. Try schedule Ti at times t = j × pi

with execution time ei

8. If step 7. fails
9. Try step 7. with available slack

[0, (di − ei)]
10. If step 9. fails for all

values [0, (di − ei)] break
11. End For
12. If Ti is not scheduled
13. Invalidate L, break
15. Add Ti to L[t]
16. End For
17. If task set T = {T1, T2, · · ·Tn} ∈ L,

scheduled ⇐ true break
18. End For
19. If scheduled = true
20. For i = 0 to (|L| − 1)
21. If ((L[i + 1] − L[i]) ≤ CS)

Merge L[i], L[i + 1]
23. End For
24. return scheduled

If a layout is possible and determined, the next step is to take
the context switch overhead into account and coalesce any two
neighboring tasks such that the slack between them is less than
the context switch overhead. This slack can be filled with no-
ops, instead of doing a context switch and missing the next task
deadline.

The complexity of this algorithm is
O ((N !) × N × H/pmin), where pmin is the task with
minimum periodicity i.e., (H/pmin) is maximized. Though
the complexity is exponential, it is to be noted that the schedule
is computed offline and the number of peripherals, N , does not
reach a high value. Our worst case running time is less than 10
minutes with N = 5.

C. LLP Implementation

The implementation and memory layout requirements of
LLP task is described in this section. Figure 3 shows a snap-
shot of the memory layout of LLP task and peripheral memory
buffer. The figure depicts an implementation of four peripher-
als. The hyperperiod of tasks is 10 units of time. The arrays
schedule and T are generated by the scheduling algorithm
described previously. The schedule array is of length hy-
perperiod and consists of the sequence in which LLP tasks are
invoked. For example, in this case, peripheral P1 is invoked
five times in the given layout. The array T is used to invoke the
timer interrupt. For example at time t7 = T [7] the LLP task
corresponding to peripheral P3 = schedule[7] is invoked.

The peripheral buffer consists of buffer for each peripheral
as described in the previous section. The write buffer for serial
port peripheral is shown in the figure as array spi wr buf.
This buffer is shared between the HLP task and LLP task.
For example, in case of serial port, the HLP task calculates
parity and adds start, stop bits to every byte and places it
in spi wr buf array. This is followed by moving the end
pointer. Note that (a) The peripherals are circular buffer and
therefore, the start and end pointers roll back. (b) There
does not arise a case in which end overwrites the start i.e.,
data is never produced by the HLP task at a rate higher than
LLP task can consume (and vice-versa). (c) The process of in-
crementing end pointer has to be an atomic operation to avoid
the case of HLP task being interrupted by the same LLP task

1B-5

58

0 5 10 15 20 25

Peripheral1

Peripheral2

HLP

Applications

LLP Tasks

HLP Task

Applications

Response Time Slack

Fig. 2. Three Level Tasks Schedule

and having start and end pointers pointing to the same loca-
tion. A similar requirement does not hold for LLP task because
the LLP task runs in the context of a high priority interrupt
handler that is not pre-empted. (e) There can be a case when
a peripheral is inactive, in this case the LLP task sends the de-
fault bit to the physical I/O. For example in case of serial port
the default behavior (i.e., when no bits are shipped) is a high
state. This condition is easily identifiable if one observes that
a peripheral is in default state when start and end pointers
point to the same location.

The code for LLP task is implemented as an interrupt handler
(intr handle() function) having case statements. Each
case statement has code for a peripheral LLP. For example, in
figure 3, there are four case statements corresponding to the
four peripherals. The interrupt handler is invoked by a high
priority timer interrupt at times encapsulated by the timer ar-
ray T . Note that before exiting the handler, the timer is re-
set to the next invocation (set timer() function), which is
T [i] − T [i − 1].

IV. EXPERIMENTAL RESULTS

We have considered five peripherals for their software im-
plementation. The peripherals vary in their HLP execution cy-
cles, operating frequency and the number of pins required for
I/O. Table I lists the peripherals. Specifically, Serial Port is a
UART implementation with 19200 baud rate and 8E1 configu-
ration. Keypad is a software implementation of a 4 × 4 keypad
controller having row-column decoder. Timer is a software im-
plementation of a timer-interrupt generator with a configurable
rate. PWM is a software implementation of a configurable
pulse width modulator. Modem is a software implementation
of the V.34 modulation protocol adopted from [14]. Columns 2
and 3 of Table I are execution cycles of the HLP and LLP task
derived by profiling the code on a simulator. The last column
is the number of processor GPIO (General Purpose I/O) pins
required.

TABLE I
EMULATED PERIPHERALS

Peripheral HLP LLP Frequency Pins
Cycles Cycles

Serial Port 364 64 19200 baud 2
Keypad 16 29 1 KHz 8
Timer 10 31 10 KHz 1
PWM 90 34 10 KHz 1
V.34 Modem 7660 32 33600 bps 2

A. Experimental Setup

Figure 4 depicts the experimental setup and design flow. Pe-
ripheral Models in figure 4 capture peripheral properties such
as the operating frequency, the LLP execution time, and the
deadline for each peripheral. The periodicity p of the periph-
eral is determined from the data sheet. Profiling an LLP task
determines the execution cycles e. The Task Generator is a
script that takes as inputs the CPU frequency and the periph-
eral models. It generates a task set file containing the LLP task
tuples (pi, ei, di). A sample task file for processor speed of
100 MHz is given in Table II.

TABLE II
TASK FILE - 100 MHZ

Task Period Exec Cycles Deadline
Serial Port 5208 64 64
V.34 Modem 2976 32 32
Keypad 100000 29 57
Timer 10000 31 31
PWM 10000 34 34

The inputs to the Schedule Generator are the task sets, the
CPU frequency and the context switch overhead. The schedule
generator implements the schedule layout algorithm described
in the previous section. The schedule layout is captured in a
file llp.h. The time instances of when each task is invoked
is captured in the array T and which task to invoke in array
schedule. In addition to the layout, each peripheral is as-
signed a task-id. Since the order of execution of LLP tasks is
not known until a layout is generated, task-id serves the pur-
pose of resolving the order, thereby executing peripheral spe-
cific code in the case statement of the interrupt handler (Fig-
ure 3, intr handle function). Further, the inputs to the com-
piler are the application source code, the HLP task source that
has the peripheral implementation, the interrupt handler source
that implements the LLP task, and the generated layout header
file. The binary thus generated, directly runs on our MIPS in-
struction set simulator.

B. Results

We now present our experimental results. We have con-
sidered four different CPU frequencies (100, 150, 200 and
250MHz), representative of embedded processors.

The first set of results in Table III depicts overhead percent-
age of the LLP and HLP tasks. For a given CPU frequency of
c, execution time e, and peripheral operating frequency f the

1B-5

59

intr_handle() {

 switch(schedule[i]) {

 case SPI: /* 0 */

 ...

 outp(spi_buf[start]);

 start = (start+1)%SPI_BUF;

 break;

 case KEYPAD: /* 1 */

 ...

 ...

 case PWM: /* 3 */

 ...

 }

 i = (i + 1) % HYPERPERIOD

 set_timer(T[i] - T[i-1]);

 }

. . .
intr_handle:

jmp intr_handle

saved PC

i

. . .Peripheral Buffers 1 1 1 1 10 0 02 3

Hyperperiod

i
schedule[]

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Hyperperiod

T[]

Memory

1 1 1 10 00.0

start end

SPI_BUF

spi_buf[]

Schedule Layout

Timer Layout

Fig. 3. Memory Layout

Schedule
Generator

CPU
Params

Compile and Link

Binary

MIPS Simulator

Application,
HLP Task

llp.hintr.c

int T[] = {

 ...

 ...

};

int schedule[] =

{

 ...

 ...

};

#define HYPERPERIOD

#define SPI 0

#define KEYPAD 1

...

Statistics

Layout

Periphral Models
Periphral Models

Periphral Models

p0,e0,d0

p1,e1,d1

...

pn,en,dn

Task Sets

Task Set
Generator

Fig. 4. Experimental Setup

TABLE III
PROCESSOR OVERHEAD

Peripheral 100MHz 150MHz 200MHz 250MHz
LLP HLP Total LLP HLP Total LLP HLP Total LLP HLP Total

Serial Port 1.22 0.70 1.92 0.82 0.46 1.28 0.60 0.34 0.94 0.48 0.35 0.83
Modem 1.07 6.43 7.50 0.71 4.29 5.00 0.53 3.22 3.75 0.43 2.57 3.00
Keypad 0.02 0.02 0.04 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02
Timer 0.31 0.10 0.41 0.20 0.07 0.27 0.15 0.05 0.20 0.12 0.04 0.16
PWM 0.34 0.11 0.45 0.17 0.08 0.25 0.22 0.06 0.28 0.13 0.05 0.18

overhead of the LLP task is equal to ((f ×e)/c)×100 percent.
The HLP task overhead is calculated based on a worst case sce-
nario i.e., assuming a peripheral is never idle. For example, in
case of serial port, the HLP task is assumed to be always trans-
mitting and receiving data. Note that, the rate at which HLP
task is invoked is less frequent than that of the LLP task invo-
cation. For example, in case of the serial port, one invocation
of the HLP task results in 10 bits of data being processed, 8 bits
of data per byte to be transmitted along with one stop bit, and
one bit for even parity. Thus the HLP task is invoked fserial/10
times compared to the serial LLP task’s periodicity of fserial.
Also, the values are computed based on Table I, which takes
into account the execution cycles due to function call overhead
(saving and restoring registers), in addition to the actual cycles
due to processing data. It can be seen from Table III that even
in case of a software modem which requires a large number of
cycles to implement the functionality in software, the overhead
on processor is minimal.

Our next set of results are based on a system configuration con-
sisting of all the peripherals mentioned in Table I connected to a
processor. The results are based on calculating the hyperperiod
and running the simulation for one hyperperiod. The schedule
for the five peripherals is computed based on flow described
in Figure 4. Table IV depicts the results. In order to come
up with a valid schedule, having a reasonable hyperperiod, the
periodicity of two peripherals (serial port and modem) had to
be adjusted. This resulted in the certain amount of error from
the actual periodicity. However, peripherals can tolerate certain

amount of jitter in periodicity without actually giving an incor-
rect result. The larger of the two errors introduced resulted in
a deviation of 413 nsec, which was a tolerable jitter. The total
cycles depicted in column 11 is the amount of time (in clock
cycles) the simulation runs. Note that it is close to the hyper-
period in each case, but not exactly same as the hyperperiod.
This is due to the fact that there is some amount of cycles spent
in starting the simulation and invoking the LLP task. Also, as
in previous result, the assumption here is that the peripherals
are always active which implies that the HLP task runs for the
maximum possible number of times. Note that the worst case
utilization is 10.1% in case of a 100 MHz processor. Column
10 (Intr.) is the number of times the low level interrupt is in-
voked to run the LLP task. Note that this value could be same
for different processor speeds i.e., if the same schedule layout
is made for two different processor frequencies, the number of
times the LLP task is invoked will be the same. In this par-
ticular example, the schedule layout in case of 100 MHz, 200
MHz, and 250 MHz is the same i.e., the same schedule is gen-
erated for the above three processor frequencies. The hyperpe-
riod have different values as the units are cycles and not time.

The response time is expressed as a set R =
{(r1, n1), (r2, n2), · · ·}, where ri is the response time
and ni is the number of such instances. Similar to the case
of low level interrupts (Intr. Column 11), the response time
R is also same for a given schedule layout, independent
of processor frequncy. The response time R for processor
frequencies of 100 MHz, 200 MHz and 250 MHz is given by

1B-5

60

TABLE IV
PROCESSOR UTILIZATION

CPU Hyper- Error % HLP LLP Intr. Total
(MHz) period Serial Modem Keypad PWM Timer (%) (%) cycles

100 3900000 -0.15 0.80 0.0 0.0 0.0 7.13 2.98 2869 3999900
150 21450000 -0.10 -1.38 0.0 0.0 0.0 4.88 2.08 10628 21834904
200 7800000 -0.15 0.80 0.0 0.0 0.0 3.60 1.51 2869 7899198
250 9750000 -0.15 -0.80 0.0 0.0 0.0 2.89 1.21 2869 9847698

{(32, 1238), (64, 700), (65, 351), (94, 26), (126, 12), (190, 1)}.
Similarly the response time for proces-
sor frequency of 150 MHz is given by
{(32, 4738), (62, 1287), (64, 2625), (91, 130), (96, 124),
(123, 12), (187, 1)}. The best case response time is 32 cycles
and the worst case response time is 187 cycles (for 150
MHz) and 190 cycles (for other processor frequencies). Note
that there are only a few instances where response time is
large and a large number of instances where the response
time is small. Thus, scheduling LLP tasks does not have a
considerable impact on the response time of higher level tasks.
Theoretically, the response time for higher level tasks in case
of N peripherals (assuming zero context switch overhead) is
bounded by [minN

i=1 ei,
∑N

i=1 ei], where ei is the LLP task
execution time of peripheral Pi. The lower limit is the case
when an LLP task with least execution time is executed and
there is no other LLP task to be executed thereafter. The upper
limit case is when all LLP tasks are scheduled one after the
other. Figure 5 shows the distribution of slack for the four pro-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000 8000

N
um

be
r

of
 c

yc
le

s

Slack (in cycles)

Slack Distribution

100 MHz
150 MHz
200 MHz
250 MHz

Fig. 5. Slack Distribution

cessor configurations. The horizontal axis depicts the amount
of slack in cycles and the vertical axis depicts the number of
instances of such slack available. The extremely large number
of cycles available in each case (the spike observed in each
case), is due to the large variation in the periodicity exhibited
by the peripherals. This is evident from the Table II. A case
where the variation in periodicity is not large enough exhibits
a slack distribution that is flat compared to Figure 5. However,
this is not shown in this paper due to lack of space. It can be
seen from figure 5 that non LLP tasks do get sufficient amount
of time to execute without being interrupted by LLP tasks.

In conclusion, we proposed a design flow and software ar-
chitecture for realizing software peripherals on processors with

high resolution timers and fast context switch support. Our re-
sults show that with the right hardware architecture support, it
is possible to schedule software peripherals with minimal im-
pact on other high level applications. However, the complexity
of a peripheral might be a limiting factor with traditional pro-
cessor architecture support.

With the emergence of MPSoCs and NoCs, in future, it may
be possible to dedicate on chip cores to perform specific pe-
ripheral functionality. We have not considered the power and
energy considerations of having software peripherals. While
the processor power consumption might increase due to HLP
and LLP tasks, not having peripheral hardware may result in
energy savings. This is one of the areas to be looked in future.

REFERENCES

[1] D. Lioupis, A. Papagiannis, and D. Psihogiou. A systematic approach to
software peripherals for embedded systems. In CODES ’01: Proceed-
ings of the ninth international symposium on Hardware/software code-
sign, pages 140–145, New York, NY, USA, 2001. ACM Press.

[2] P.Cummings. The TI OMAP Platform Approach to SoC. In Winning the
SoC Revolution. Kluwer Academic Publishers, 2003.

[3] Jim Turley. Soft peripherals. In Embedded Systems Programming, May
2003.

[4] D. Lioupis, A. Papagiannis, and M. Stefanidakis D. Psihogiou. Software
peripherals - requirements and constraints for real-time embedded sys-
tems. In IEEE Real-Time Embedded Systems Workshop, 2001.

[5] Whitepaper. The Ubicom IP2022 Multiprotocol processor.

[6] Whitepaper. The Ubicom IP2023 wireless network processor.

[7] Michael B. Jones and Stefan Saroiu. Predictability requirements of a soft
modem. In SIGMETRICS ’01: Proceedings of the 2001 ACM SIGMET-
RICS international conference on Measurement and modeling of com-
puter systems, pages 37–49, New York, NY, USA, 2001. ACM Press.

[8] William Wong. Soft peripherals + hard cores = reconfigurable socs. In
Electronic Design, July 2002.

[9] João Leonardo Fragoso, Eduardo Costa, Juergen Rochol, Sergio Bampi,
and Ricardo Reis. Specification and design of an ethernet interface soft
IP. January 01 2000.

[10] Srikanteswara S.; Reed J.H.; Athanas P.M.;. Implementation of a recon-
figurable soft radio using the layered radio architecture. Signals, Systems
and Computers, 1:360 – 364, Oct. 2000.

[11] Intel. Intel 8051 microcontroller. www.intel.com.

[12] ARC. Arc. www.arc.com.

[13] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, January 1973.

[14] Fabrice Bellard. A generic linux soft modem. 1999.

1B-5

61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

