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Abstract— We present the short-circuit code trans-

formation technique, intended for embedded compil-

ers. The transformation technique optimizes condi-

tional blocks in high-level programs. Specifically, the

transformation takes advantage of the fact that the

Boolean value of the conditional expression, determin-

ing the true/false paths, can be statically analyzed to

determine cases when one or the other of the true/false

paths are guaranteed to execute. In such cases, code is

generated to bypass the evaluation of the conditional

expression. In instances when the bypass code is faster

to evaluate than the conditional expression, a net per-

formance gain is obtained. Our experiments with the

Mediabench applications show that the short-circuit

transformation yields a an average of 35.1% improve-

ment in execution time for SPARC and an average of

36.3% improvement in execution time for ARM. We

also measured an average of 36.4% reduction in power

consumption for ARM.

I. Introduction

Software has become a key element in the design of em-
bedded systems. In part, the increasing complexity and
the shortening of time-to-market window force develop-
ers to rely heavily on software [16]. Given the stringent
design constraints and performance requirements of em-
bedded systems, as software becomes more dominant, the
importance of aggressive compiler optimizations also in-
creases [15]. Furthermore, unlike a traditional compiler,
intended for desktop computing, it is acceptable for a com-
piler intended for embedded computing to take longer to
execute in order to enable aggressive compiler optimiza-
tions, such as the one presented in [17].

In this paper we present a novel short-circuit code trans-
formation technique to reduce execution time of condi-
tional blocks of the following form.

if Cexpr then
Sthen

else
Selse

end if

The short-circuit code transformation technique takes
advantage of the fact that the Boolean value of the condi-
tional expression Cexpr can be statically analyzed to de-
termine cases when one of Sthen or Selse is to execute.
Consequently, in such cases, code may be generated to
bypass the evaluation of the conditional expression Cexpr.
In instances when the bypass code is faster to evaluate

2

(a) (b)

end for

if (x  + y  − x  × y == 0) then
color(x,y,BLACK);

end if
end for

end for

color(x,y,BLACK);
end if

end if
end for

for all y = min to max do

for all x = min to max do
for all y = min to max do

if y < 0 then
continue;

else

if (x  + y  − x  × y == 0) then

for all x = min to max do

2 2
2 2 2

Fig. 1. Motivational Example

than the conditional expression Cexpr, a net performance
gain is obtained.

To illustrate, consider the problem of finding the points
of collision between two surfaces. A typical approach for
doing this is shown in Figure 1(a). Static analysis of the
condition Cexpr : (x2 + y2 − x2 × y == 0), yields the fact
that the condition Cexpr is false when y < 0. There-
fore, the above code may be transformed as shown in Fig-
ure 1(b).

The basis for the above transformation is the aggressive
static analysis performed on Boolean expressions, as out-
lined in [10]. In Figure 2, it corresponds to the ”Domain
Space Partitioning” stage, where the authors propose a
method for creating a true/false map of the entire do-
main space for any arbitrary mixed integer/Boolean ex-
pression. Here, we used their idea to propose a more com-
plete framework for short-circuit transformation.

In the above example, and assuming min = −max,
a net performance gain of 16% is obtained. Gain is
computed using a combination of profiling and target-
processor performance model, as outlined in the remainder
of this paper.

This paper is organized as follows. In Section II, we
review the previous related work. In Section III, we de-
scribe the compiler transformation technique in detail. In
Section IV, we state some additional remarks about the
transformation technique. In Section V, we show our ex-
perimental results.We conclude in Section VI.

II. Previous work

There are similarities between our proposed work and
what is in compiler literature known as lazy evaluation
of Boolean expressions [3]. This optimization is based on
the observation that the value of a binary Boolean op-
eration, composed of two operands, may be determined
from the value of the first operand. For example, if
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Fig. 2. Short Circuit Evaluation Technique

Cexpr = C1 and C2, for those cases when C1 evaluates to
false, evaluation of C2 can be bypassed. The work in [13]
and [2] are two of the earliest work in lazy evaluation.

The work in [12] extends lazy evaluation by proposing
an ordering of the operands of the conditional expression
that minimizes the average execution time. Specifically,
when a Boolean expression is composed of multiple sub-
expressions, the probability of being true/false and the
time to compute each of the sub-expressions is used to
determine an optimal ordering of lazy evaluation.

The work in [6] studies the effects of lazy evaluation
on code space. In their work, the authors conclude that,
while the ultimate code space requirement is dependent
on the target architecture and the Boolean expressions,
lazy evaluation does not always result in larger code size.

We are unaware of work, other than lazy evaluation,
that is similar to what is proposed in this paper. Unlike
lazy evaluation, our proposed technique uses aggressive
arithmetic analysis to guide the transformation of con-
ditional blocks. Furthermore, our approach looks at the
arithmetic structure in addition to Boolean structure of
expressions. Finally, our approach is completely orthog-
onal to the sub-expression ordering proposed in [12]. In
fact, the two techniques can be combined for additional
average case performance gains.

In our methodology, we have used profiling data. There
are several work in literature which have used profiling re-
sult for optimization. Trace scheduling [9] and other tech-
niques derived from it [8] use profiling data for compiler
optimization. In [11] the authors use profiling data for
cache optimization. We comment on feasibility of profile-

based optimization in Section IV.

III. Short circuit transformation

Figure 2 depicts our over-
all strategy. The input is
a C/C++ application and
the model of the proces-
sor on which the applica-
tion is intended to exe-
cute. In this transforma-
tion we take a candidate
conditional block (subsec-
tion A) of the form shown
in Figure 3(a) and trans-
form it to a form like the
one shown in Figure 3(b).

case

if (C      )
then
expr

else
Selse

expr

else
Selse

S
if (C      )

then

if (          )
Scase1

Scase2

1case

case2else if (          )

Original Transformed

(a) (b)

..

}

else {

else if (          )
Scasem

m

S

Fig. 3. Transformation
Procedure

In the transformation we find cases casei for which the
Boolean value of Cexpr is statically determined. For exam-
ple, Cexpr : (x2 + y2 − x2 × y == 0) takes on the Boolean
value false in case1 : y < 0. Next, we order the cases
casei based on their probability of occurrence and trans-
form the code as shown in Figure 3(b). In the transformed
code, Scasei is the same as Sthen if and only if the Boolean
value of Cexpr is true for casei and Selse otherwise.

To find the cases casei we apply the domain space parti-
tioning algorithm (Section D and Section C). To find the
case occurrence probabilities, we use profiling data (Sec-
tion C). To determine the goodness of the transformation
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(Section F), we use the case occurrence probabilities (Sec-
tion C), bypass code delay, and execution delay of the
true/false paths (Section B). Each of these processing
steps are outlined in the following text.
A. Identifying a conditional block

The application code is first compiled to generate an
annotated executable. Profiling data (i.e., the number of
times a conditional block is executed) is then obtained by
executing the annotated executable using sample input
data.

Using the profiling data, a candidate conditional block
(i.e., one with a high execution count) is selected for op-
timization. We represent the conditional block using a
triplet < Cexpr, Sthen, Selse >. Cexpr is the conditional
expression, Sthen is the statement executed when Cexpr

is evaluated to true, and Selse is the statement executed
when Cexpr is evaluated to false.

The conditional expression Cexpr is either a simple con-
dition or a complex condition. A simple condition is in
the form of (expr1 ROP expr2). Here, expr1 and expr2

are arithmetic expressions and ROP is a relational oper-
ator (=, �=, <, ≤, >, ≥). An arithmetic expression is
formed over the language (+, −, ×, constant, variable).
A complex condition is either a simple condition or two
complex conditions merged using logical operators (&&, ||,
!). Specifically !C computes the negation of the complex
condition C; (C1&&C2) computes logical-and of complex
conditions C1 and C2; and (C1||C2) computes logical-or
of complex conditions C1 and C2.

For expressing Cexpr with variables x1, x2, ..., xk, we
traverse the control/data flow graph (CDFG) represent-
ing the input code, from the point where Cexpr is used,
backward. During the traversal, we substitute the subex-
pression xiexpr

defining xi for the existing variables xi. We
continue to replace the intermediate variable xi until we
either reach to the first definition of xi, a conditional block
or an unbounded loop where xi is defined. An example of
this, is shown in the example presented in Section E.

Each of Cexpr, Sthen, and Selse is expressed as a di-
rected acyclic graph (DAG). For example, the DAG for
the conditional expression C : 2x0 + x1 + 4 > 0 is shown
in Figure 4.
B. Delay computation

We define the delay Cexpr.delay, Sthen.delay, and
Selse.delay to be the number of cycles necessary to com-
pute the corresponding DAG on the target processor.

A simple methodology to compute the delay of a DAG
is as follows. For a leaf node Nleaf , we define the delay
as one, when Nleaf is an immediate/register operand or n

when Nleaf is a memory reference. Here, n is the average
processor cycles required to perform a load operation. For
an internal node Ninternal, we define the delay as the sum
of the delays of the left and right children, plus the cost
of the internal node, obtained from a processor-specific
lookup table. Table I shows, in part, the delay for common
DAG operations in a MIPS-like processor. As an example,
the delay for the DAG shown in Figure 4 is computed to be
22 (as shown with annotations on the left of the nodes in
Figure 4). We note that, when available, a more detailed
delay model (e.g., one taking processor stalls and pipeline
dynamics) may be used in place of the one proposed here.

TABLE I Example of Delay Values for DAG Nodes

Integer Float Relational
Operator + − × + − × < > ==
Delay (cycle) 1 1 7 4 4 7 2 2 2

C. Conditional block analysis

The input to this step is a candidate conditional block.
The output is profiling data, specific to the conditional
block, that is used in several future steps of the trans-
formation. The profiling data includes: (1) the percent-
age of time each of the Sthen and Selse execute, (2) lower
and upper bounds for the variables in the conditional ex-
pression Cexpr, and (3) the value distribution of variables
in Cexpr. For example, Figure 5 demonstrates the up-
per/lower bounds and the value distribution for a variable
xi in Cexpr.

D. Domain space partitioning & probability annotation

In this step, we apply the domain space partitioning al-
gorithm on Cexpr and obtain a series of non-overlapping
spaces within the domain space of Cexpr, bounded to the
upper/lower values computed during profiling. Further-
more, using the value distribution of variables in Cexpr,
we annotate each of these spaces with a probability of
occurrence.

Given the conditional expression Cexpr with variables
x1, x2, ..., xk, the domain space partitioning problem [10]
is to partition the domain space of Cexpr into a minimal
set of k-dimensional spaces s1, s2, ..., sn with each space si

having one of true(T), false(F), or unknown(U) Boolean
value. If space si has a Boolean value of true, then Cexpr

evaluates to true for every point in space si. If space
si has a Boolean value of false, then Cexpr evaluates
to false for every point in space si. If space si has a
Boolean value of unknown, then Cexpr may evaluate to
true for some points in space si and false for others.
The Boolean value for space si is denoted as BVi in the
remainder of this paper.

For example, consider Cexpr : 2 × x0 + x1 + 4 > 0.
Let us assume the upper and lower bounds for x0 and x1

are -5 and 5 respectively. Therefore, the domain of Cexpr

is a 2-dimensional space defined by the Cartesian product
[−5, 5]×[−5, 5]. Figure 6 (from [10]) shows the partitioned
domain space and the corresponding Boolean values.

Each of spaces s1, s2, ..., sn is annotated with a probabil-
ity of occurrence, denoted as pi and computed as follows:
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Fig. 6. Partitioned Domain of 2x0 + x1 + 4 > 0

pi = Ni/
nX

i=1

Ni i = 1...n (1)

Here, Ni is the number of vectors < x0, ..., xk > within
the bounds of si. Ni is directly derived from the value dis-
tribution of variables in Cexpr, gathered during the profil-
ing.

Next, we eliminate the spaces si with unknown Boolean
values and sort the remaining m (m ≤ n) spaces according
to the probabilities pi. This new set of sorted spaces are
used to emit the bypass code, as described next.
E. Transformation procedure

Figure 7 shows the structure of the transformed code.
The transformed structure is made of two sections. The
first section is a sequence of cases, in the form of if, else
if, ..., else if. There are exactly m such cases, each
corresponding with one of the m spaces. Furthermore,
these cases appear in the transformed code in the order of
decreasing probability of occurrence. The second section
is the original conditional block embraced within the final
else.

m

iBVS     =
then

else

S       ; BV = true

S       ; BV = false

i

i

S
if (C      )

then
expr

else
Selse

SBV1

expr

else
Selse

S
if (C      )

then

Original Transformed

Transformation

.

..

if (X      S  )

}

else {

else if (X      S  )
SBV2

else if (X      S   )
SBVm

1

2

Fig. 7. Transformation Procedure

Each bypass casei has a conditional expression in the
form of X ∈ si. X is a vector of length k, in the form of
< x1, x2, ..., xk >, where xi’s are the variables in Cexpr.
The expression X ∈ si is an abbreviation for a conditional
statement of the following form: (lb1 ≤ x1 ≤ ub1) &&
(lb2 ≤ x2 ≤ ub2)...&& (lbk ≤ xk ≤ ubk), where lbj/ubj

define the boundary of si along the xj dimension. Let us
denote this condition in its DAG form and as casei.DAG.
We can now compute the delay of casei.DAG (Section B)
and denote it as casei.DAG.delay.

Each bypass casei has a conditional statement SBVi
,

which is either Sthen when BVi is true and Selse other-
wise. Accordingly, we denote the execution time of SBVi

as SBVi
.delay:

SBVi
.delay =

(
Sthen.delay; BVi = true

Selse.delay; BVi = false
(2)

As an example of the transformation procedure, Fig-
ure 8 shows a code segment from the MP3 encoder [18].
Here, the conditional block within the nested loops re-
quires the evaluation of the costly expression Cexpr :
15.8+7.5×t1[i][j]−17.5×√

1.0 + t1[i][j] × t1[i][j] ≤ −100.

t3 = 15.811389+7.5*t1[i][j]−17.5*sqrt((double) (1.0+t1[i][j]*t1[i][j]));
t1[i][j] += 0.474;

if(t3 <= −100) {

s[i][j] = 0;
}
else {

t3 = (t2[i][j] + t3)*LN_TO_LOG10;
s[i][j] = exp(t3);

}
}

for(j=0;j<CBANDS;j++){

}

for(i=0;i<CBANDS;i++){

Fig. 8. Sample MP3 Code Segment

Based on static analysis of Cexpr and profiling we ob-
tain the true/false map shown in Table II. Table II
shows that Cexpr evaluates to false whenever −4.7 <
t1 < 11.862. Here, 47.6% of the time the inequality Cexpr :
15.8+7.5×t1[i][j]−17.5×√

1.0 + t1[i][j] × t1[i][j] ≤ −100
evaluates to true during actual execution of the code.
From the above analysis, we emit the transformed code as
shown in Figure 9.

TABLE II true/false Map of Cexpr in MP3

Space Boolean Value (BV) Probability
[-4.7,11.862] false 0.475939
[-30,-4.702] true 0.312169
[11.864,30] true 0.160242

else if ( t1[i][j]>=11.864 && t1[i][j]<=30 )

}

for(i=0;i<CBANDS;i++){

s[i][j] = 0;
else

{
t1[i][j] += 0.474;
t3 = 15.811389+7.5*t1[i][j]−17.5*sqrt((double) (1.0+t1[i][j]*t1[i][j]));
if(t3 <= −100)

s[i][j] = 0;
else {

t3 = (t2[i][j] + t3)*LN_TO_LOG10;
s[i][j] = exp(t3);

}
}

}

else if ( t1[i][j]<= −4.702 && t1[i][j]>=−30 )
s[i][j] = 0;

{
t1[i][j] += 0.474;
t3 = 15.811389+7.5*t1[i][j]−17.5*sqrt((double) (1.0+t1[i][j]*t1[i][j]));
t3 = (t2[i][j] + t3)*LN_TO_LOG10;
s[i][j] = exp(t3);

}

if ( t1[i][j]<= 11.862 && t1[i][j]>= −4.700)

for(j=0;j<CBANDS;j++){

Fig. 9. Transformed MP3 Code

F. Computing the benefit of transformation

The short-circuit transformation is beneficial when:

Tnew < Toriginal (3)

In Equation 3, Toriginal is the estimated time to ex-
ecute the original conditional block and Tnew is the
estimated time to execute the transformed conditional
block. Toriginal can be computed using the Cexpr.delay,
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Sthen.delay and Selse.delay, along with the probability of
execution of each of the true/false paths, obtained from
profiling, namely:

Toriginal = Cexpr.delay + Probthen × Sthen.delay

+ Probelse × Selse.delay (4)

Tnew is calculated as follows:

Tnew =p1 × (case1.delay + SBV1 .delay)

+ p2 × (case1.delay + case2.delay + SBV2 .delay)

+ ...

+ pm × (case1.delay + ... + casem.delay + SBVm .delay)

+ (1 − p1 − ... − pm) × Toriginal (5)

Or, in abbreviated format as:

Tnew =
mX

i=1

[pi × (
iX

j=1

casej .delay + SBVi
.delay)]

+ (1 −
mX

i=1

pi) × Toriginal (6)

Tnew is calculated by taking into account the delay
of each of the cases that have been added to the trans-
formed conditional block structure. For the first case
(case1) the execution time is dependent on the proba-
bility that case1 will be selected during execution (p1),
the cost of evaluating the bypass condition (case1.delay),
and the cost of executing the statements within case1

(SBV1). For subsequent cases (casei), the delay is depen-
dent on the number of previous bypass condition evalua-
tions (

∑i
j=1 casej .delay), the probability that casei will

be selected during execution (pi), the cost of evaluating
the bypass condition (casei.delay), and the cost of exe-
cuting the statements within casei (SBVi).
G. Computing the code size increase

For an embedded system, the code footprint may be a
constraint. Hence, we give estimate of code size before and
after the proposed transformation. The estimated code
size (in number of instruction) for the original code seg-
ment in Figure 7 is computed as follows. If SizeCexpr is the
code size for computing Cexpr, Sizethen and Sizeelse are
the code size for computing the statements inside the as-
sociated conditional block and for implementing the con-
ditional block we require one comparison and two branch
instructions, then:

Sizeoriginal = SizeCexpr + Sizethen + Sizeelse + 3

The estimated code size for the transformed code seg-
ment in Figure 7 is computed as follows:

Sizenew = m × Sizecase + Sizethen/else + Sizeoriginal + m + 1

where Sizecase is the size of the code segment needed
to compute each of X ∈ Si in Figure 7. Sizethen/else is
the total size of the code added to all the branches. m+1

is added to this summation because there are m + 1 total
branches for each case.

For computing Sizecase, we calculate the size of code
required to compute (lb1 ≤ x1 ≤ ub1) && (lb2 ≤ x2 ≤
ub2)...&& (lbk ≤ xk ≤ ubk) as mentioned in Section E.
Specifically, if k is the number of variables in Cexpr and
each of the (lbi ≤ xi ≤ ubi) requires two comparisons and
two branches, this will be computed as:

Sizecase = k × 4

Sizethen/else is incremented by Sizethen for each casei

(where Cexpr is true), and by Sizeelse for each casei

(where Cexpr is false). So:

Sizethen/else =
mX

i=1

BVi × Sizethen + (1 − BVi) × Sizeelse

Where BVi is defined in Section D.

IV. Additional remarks

There are a number of issues worthy of discussion re-
garding short-circuit evaluation:

1. The static benefit computation, described in the pre-
vious section, assumes that the conditional expres-
sion Cexpr of the candidate conditional block does
not share a subexpression with the statements Sthen

or Selse. Otherwise, if Cexpr shares a subexpression
with one of Sthen or Selse, or both, then the per-
formance gains of the transformed code may be less
substantial. For example, Figure 8 shows an instance
where parts of the conditional expression (t3) is used
in Selse.

2. Any or all of the cases (case1, case2, ..., casem) may
be left out in the transformed code without affecting
the correctness. This is because the original condi-
tional block is always present in the last section of
the transformed code, i.e., the final else. This fact
can be exploited to obtain more optimal transforma-
tions. For instance, one or more of the cases may
be left out in order to improve the execution time.
Specifically, to address the subexpression issue men-
tioned above, one can eliminate the cases that use a
subexpression of Cexpr. Figure 10 shows how the first
case of Figure 9 is eliminated to obtain an optimized
solution.

for(i=0;i<CBANDS;i++){

s[i][j] = 0;
else

{
t1[i][j] += 0.474;
t3 = 15.811389+7.5*t1[i][j]−17.5*sqrt((double) (1.0+t1[i][j]*t1[i][j]));
if(t3 <= −100)

s[i][j] = 0;
else {

t3 = (t2[i][j] + t3)*LN_TO_LOG10;
s[i][j] = exp(t3);

}
}

}

if ( t1[i][j]<= −4.702 && t1[i][j]>=−30 )
s[i][j] = 0;

else if ( t1[i][j]>=11.864 && t1[i][j]<=30 )

for(j=0;j<CBANDS;j++){

}

Fig. 10. Transformed &
Optimized MP3 Code

Cases Added

newT

Optimal

Fig. 11. Transformed Code
Behavior
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3. At some point, as the number of cases that are added
to the transformed code structure grows, Tnew in-
creases (Equation 6 and shown in Figure 11). One
method to find the minimum is by adding the next
highest probability case to the transformed structure
as long as Tnew is strictly decreasing.

4. The approach presented here can apply to nested con-
ditional blocks by assuming that the inner conditional
block is a single statement appropriately included in
Sthen or Selse. Similarly, the approach presented
here can apply to conditional blocks in the form of
if, else if, ..., else if, else, by pre-transforming
them into a if/else form with nested conditional
blocks.

5. We note that profile-based optimizations (even if it
yields slowdowns) have been proven useful in many
other contexts in computer science, notably in Trace
Scheduling [9] and its derivatives (e.g., Superblock
and Hyperblock) [8] as well as other techniques (e.g.,
cache optimization [11]). And the practice has proven
itself useful over the last two decades.

While input data may indeed change somewhat the
results, branches are typically highly biased in most
programs and thus any reasonable profiling will pick
that bias up, enabling our technique to exploit it.

6. The proposed transformation yields correct results re-
gardless of the input data. The generated code yields
the most speedup if the input data has similar char-
acteristics of the profiled data. It is theoretically pos-
sible for some input data to cause a small slow-down.
Such a slowdown will happen when all the by-pass
cases are evaluated to false (see Figure 7). This sce-
nario did not present itself in our experiments.

7. The approach presented here can apply generally to
any application, but it takes time to analyze the code
and generates the optimized code. For an embed-
ded software this increase in compile time is justified
which might not be the case generally.

8. As with any other compiler optimization ( [1] and
[7]), the optimization presented in this paper ap-
plies to some regions of the code, namely conditional
blocks. In embedded software, conditional blocks are
common, making the proposed approach practical.

V. Experiments

To evaluate the proposed code transformation tech-
nique, several code segments (kernels) from Media-
Bench [5] application suite were chosen. We also exper-
imented with an MP3 encoder implementation obtained
from [18] as well as a collision detection algorithm cho-
sen from computer graphics domain. By code segment, we
mean the region of code that was impacted by the trans-
formation. For example, if the transformed code was a
conditional block within a for-loop, then the time taken

to execute that entire for-loop before and after the opti-
mization was used to determine the speedup. To be more
precise, the code segment will always be the smallest set of
basic blocks, touched by our algorithm, with a single entry
and multiple exists. The characteristics of the code seg-
ments selected for our experiments are listed in Table III.
In Table IV Conditional expressions column shows the
particular conditional expression(s) in the code segment
selected for optimization. If there are more than one con-
ditional expression in a code segment, then we run our
algorithm for each instance of conditional expression sep-
arately (i.e., the algorithm is run iteratively as long as im-
provements are obtained). Also, in Table IV, Application
shows where we picked the code segment and Function
description shows the functionality of the code.

TABLE III Selected Application List

Code Application- Conditional expressions
seg. Function desc.

1 MESA-Compute the exp(c2 ∗ z2) > 1
fogged color indexes

2 MESA-Compute the 0 ≤ exp(−c2 ∗ z2) ≤ 1
fogged color

3 MP3-Layer 3 15.8 + 7.5 ∗ t − 17.5 ∗
q

(1.0 + t2) ≤ −60
Psych. Analysis

4 MP3-Psych. 15.8 + 7.5 ∗ t1 − 17.5 ∗
q

(1.0 + t12) < −100
Analysis

5 Graphics-Check x ∗ x + y ∗ y − x ∗ x ∗ y == 0
for collision

6 MPEGDEC (i < 0), (i > 255)
Initialize Decoder

7 MPEGENC-Ver./Hor. (i < 5), (i < 4), (i < 3), (i < 2), (i < 1)
Filter,2:1 Subsample

8 MP3-Layer 3 j < sync flush, j < BLKSIZE
Psych. Analysis

9 MP3-Read and j < 64
align audio data

10 MPEG-IDCT (i < −256), (i > 255)
Initialize

11 MPEGDEC-Ver./Hor. (i < 2), (i < 1)
Interpolation Filter

We applied our transformation technique at the source
level to each of the chosen benchmarks, compiled the orig-
inal and the transformed code, and measured the improve-
ment. We did this experiment for two types of CPU:
SPARC and ARM. For SPARC we measured the per-
formance improvement together with code size increase.
For ARM, we measured improvement on performance and
power.
A. SPARC

The results of experiments on SPARC CPU are summa-
rized in Table IV. In Table IV, Toriginal and Tnew columns
show the execution time for the selected code segment be-
fore and after the proposed transformation, as reported by
the clock() function of Unix. Speedup(%) shows the exe-
cution time improvement in each case. The two columns
Original size and New size show the size of the selected
code segment before and after transformation in number
of assembly instructions. The code size increase shows
the percentage increase in code size. As can be seen in
Table IV the first two examples have a negative increase.
This is due to total removal of the Cexpr in both of the
cases.

The experiments were run on a Sun workstation, with 2
SPARC CPUs (1503 MHz SUNW,UltraSPARC-IIIi) and 2
GB of memory. We used GCC compiler version 3.4.1 (with
no optimization switch) in order to generate executables.

In the best case, we observed application speedup of
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TABLE IV Result of Experiments for SPARC

Code Toriginal Tnew Speedup Original New Code size
seg. (µS) (µS) (%) size size increase(%)

1 76 9 88.15 196 100 -48
2 669 569 14.95 173 124 -28
3 707 410 42.00 237 258 8
4 603 234 61.19 262 367 40
5 658 552 16.03 145 161 11
6 220 170 22.72 86 124 44
7 869 534 38.55 302 782 158
8 412 371 09.95 204 351 72
9 1007 919 08.73 106 130 22
10 24 17 29.16 87 126 44
11 135 61 54.81 164 288 75

88.15%. On average, we observed application speedup of
35.1%. These speedup calculations are based on the ratio
of the time to execute the optimized code segment to the
time to execute the original code segment. On average
35.1% increase in code size was measured.

B. ARM

The results of experiments for ARM, a popular embed-
ded processor, are summarized in Table V using Sim-
pleScalar/ARM [4] toolset. In Table V, Toriginal and
Tnew columns show the execution time for the selected
code segment before and after the proposed transfor-
mation, as reported by the cycle-accurate simulator of
SimpleScalar/ARM toolset (sim-outorder). Speedup(%)
shows the execution time improvement in each case. The
two columns Power original and Power transformed show
the result of power consumption before and after transfor-
mation as reported by SimpleScalar/ARM power model-
ing tool (Sim-Panalyzer) [14]. The Power reduction col-
umn shows the percentage of power consumption reduc-
tion. On average we saw 36.3% speedup for running the
code segments on ARM CPU and 36.4% reduction on
power consumption.

TABLE V Result of Experiments for ARM

Code Torig. Tnew Speedup Power Power Power
seg. (#cycles) (#cycles) (%) orig. trans. reduc.

(×103) (×103) (×103) (×103) (%)

1 8497 572 93 34008 2193 93
2 7876 7757 01 31982 32263 -08
3 966593 382278 60 3221814 1295703 59
4 2490140 188417 92 8062563 595235 92
5 76039 50601 33 274522 204053 25
6 8478 7229 14 30727 24701 19
7 39874 35194 11 124536 117814 05
8 496679 327590 34 2199263 1349631 38
9 12056 11559 4.1 46855 43813 06
10 8574 7230 15 33188 25463 23
11 617702 347367 43 3004423 1527731 49

VI. Conclusion

We have presented the short-circuit code transforma-
tion technique, intended for embedded compilers. The
transformation technique optimizes conditional blocks in
high-level programs. Specifically, the transformation takes
advantage of the fact that the Boolean value of the con-
ditional expression, determining the true/false paths, can
be statically analyzed to determine cases when one or the
other of the true/false paths are guaranteed to execute.
In such cases, code is generated to bypass the evaluation
of the conditional expression. When the bypass code is
faster to evaluate than the conditional expression, a net
performance gain is obtained. We are currently consid-
ering applying a similar technique to loop optimization.

Specifically, we recognize that the condition that is eval-
uated within the loop control structure can be analyzed,
similar to the work shown here, in order to generate a
more optimal looping mechanism.
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