
A Software Architecture for Accessing Data in
Sensor Networks

Arijit Ghosh and Tony Givargis
Center for Embedded Computing Systems

School of Information and Computer Science
University of California

Irvine, CA 92697
Email: {Arijit.Ghosh,givargis}@uci.edu

Abstract—In this paper, we present a software architecture
for accessing data in sensor networks. Designing a generic data
access system for sensor networks is difficult. This is because the
underlying physical architecture of sensor networks cannot be
generalized which in turn affects the efficiency of the protocol.
Further, applications have unique and often different data re-
quirements. Thus the data service layer should be configurable
to satisfy the needs of the application. Recognizing this, we focus
on defining a software architecture that specifies the interface
but leaves out the implementation. Any protocol can be used to
realize this as long as it provides the services that matches the
specifications. This is conceptually similar to template based pro-
gramming where presentation is separated from implementation.
We provide the details of our architecture and evaluate both its
expressiveness to the application programmer and flexibility of
implementation through a few example scenarios.

I. I NTRODUCTION

Accessing data is at the heart of sensor network systems.
Applications specify what is required and underlying systems
figure out a mechanism to serve the request most efficiently.
This is typical of most computing systems. However, the fact
that sensor nodes potentially generate huge amounts of data
in the form of infinite streams coupled with their inherent
resource-impoverishness adds a degree of difficulty to data
access in sensornets. Typically there has been two approaches
to this problem. The first is the more cumbersome method
of writing programs in low-level embedded languages while
explicitly addressing issues related to wireless communication,
resource management and asynchronous event processing.
While this might result in more efficient systems, it makes
them non-portable and hence the program has to be rewritten
for a different sensornet. The second more intuitive, and hence
more popular approach, is the declarative paradigm where a
user specifies what is required leaving it to the system to
decide how to deliver it. Clearly this is very portable in addi-
tion to making it extremely easy for aplication programmers.
But it makes the task of system programmers exceedingly
difficult. This is because sensornet applications have differ-
ent requirements for data quality, for example accuracy and
latency. What is missing is a moretranslucentarchitecture
where an application programmer specifies what is required
along with some additional attributes. The system designer
provides the implementation but uses the attributes as hints

for optimizing system resources. To address this, we present a
Data Access layer in SEnsor Networks, DASEN (pronounced
like the word “dozen”). DASEN is a software architecture
that consists of a set of specifications that represent the
data subsystem in terms of services. A uniform interface
makes applications portable across a wide range of sensornet
platforms. The implementation isnot part of the specification
and is provided by the system designers. The specification
allows applications to specify data quality attributes which
are used by system designers to provide the most efficient
implementation depending upon the platform, the resources
and the usage pattern in case of multiple applications. Thus
DASEN in a wired camera sensor network with multiple
applications, for example, can be implemented very differently
from a wireless RFID network with a single user. This is
very similar to the Standard Template Library in the C++
programming language. Our design goal is to provide a STL-
like specification for the DASEN.

The paper is organized as follows. In Section II, we discuss
our design goals. In Section III, we present our software
architecture. Section IV presents an example of how the data
access layer might be used by an application. Section V
discusses a couple of possible implementation of the specifi-
cation, highlighting the fact that implementation is completely
decoupled from the presentation and can be chosen based on
the underlying system. We present related work in Section VI
and conclude with future directions in Section VII.

II. DASEN: SOFTWARE ARCHITECTURESPECIFICATION

DASEN provides a stream-centric view of the system. Just
as a filesystem is a collection of files, DASEN is a collection
of streams. Each stream is identified by a unique name and has
several attributes. The attributes include geographic location,
the type of data in the stream and a timestamp for each data
item. The data type can be primitive, for exampleint and
float , or user-defined complex types. The system provides
a type registration facility for this purpose. Data items need
not be generated at a fixed rate. By default, streams are non-
persistent and read-only.

In order to use a stream, a user requests aview of a
stream from DASEN. A view is like a container of data
items from a stream. It is a snapshot, containing a finite

number of elements, and is the mapping between the infinite
nature of the stream and the finite nature of the application.
A view can be composed from multiple streams. The user
specifies how a composite view is generated by defining a
generate function. This particular aspect makes DASEN
extremely powerful by allowing complex types being defined
by the user. A view can have qualities attached to it. These
need to be specified by the user. Finally, if a user specifies the
lifetime of a view to be infinite and registers the view with the
system, then the viewbecomesa stream that is available for
use by other applications. This promotes reuse, a key property
which allows evolution of existing systems and creation of
newer systems.

A view definition contains at least the following:

• Generate function:This is the composition function spec-
ified by the user. It identifies the source streams and
instructs DASEN on how to generate data items of the
view by combining the individual data samples from
the component streams. The source can be one or more
streams that are currently available in the system. A
naming and directory service of DASEN provides the user
with the details of all currently available streams.

• Data attributes: The data items in a view have some
attributes. Since this is a user defined type with user-
defined qualities, the system needs to know the attributes
for making decisions related to routing, scheduling etc.
The only required attribute is the timestamp. Optional
attributes include the accuracy of the data, timeliness (for
example in real-time systems), and tolerance to loss.

• View properties:Each view has properties whose spec-
ification is mandatory. This is required for life cycle
management of the views to optimize resource usage.
This is necessary because DASEN is a generic specifi-
cation for many different kinds of underlying systems.
Default behavior can be assumed where the user doesn’t
specify the properties. The essential properties are the
persistence span, the location where the view has to be
made available and the mobility specification of the view.
The persistence span is the time window with respect
to the current time for which data in the view will be
available.

• Accessor methods:DASEN provides data access func-
tion in terms of accessor methods. Data items in the
view is accessible by the following calls:getNext() ,
getAt(time t) , getAll() and getRange(time
start, time end) . The decision to make the call
blocking or not depends on the underlying system.

• Error handling: The user needs to specify how DASEN
should behave when the system encounters an error in
view handling. By default, the system ignores the error.

As can be seen, DASEN allows the user to define a
container whose data is composed from available streams in
an application specific way. The user can specify where the
data is to be made available, optionally with certain accuracy
and timeliness properties. The underlying system decides the

best way of providing the requested services.

III. I MPLEMENTING DASEN

As mentioned above, implementation is not part of the
specification. In this section, we provide a small example of
how different implementations can provide the same set of
services and the one chosen will depend upon other factors
like the underlying platform.

Let us consider a concurrent multi-user system, for example
a camera network in an international airport. The sensornet
uses wired networking, and is made up of resource-rich nodes
similar to Intel iMote running embedded Linux. LetM views
be requested where each view is composed of one or more
streams. All the views are static. Considering the fact that
we are dealing with video data, there are soft real-time
requirements on the timeliness and accuracy of the data. As
such, we use TCP/IP as the underlying networking protocol.
We assume the existence of a stream lookup service. The
problem can now be formulated as below:

Given N streams andM⊂N views, where each view is
composed ofS streams (1 ≤ S ≤ N), find a data distribution
plan that minimizes the latency and jitter of each view.

We assume that all streams generate data at a fixed rate.
For simplicity, we assume that the generating function is
associative. We refer to nodes that produce the streams as
producers and the nodes that request the view as consumers.

IP Multicast: An efficient way to solve this problem is to
use multicasting. A shortest path tree rooted at each of the
producers with the consumers as the leaves will ensure the
fastest delivery time. Let us take the example of a network
with 9 nodes (Figure 1). Nodes 1, 2 and 8 are the producers.
Nodes 5 and 9 are the consumers and each request all the
three producers. Node 8 will generate 2 packets which will
follow the paths 8-7-9 and 8-4-5. Nodes 1 and 2 will generate
a single packet which will traverse through node 3 and reach
4. At 4, 2 copies are generated. One flows along 4-5 while
the other flows along 4-6-7-9. Nodes 5 and 9 can generate the
data elements in their view by combining the data from the
producers.

MergeCast:While the above approach is very efficient, we
can improve it further by introducing in-network functionality.
Observe that the link 3-4 transmits data from 1 and 2 which are
eventually merged. If the merging function could be performed
at 3 instead of at the consumers, then we could reduce the
traffic. We call this technique MergeCast. As before, producers
still send data through multicasting. However, intermediate
nodes now merge data opportunistically to reduce traffic.
In our example, 3 will merge data from 1 and 2 before
sending it to 4. Node 4 will merge this data with that from 8
before sending it to 5. In addition to merging data, MergeCast
also allows multicasting of merged data where possible. For
example, merged data from 1 and 2 can be multicast to 5 and
9 along the shortest path tree rooted at 3.

A. Comparison:

To compare the two approaches, we evaluated the protocols
using a packet-level simulator written in C++. We generated

 1
 2

 3

 4
 5

 6

 7

 8

 9

Fig. 1. Example Graph

IP Multicast
MergeCast

 0
 5

 10
 15

 20
 25

 30
Producers 0

 5
 10

 15
 20

 25
 30

Consumers

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

Time(s)

Fig. 2. Average Startup Delay

IP Multicast
MergeCast

 0
 5

 10
 15

 20
 25

 30
Producers 0

 5
 10

 15
 20

 25
 30

Consumers

 0

 50

 100

 150

 200

 250

Time(s)

Fig. 3. Average Latency

a random graph of 200 nodes using Georgia Tech’s GT-ITM
topology generator [11]. We randomly chose from one upto

IP Multicast
MergeCast

 0
 5

 10
 15

 20
 25

 30
Producers 0

 5
 10

 15
 20

 25
 30

Consumers

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Time(s)

Fig. 4. Average Jitter

thirty producers. For each producer, we varied the number
of clients from one to thirty. Each client chose an arbitrary
subset of producers. In all simulations, 10,000 packets, each
of 1500 bytes, are generated at 500 Kbps. We assume the
existence of a network wide time synchronization protocol.
Our simulations are run on asparcv9 64-bit processor
operating at 1503 MHz, with 2048 MB of memory and running
SunOS. We measure the following:latency (Figure 3) is
the average difference between the time at which the data
item at the stream was produced and the time at which the
corresponding item in the view was generated.startup delay
(Figure 2) which is the latency of just the first item;jitter
(Figure 4) is the time difference between successive data items
in a view and the total messages(Figure 5) that traverse
the network. The common trend across all graphs is that IP
Multicast and MergeCast are comparable when the numbers
of both consumers and producers are few but diverges as the
numbers increase.

There are two key takeaways from the above experiments.
One is obviously the trend of MergeCast being more efficient
than IP Multicast across various configurations. As the number
of producers and consumers increase, the efficiency gain is
even more noticeable. The second observation is that the per-
formance of MergeCast shows a much gentler degradation than
that of IP Multicast. The MergeCast surfaces look practically
smooth in all the plots, although the same cannot be said about
multicast.

While MergeCast is definitely the more efficient of the two,
that still doesn’t make it an automatic choice. The reason being
that MergeCast requires changes to the networking protocol
to enable in-network processing. While considered an obvious
choice by researchers in wireless sensor networks deployed
in remote monitoring, it might prove to be an entry barrier
where sensor networks are planned to be deployed as an
extension to existing IP networks. In our example from the
graph above, if we imagine nodes 3 and 4 to be part of the
Internet, then MergeCast cannot be deployed, at least not at

IP Multicast
MergeCast

 0
 5

 10
 15

 20
 25

 30
Producers 0

 5
 10

 15
 20

 25
 30

Consumers

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

Messages

Fig. 5. Total Messages

the network layer, and IP Multicast remains the most viable
implementation.

The objective of the above discussion is to emphasize the
fact that our software architecture provides the flexibility to
choose an implementation that suits the network. The phys-
ical properties and practical considerations would dictate the
choice of IP Multicast, or MergeCast, or some other protocol.
However, that does not affect the users view of the underlying
system and a system once composed can be reused in any kind
of sensornet.

IV. RELATED WORK

There has been a substantial amount of research in data
management systems in sensor networks. These can be broadly
divided into two categories: querying live data and querying
historical data. TinyDB[7], Cougar[8] and Directed Diffu-
sion[9] provide the feature to push down continuous queries
into the network such that data processing is performed close
to where the data is sensed. This provides a savings of energy,
since only the end results are communicated, and thereby
increases the life time of sensor networks. A related and
interesting technique is called Acquisitional Query processing.
In these systems, typically data models are maintained at the
base station. All queries are first answered using this model.
If error and confidence measures are violated, then the data is
intelligently gathered from only those nodes that will increase
the confidence value. BBQ[10] is a query system that is
acquisitional in nature. Historical query processing could be
performed by blasting all the data from all nodes to a base
station where they are stored and indexed. In contrast, a more
intelligent approach is to build a sensor database inside the
network. The StonesDB[1] project does this by exploiting the
increasing capacity of NAND flashes. It employs a two level
structure where the lower tier of sensor nodes that provides
the storage substrate and an upper tier of proxy nodes that
deal with query planning and optimizations.

A different approach to data management is to provide a
file system view. In [2], the authors present a file system

abstraction based on the Plan 9 design principles. In this,
multiple logical and application-specific views are maintained
through the filesystem namespace. In [3], the authors provide
a distributed data storage abstraction using geographic hash ta-
bles. GHT hashes keys into geographic coordinates and stores
a key-value pair at a sensor node closest to this coordinate.
Capsule[4] and MicroHash[5] offers a way of accesinf flash
filesystems. DALi[6] is a data abstraction layer that is inserted
between the application layer and the file system. It is a
two-tier data hierarchy where data is organized to optimize
communication cost for search and retrieval.

V. CONCLUSION

In this paper, we present a software architecture for ac-
cessing data in sensor networks. The architecture provides
a STL-like template for data access in sensor networks. It
provides a stream-centric view of the system. Programmers
generate application specific data types by defining views that
are composed of one or more streams. The system allows user
specification of quality of data and properties of the view.
Implementation details are hidden from the application thereby
promoting portability. Generated views can in turn be made
available to other systems which promotes reuse. As part of
our future work, we intend to explore the design space of
protocols and investigate the possibility of automatic protocol
selection.

REFERENCES

[1] Yanlei Diao, Deepak Ganesan , Gaurav Mathur and Prashant Shenoy,
Re-thinking Data Management for Storage-centric Sensor Networks,
Proceedings of the Third Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA, January 2007.

[2] S. Tilak, B. Pisupati, K. Chiu, et al. A File System Abstraction for Sense
and Respond Systems. In Workshop on End-to-End, Sense-and-Respond
Systems, Applications, and Services, 2005.

[3] S. Ratnasamy, B. Karp, S. Shenker, et al. Data-Centric Storage in
Sensornets with GHT, a Geographic Hash Table. In Mobile Networks
and Applications (MONET), Journal of Special Issues on Mobility of
Systems, Users, Data, and Computing: Special Issue on Algorithmic
Solutions for Wireless, Mobile, Ad Hoc and Sensor Networks, 2003.

[4] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Capsule: An
Energy-Optimized Object Storage System for Memory-Constrained Sen-
sor Devices. In Proc. of the ACM Conf. on Embedded Networked Sensor
Systems (SenSys), Nov. 2006.

[5] S. Lin, D. Zeinalipour-Yazti, V. Kalogeraki, et al. Efficient Indexing Data
Structures for Flash-Based Sensor Devices. In ACM Transactions on
Storage, 2006.

[6] C. Sadler and M. Martonosi, DALi: A Communication-Centric Data
Abstraction Layer for Energy-Constrained Devices in Mobile Sensor
Networks, Proceedings of the ACM Conference on Mobile Systems,
Applications, and Services (MobiSys) 2007, June 2007.

[7] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tinydb: An
acqusitional query processing system for sensor networks. ACM TODS,
2005.

[8] Y. Yao and J. E. Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks. In SIGMOD Record, Vol 31 Number 3,
Sept 2002.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
ACM/IEEE Mobicom, pages 5667, Boston, MA. Aug, 2000.

[10] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[11] www.cc.gatech.edu/projects/gtitm/

