

Timing is Everything – Embedded Systems Demand Early
Teaching of Structured Time-Oriented Programming

Frank Vahid
Department of Computer Science and Engineering

University of California, Riverside, USA
Also with the Center for Embedded Computer Systems,

UC Irvine
vahid@cs.ucr.edu

Tony Givargis
Center for Embedded Computer Systems

University of California, Irvine, USA
givargis@uci.edu

ABSTRACT
Computing was originally dominated by desktop and hence data-
oriented systems. However, embedded and hence time-oriented
systems, which must measure input events or generate output
events of specified time durations, or must execute at regular
time intervals, are increasingly commonplace. Blinking a light
on and off for 1 second represents a “Hello World” example of a
time-oriented system. Time-oriented programming differs
significantly from the more common data-oriented programming,
and developing correct maintainable time-oriented programs is
challenging. The current situation of embedded courses being
senior-level courses hampers effective teaching of time-oriented
programming, as early-learned programming habits can be hard
to break. Early freshmen or sophomore-level introduction of
time-oriented programming, involving the right balance between
abstractions and resource awareness, may provide a better
foundation. A clean microcontroller with a timer, coupled with
the synchronous state machine computation model, can provide
such a balance.

1. INTRODUCTION

The Rise of Embedded Systems
Embedded systems include computing systems that interact
extensively with physical real-world devices. Examples are
consumer electronics (cameras, cell phones, portable games),
automotive electronics (cruise control, navigation),
communications equipment (base stations, network routers),
factory automation equipment (robotics, sensors, inventory
control systems), office automation equipment (scanners,
copiers, printers), medical devices (pacemakers, ventilators,
ultrasound machines), home automation (security systems,
temperature control, smart appliances), and much more. The
decreasing cost and size and the increasing performance of
computing chips, following Moore’s Law, have led to a dramatic
proliferation of embedded systems in recent decades, as
indicated by the tremendous growth in numbers of
microprocessors worldwide shown in Figure 1. Novel embedded
systems applications are introduced at a rapid rate, including
items like smart ingestible pills, household robots, and bodily-
worn health monitoring networks. Of the approximately 150,000
U.S. patents granted per year, roughly 10,000-20,000 are
embedded systems related [14].

Current Courses: Details, Details, Details
The teaching of embedded system programming, however, has
progressed only moderately in the past two decades, and lacks a
solid discipline. Many courses from the 1980s were oriented
around an embedded processor chip known as a microcontroller,

which has a small low-cost microprocessor coupled with key
embedded processing features including program-accessible
input/output pins, timers, serial communication devices
(UARTs), analog-digital converters, and other peripherals. These
small resource-constrained devices required detailed assembly
programming and electronics knowledge to set up and use the
microprocessor chip and its various peripherals. Many such
courses have since replaced assembly programming by C
programming and use some libraries to elevate the programmer’s
focus, and many have adopted the “embedded systems” name.
However, most such courses continue to emphasize
microcontroller-specific programming and electronics details
necessary to get a basic embedded system working, with little
attention paid to higher-level embedded system design concepts.
This is akin to driver education emphasizing how to add gasoline
to a car, check the tires, adjust the mirrors, start the car, and go
forward and stop, rather than emphasizing higher-level concepts
like how to maintain defensive distances, approach intersections,
or plan routes.

Instructors are not to blame for the low-level emphasis.
Setting up and running embedded systems courses is hard.
Unlike desktop computing courses in which fairly standard and
stable platforms and tools exist, embedded systems courses must
deal with a rather chaotic technical landscape. Dozens of widely-
used microcontroller families exist, including 8-bit devices like
the Intel 8051, Motorola 68HC05, 68HC08, 68HC11, Microchip
PIC, Atmel AVR, Zilog Z80, and much more. For each family,
dozens and sometimes hundreds of variations exist (different
numbers of pins, size of on-chip RAM, support for external
memory, etc.), produced by tens of different companies. 16-bit
and 32-bit devices are also available and have similar variety.
For a chosen device, a physical programming device (which
downloads machine code into the physical chip) must be found.
Assemblers and cross-compilers must be found that target the
particular device. Development boards must be made or
purchased that support the device, such that the device can
interface with buttons, switches, LEDs, displays, and other

Figure 1: Growth in number of microprocessors worldwide
in past decade due to growth in embedded systems market.

0

5

10

15

1980 1990 2000

Year

Nu
m

be
r (

in
 b

ill
io

ns
) World population

PCs

Microprocessors

components. Simulators or debuggers may be incorporated. Lab
assignments must then be developed around this multitude of
items, working around the various items’ bugs, sensitivities, or
other imperfections (of which many exist). Hardware parts suffer
damage (e.g., a microcontroller chip may burn out just by
inserting it backwards into a programmer device, or an ageing
programmer device may fail to consistently program chips
correctly), requiring continual troubleshooting and correction.
Furthermore, microcontrollers are tough devices to work with –
due to historical artifacts or mass-production needs, the devices
tend to require extensive configuration for a particular purpose.
Due to each device or tool having a smaller audience than a PC
or Windows-based C compiler, documentation is usually scarce
(and is sometimes wrong), and simulation and debug tools are
scant and often with bugs too. New chips, platforms, operating
systems, compilers, debuggers, and even companies providing
such items, come and go every few years.

Given the challenging nature of building working embedded
systems, instructors often focus primarily on teaching the student
the details of how to use the myriad software and hardware tools,
to configure and use the microcontroller and each of its key
peripherals, to understand how interrupt service routines interact
with a main program, and other details necessary to build
functioning systems. Figure 2 gives some idea of the challenge,
showing the initialization code required to set up a particular
microcontroller for a particular usage; note the many distinct
items that must be configured (and one small mistake may cause
the system to fail). After that teaching process, which may take
months, a course may have just enough time left for a student to
build an interesting project, with little or no time for teaching a
discipline of embedded systems programming. If a second
embedded systems course does exist, the course is typically a

project course rather than a course that teaches a disciplined
embedded programming approach.

As evidence of the low-level focus on modern embedded
systems courses, consider the top-selling books in the embedded
systems textbook market of 16,000 books per year, as reported
by John Wiley and Sons: (1) The HCS12/9S12, An Introduction
to Hardware and Software Interfacing, Huang, Delmar Cengage,
2005 – 12%; (2) The 68HC12 Microcontroller: Theory and
Application (2nd edition of earlier book: Embedded Systems
Design and Applications with the 68HC12 and HCS12), Barret
and Pack, Prentice hall, 2004 – 9%; (3) Software and Hardware
Engineering: Motorola M68HC12, Cady and Sibigtroth, Oxford
University Press – 7%.; (4) Embedded Microcomputer Systems:
Real Time Interfacing, Valvano, Int. Thomson Publishers, 2006
– 7%; (5) Microcomputer Engineering, Miller, Prentice Hall,
2003 – 6%; (6) Computers as Components: Principles of
Embedded Computing System Design, Wolf, Morgan Kaufman,
2005 – 6%; (7) Embedded System Design: A Unified
Hardware/Software Introduction, Vahid and Givargis, John
Wiley and Sons, 2001 – 4%. Books 1-5 all focus on the details of
particular microcontrollers. Some do address higher-level
concepts, but typically do so late and rather lightly. Books 6 and
7 (the latter authored by ourselves) sought to introduce a higher-
level discipline to embedded system design (in contrast to
emphasizing programming).

Because learning the myriad details of microcontrollers,
interfacing, troubleshooting, etc., require rather sophisticated
students, embedded systems courses are typically taught at the
senior level, as illustrated in Figure 3. All of the above books are
typically used in senior-level courses, and items 6 and 7
sometimes in a second embedded systems course or even
graduate course. We performed a Google search for “embedded
systems” in .edu sites; the first 20 courses we found were all
upper-division or graduate level, with typical names being “Real
Time Embedded Systems” or “Introduction to Microcontrollers.”

Thus, a student of a modern embedded systems course may
develop a rather myopic view of embedded programming,
viewing it as a collection of low-level details and methods
necessary to configure and use a microcontroller. “High-level”

Figure 2: Sample C initialization code for a particular
microcontroller – extensive knowledge of details is necessary to

properly configure a microcontroller for a particular use.
// ------------------------------
// configure output ports
// ------------------------------
ADCON0 = 0x00; // disable A/D converter
CM1CON0 = 0x00;
CM2CON0 = 0x00;//disable comparators */
ANSELH = 0x00;
ANSEL = 0x00; // configure pins as digital channels
TRISA = 0x08; // all bits output except RA3
TRISB = 0xF0; // Port B inputs
RABPU = 1;
WPUB4 = 1; // enable weak pull ups on RB4
 IOCB4 = 1; // enable interrupt on change for RB4
TRISC = 0x00; // PORTC all set to outputs
PORTA = 0x00;
PORTB = 0x00;
PORTC = 0x00; // initialize ports
// --------------------------------
// Timer0 setup
// --------------------------------
CLRWDT(); // turn off watch dog timer
OPTION = 0x07; // setup prescaler
TMR0 = PRELOAD; // preload timer
T0IE = 1; //enable timer0 interrupts
// ---------------------------------
// Setup button interrupts
// ---------------------------------
RABIE = 1; //Enable change on PORTB interrupts
GIE = 1; //global interupts enabled

Figure 3: Typical embedded system courses are senior-level,
emphasizing myriad details. Adding time-oriented programming

early in the training can provide a better foundation for such
courses.

Data-oriented
programming

Object-oriented
programming

Data
structures

Digital
systems

Compilers

Operating
systems

Embedded
systems Architecture

...

Lower division

Upper division
/ Graduate

Real-time
systems

Time-oriented
programming

may merely mean using C rather than assembly language. The
net result is that today’s professional embedded systems
programmers create code that is amazingly ad hoc, being
exceptionally difficult to maintain and often taking a long time to
develop. The lack of discipline may explain in part why the
majority of embedded systems project are completed late, on
average 4 months late for the typical 14 month project [10].
Various companies with whom we interact, including Cisco,
Broadcom, Western Digital, Pulmonetics (medical ventilators),
Qualcomm, Freescale, Microsoft, and others, have commonly
indicated that computing graduates, even those with computer
engineering degrees and/or with embedded systems course and
project backgrounds, lack the ability to program embedded
systems due to “unawareness of resources,” “no programming
discipline,” “inability to deal with time,” “a habit of hacking,” or
even “excessive focus on objects or libraries,” requiring “long
periods of training” before such graduates can write good
embedded code.

2. STRUCTURED TIME-ORIENTED
PROGRAMMING

Old Habits are Hard to Break
Given the increasing importance and complexity of modern
embedded systems, a more disciplined view of embedded
programming is becoming essential (our definition of
“disciplined” will be explained subsequently). We have been
experimenting with the introduction of disciplined embedded
programming methods for many years, and have concluded that
an approach that attempts to introduce disciplined methods after
an initial low-level microcontroller-details introduction, which is
better of course than no introduction of disciplined methods at
all, nevertheless is a sub-optimal approach. The reason is
because students have spent several years learning data-oriented
programming, leading to a perspective and a set of habits that
can be hard to change, as illustrated in Figure 4. Instead, we
claim that an approach that first introduces disciplined embedded
programming methods and later teaches necessary low-level

microcontroller details will lead to embedded system designers
developing better programs, by creating an improved
foundational perspective within the student.

After over a decade of teaching embedded systems in various
ways and interacting with dozens of embedded systems teachers
and courses worldwide, the authors view structured time-
oriented programming as one of the key features of a disciplined
embedded programming approach. A characteristic of embedded
systems, which distinguishes them from traditional desktop
(including server) computing systems, is the orientation around
the notion of time. For example, an embedded system equivalent
of a “Hello World” program might repeatedly blink an LED
(light-emitting diode) on for 1 second and then off for 1 second,
requiring an explicit notion of real time (“1 second”). In contrast,
desktop computing has focused on data-oriented programming
emphasizing data transformation—reading input data,
transforming the data, and outputting new data, with no notion of
real time—even since the design of early computers, which was
driven by data-oriented applications like processing census data
and computing bomb trajectories. Whereas time is a behavioral
consequence of desktop programs, time is part of the explicit
functionality of embedded systems. Explicit functionality of
embedded systems also involves the related notion of events –
external actions that can occur at any time and to which the
system responds. For example, an alternative “Hello World”
equivalent might turn on an LED for 1 second every time that a
button is pressed, the button press forming an input event. Some
desktop programming does incorporate time and event concepts
(e.g., blinking a cursor in a graphical display, or responding to
mouse click events), but to a lesser extent than embedded
programming. For simplicity, rather than always referring to
both time and events, we will in this paper take the liberty of
using the term time to refer to both concepts, although we realize
there are distinctions between the two concepts.

While some time-oriented programming courses exist today,
they tend to build on advanced concepts of real-time operating
systems (RTOSes) or of parallel programming languages, using
extensive abstraction to hide many lower-level details. For our
purposes, the appropriate balance must be found between
abstracting away low-level details to enable focus on higher-
level issues, while also exposing enough low-level details to
ensure that programmers have resource awareness and can build
systems using today’s embedded microprocessors, which may or
may not be running RTOSes. Indeed, our interactions with
companies that produce embedded systems have revealed an
intense desire from those companies for more computing
professionals that have a much stronger understanding of
underlying computing resources; embedded programmers who
only know abstractions and never learned the details of
underlying resources may produce grossly inefficient code and
be unable to hammer out the details often necessary to get real
systems completely working.

Virtual Microcontroller
We propose the use of a virtual microcontroller as a step towards
achieving the appropriate balance between abstraction and
resource awareness. Fundamental resources in time-oriented
embedded programming of a microcontroller include a
microprocessor, a timer, and an interrupt service routine. A main
program can initialize and activate a timer, which in turn
automatically calls at specified intervals an interrupt service

Figure 4: Current curricula teach years of data-oriented
programming and then microcontroller details – leading to

“undisciplined” embedded programmers having a hard time
overcoming the wall of data-oriented programming habits. First

teaching time-oriented abstractions establishes a theoretical
foundation that may lead to better embedded programmers.

Resources

A
bs

tra
ct

io
ns

Undisciplined Useless

Theoretical Expert

Current approach – Old
habits hard to break

Data-oriented programming

Microcontroller
details

Time-oriented programming

routine (ISR), pausing the main program’s execution during such
calls. Creating time-oriented programs using just those basic
resources, without the aid of an RTOS, represents a fundamental
embedded programming skill, akin to a surgeon learning to
perform surgery with a scalpel but without the aid of modern
robotic surgical tools. The programmer (or surgeon) develops an
intuitive understanding, which not only may help when using the
more advanced tools, but also enables competence even when
the more advanced tools are unavailable.

The virtual microcontroller therefore consists of a simple
microprocessor and a timer (along with required program
memory and general-purpose I/O), as illustrated in Figure 5(b).
All items are present in very straightforward form. For example,
the I/O consists of eight inputs A0-A7 and eight outputs B0-B7
accessible by name in C or assembly (microcontrollers often
have I/O that can be configured for either input, output, or both,
or can serve as memory address/data lines instead, and thus
require configuration). The timer is set in C by calling a
predefined function called TimerSet(T) where T specifies the
interrupt interval in milliseconds (most microcontrollers instead
require extensive configuration of various registers, such as
mode registers, frequency registers, prescaler registers, and
more, to obtain a particular interrupt rate). This simplified, or
“clean,” computing platform is akin to the simplified platform
commonly used in data-oriented programming courses, shown in
Figure 4(a). The clean platforms provide a sufficient abstraction
on which to program, introducing just enough resource concepts
for solid understanding, but without overexposing the student to
resource details.

Synchronous State Machines – SynchSMs
While a virtual microcontroller provides a clean platform for
developing and executing time-oriented code, the C language
(which is used in a majority of embedded systems [10], though
our discussion applies equally to C++, Java, or assembly
language) is not particularly well-suited for time-oriented
programming. Left alone to figure out how to implement timed
behavior using a microcontroller with a timer and ISR, students
develop an “impressive” variety of methods, with some putting
most code in the main function and others putting most code in
the ISR, some using sequenced code and others used heavily
iterated code and global status variables, and so on.

Instead, we propose the use of synchronous state machines.
Good computation models for data-oriented desktop processing
include sequential programming or object-oriented programming
models. For embedded processing, however, other computation
models are common. In particular, state machines excel at
modeling basic sequential control behavior, as well as more
complex behavior. State machines (SMs) allow not only
straightforward description of processing of events, but also
provide an elegant basis for specifying timing. For programming
purposes, a state machine can utilize declared variables and
possess arithmetic operations and conditions, as in the FSMD
model of [15]. In fact, each state can have a sequence of
associated actions described using sequential programming
constructs such as assignment statements, if-then-else statements,
loops with constant bounds, and even (non-recursive)
subroutines having such statements as described above. Such
SMs are commonplace in hardware descriptions targeting
synthesis to circuits.

State machines provide a solid basis for a disciplined
approach to time-oriented embedded system programming. The
authors have developed and utilized such approaches in their
courses during the past several years. A simple approach
involves using a synchronous SM, or synchSM, whereby all
states last for a defined time interval known as a tick rate or
period, as in Figure 6. Thus, if the synchSM’s period is 1 second,
then the shown synchSM will set output Led_o to 1 for 1 second,
then to 0 for 1 second, then to 1 for 1 second, and so on, causing

Figure 5: “Clean” computing platforms: (a) A simplified view of a computer provides the foundation for most desktop-programming
courses, (b) likewise, a simplified view of a microcontroller can provide a good foundation for a time-oriented embedded programming

course.

Figure 6: SynchSM for the Blinking LED (time-oriented “Hello
World” equivalent) example.

B0

Microcontroller

A7
A6
A5
A4
A3
A2
A1

Microprocessor
TmrInt

Timer

Clock

Microprocessor

Program
Memory

B7
B6
B5
B4
B3
B2
B1

A0

Control
unit

Memory

Arithmetic
-logic unit

CPU

In
pu

ts
 O

utputs

(a) (b)

On Off

Led_o = 1; Led_o = 0;

System: BlinkingLed
 Period: 1 second;
 Outputs: Led_o; Led_o

the LED to blink as desired.
SynchSMs mesh well with the basic microcontroller time

elements. A programmer can set the timer’s interrupt rate to the
desired tick rate, and program the timer’s ISR to raise a global
flag. The programmer’s main code, implementing the synchSM,
can detect the raised flag (and reset it) and then proceed to the
next state.

Students may be well served by being encouraged to work
with the synchSM abstraction extensively on a wide variety of
examples, to develop a solid perspective of describing timed
behavior using a timed computation model.

Implementing SynchSMs in C – Models Matter, Not
Languages
Of course, programs are typically written using C code (or
similar), bringing us to another important concept in structured
time-oriented programming. The concept is that of
conceptualizing system behavior using a computation model
(e.g., synchSMs), and then implementing that model in C using a
straightforward template-based approach. A straightforward
template approach is shown in Figure 7, wherein the main
program waits for a tick, and then processes the state machine’s
transitions and state actions using switch statements. In contrast,
today every programmer combines main code, timers, and timer
ISRs in unique and creative ways. While creativity in some
endeavors is a wonderful thing, creativity in programming makes
programs harder to understand, debug, and maintain. A synchSM
approach represents a highly-structured approach, akin to
structured programming guidelines for data-oriented
programming [12] but instead focused on time.

An additional advantage of the state machine approach is
that multiple concurrent state machines can be handled via
straightforward round-robin processing. Straightforward counter
methods can handle synchSMs with different periods. Priority
schemes among the synchSMs could be introduced too, leading
towards the basic idea of RTOSes.

A similar approach can be used for other computation
models common in embedded systems. Other common
computation models in embedded systems include dataflow
models, such as synchronous dataflow. With care, different
models can even be implemented in a single C program on a
single microcontroller.

3. TOOLS
Microcontroller Simulator
Appropriate tools are needed to support the proposed approach to
teaching structured time-oriented programming. We are
developing a tool, the Riverside-Irvine Microcontroller
Simulator (RIMS), to support programming of the proposed
virtual microcontroller, seen in Figure 8.

The tool graphically depicts a microcontroller with 8 input
and 8 output pins. Concreteness is emphasized to ease the
comprehension task for young students. Each input pin is
connected to a switch that the user can move to the “0” or “1”
position, and each output pin to an LED that illuminates when its
pin is 1. The microcontroller’s C program is shown inside the
microcontroller. The user is shown a 3-step process: (1) Load a
C program (or write one directly in the C window and save it),
(2) Compile the program, (3) Run the program. The compiler is

built into the tool (using the open-source LCC compiler [28])
and the generated assembly code is then executed by an
instruction set simulator, which we wrote and built into the tool.
The running program may be “break’ed” at any time, executed
step-by-step, and have any symbol values viewed, as with a
standard debugger. All events on input and output pins, in
addition to being graphically shown, are printed to an event text
display also.

To help teach the concept of the timer and timer ISR, a
“status” bar shows the current value of the timer. Thus, as a
program executes, the status bar fills, the ISR is called, and the
status bar starts over. The student thus visually sees the “ticking”
of the microcontroller’s timer and the associated ISR call.

To further support the teaching of timing concepts, the
textual event printout can automatically be converted to timing
diagrams. Such conversion is accomplished by the RIMS tool
generating standard VCD files, which can then be viewed using
any of several VCD to timing diagram viewing tools, such as the
freely-available Wave tool [44]. All of the above functionality
(excluding the VCD viewer) exists as a single Windows
executable, making installation and operation easy.

Figure 7: Template approach for implementing a synchSM in C.

#define Led_o B0

int BL_Clk=0;
void TimerISR()
{
 BL_Clk = 1;
}

void main(void)
{
 enum BL_StateType {BL_On, BL_Off}
 BL_State;
 B=0;//Init outputs
 TimerSet(1000); // 1 second
 TimerOn();

 BL_State = BL_On;
 while (1) {
 switch (BL_State) {// State actions
 case BL_On:
 Led_o = 1;
 break;
 case BL_Off:
 Led_o = 0;
 break;
 } // State actions

 while (!BL_Clk); BL_Clk = 0;

 switch (BL_State) { // Transitions
 case BL_On:
 BL_State = BL_Off;
 break;
 case BL_Off:
 BL_State = BL_On;
 break;
 } // Transitions
 } // while(1)
} // main

State machine builder
Because describing behavior as synchSMs is so central to our
proposed approach, we are also developing a graphical synchSM
capture tool – the Riverside-Irvine State machine Builder
(RISB), a screenshot of which is shown in Figure 9. The tool
allows a user to add states and transitions between states, to type
actions for states and to type conditions for transitions, and to
declare the state machine’s name, period, and any variables.
Although the user works with a graphical depiction of the state
machine, all graphical placement and routing of the state
machine is automatically handled by the open source GraphViz
tool [16] that we encapsulated within RISB, allowing the user to
focus on the state machine’s functionality and not details related
to the state machine’s graphical display. The tool can
automatically translate a state machine to C code. The C code
can then be executed on RIMC, with the current state being
automatically highlighted in RISB, to help students visualize the

execution of the state machine. Such automatic translation to C
emphasizes the fact that writing the C code is not a creative
endeavor, and instead should follow strict, automatable,
guidelines. As such, structured time-oriented programs result.

Physical prototypes
Although the above described framework allows for learning the
structured time-oriented embedded programming approach,
creating working physical implementations can help crystallize
embedded concepts. Thus, mapping the virtual microcontroller to
physical platforms may be desired by many instructors of
courses having lab components. We are therefore mapping the
virtual microcontroller to various physical platforms, and plan to
publish instructions for such mapping that instructors and their
teaching assistants can follow to create numerous instances for
their labs1. We have thus far mapped our virtual microcontroller
onto three physical platforms – an Atmel AVR microcontroller, a
Xilinx Spartan FPGA board, and a desktop PC using a USB
interface to an external breadboard for the general-purpose I/O
pins. Figure 10(a) shows a mapping onto the AVR
microcontroller using a breadboard approach. Students could add
input and output components, perhaps using a second board, to
interact with the I/O. Figure 10(b) shows the same mapping but
in a self-contained box where all inputs are connected to
switches and outputs to LEDs, allowing for standalone operation
of simple embedded programs having 8 input switches and 8
output LEDs – the same as the RIMS PC-based visual simulator.
Figure 10(c) shows mapping to an FPGA board (at the bottom of
the picture). For any of these implementations, additional display
functionality can be added using the VMC’s serial UART, which
can be connected through a PC’s serial port to output on a serial
terminal program, or connected through a custom serial-to-VGA
device (which we have designed) to output directly to a monitor.

To simplify the process of mapping programs to these
physical implementations, we have developed an approach
whereby a textual assembly file can be downloaded onto a USB
stick, and that USB stick then plugged into the physical
implementation for uploading to the VMC, as illustrated in
Figure 10(b). Such an approach makes clear to the student what
program is being executed, and enables easy migration of
different programs to a physical platform or from one platform to
another. We implemented the necessary USB read functionality
and the just-in-time assembler for this textual assembly USB file
approach, resulting in fully-functioning physical
implementations.

4. RELATED WORK
An earlier section described the main existing embedded systems
courses that are the target of the project. Several other items can
be considered related to this project also.

Another category of courses emphasizes real-time systems,
typically based on an RTOS. Jian [23] presents a survey of the
state of real-time systems education, showing that very few
universities offer courses in the topics. Schwarz [35] observes

1 Note: We do not plan to provide physical prototypes to other

universities, but rather descriptions of how to build them for a
few common physical platforms, which other universities can
use or adapt.

Figure 8: Screenshot of the virtual microcontroller simulation tool,
RIMS.

Figure 9: Screenshot of the state machine builder tool, RISB.

that undergraduate real-time course offerings vary and lack any
accepted standard of contents or discipline. The textbook by
Burns [8] presents real-time systems and the programming
languages that work well with them, used primarily at the senior
or graduate level. Kornecki [26] argues that universities do not
pay enough attention to practical software development in the
field of time-oriented reactive programming. ACM’s curriculum
guidelines make only short mention of the subject [1]. A number
of real time operating systems have been introduced to provide a
higher level of abstraction between the application software and
embedded hardware, including the open source eCos [13], and
VxVorks and RTLinux from WindRiver [45].

Much progress has been made in the past two decades on
capturing embedded system functionality. These include several
event-based languages. Esterel [6] is a synchronous
programming language for the development of complex reactive
systems. The notion of time is replaced with the notion of order,
called the multiform notion of time, which means only
simultaneity and presence of events are considered. Statecharts
[17][18] is a visual formalism for complex systems. Statecharts
extend traditional state diagram transition diagrams with notions
of hierarchy, concurrency, and communication. They also
include some timing mechanism (e.g., “timeout” events).
Numerous other languages can be viewed as supporting
event/time based descriptions, including VHDL [21], Verilog
[41], Rapide [32], LOTOS [7], CSP [19], Ada [39], and more.

Several approaches focus extensively on time. Kopetz [25]
presents the time-triggered architecture, which is a computing
infrastructure for the design and implementation of dependable
distributed embedded systems. Applications are decomposed into
autonomous clusters each with a fault-tolerant global time base.
The global time base simplifies communication and guarantees
timeliness of real-time applications. Commercial companies like
TTTech [40] stemmed from this work. Lamport [27] discusses
time-oriented programming in the context of events in a
distributed system and how to synchronize items. Ouimet
[33][34] introduces timed abstract state machines. ASMs consist
of a set of mutually exclusive rules each guarded by a condition
of variables. A rule whose condition at a given execution step

will update external and internal variables. Timed ASMs involve
timing extensions to ASMs, such as specifying the time duration
of a rule’s execution (which may be a range; a specific value in
the range will be randomly chosen during runtime).

Other related approaches emphasize models of computation.
The Polis framework [4] defines codesign finite state machines
(CFSMs) as a formal model for communicating FSMs to which a
system captured in a language like Esterel can be translated for
analysis and synthesis. Lee [31] presents a framework for
comparing models of computation, including Kahn process
networks, dataflow, sequential processes, concurrent sequential
processes with rendezvous, Petri nets, and discrete-event
systems. Other works [24][38] have focused on quantitatively
comparing various computation models, specifically targeting
parallel models. Jeukens [22] investigates how best to use
various computation models to design increasingly complex
systems. Andrews [3] investigates how best to leverage
computation models for hybrid CPU-FPGA platforms. Lee [29]
discusses various requirements of future embedded
programming, including time concepts.

Most of the above involve advanced concepts and thus not
ideal for introductory undergraduate courses. Increasing attention
is being paid to embedded systems education, through
workshops (e.g., the Workshop on Embedded Systems
Education, WESE, held since 2005), special issues of journals,
and numerous special sessions and papers appearing in
mainstream research venues. Numerous research projects attempt
to improve engineering education. Hodge [20] introduces the
concept of a Virtual Circuit Laboratory, a virtual environment
for a beginning electrical engineering course that mimics failure
modes in order to aid students in developing solid debugging
techniques. The environment not only provides a convenient test
environment, but also allows an instructor to concentrate more
on teaching. Butler [9] developed a web-based microprocessor
fundamental course, which includes a Fundamental Computer
that provides students in a first year engineering course a less
threatening introduction to microprocessors and how to program.

Other researchers have concentrated on developing or
evaluating computing architectures for beginning students or

Figure 10: Virtual microcontroller implementations: (a) on an AVR microcontroller breadboard, with input/output wires that can be
connected to other circuits, (b) in a black-box, with internal AVR-microcontroller-based circuitry exposed, and (c) on a Xilinx Spartan 3E

FPGA, which happens to also use a connection to provide additional output to a terminal. All three can execute the same virtual
microcontroller program identically.

(c) (b) (a)

non-engineers. Benjamin [5] describes the BlackFin architecture,
a hybrid microcontroller and digital signal processor. The
architecture provides a rich instruction set based on MIPS with
variable width data, and parallel processing support. Ricks [9]
evaluates the VME Architecture in the context of addressing the
need for better embedded system education. The Eblocks project
[11] concentrated on developing sensor blocks that people
without programming or electronics knowledge could connect to
build basic customized sensor-based embedded systems.

Much research has involved virtualization [30][36], with
several commercial products developed in response to the need
for portable virtual machines. VMware [43] and the open source
product Xen [46] concentrate on developing virtual machines
that allow the end-user to run multiple operating systems
concurrently. The Java Virtual Machine [37] allows the
programmer to write operating system independent code, and
tools like DOS Box and console emulators allow the user to run
legacy applications in modern operating systems.

5. CONCLUSIONS
Embedded systems have experienced massive growth in the past
two decades. Embedded system education has improved, but
exists largely as a late add-on to a traditional data-oriented
computing curriculum, leading to ad hoc modified data-oriented
programming methods rather than a disciplined method targeted
to the time-oriented nature of embedded systems. Early
introduction of a structured time-oriented programming approach
may help. Key features include a virtual microcontroller that
exposes just enough low-level resources along with higher-level
abstractions, a synchronous state machine (synchSM)
computation model for explicit time-oriented programming and a
clear method for capturing synchSMs in the prevailing C
language, a set of easy to use tools that support synchSM and C
capture, compilation, simulation, and debugging, and the ability
to readily develop physical prototypes of a programmed virtual
microcontroller. These items may catalyze adoption of early
teaching of time-oriented programming, which we hope to see
become part of a standard computing curriculum in the coming
decade.

6. ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation (CNS-0614957).

References
[1] Association for Computing Machinery. Computing Curricula

2005. http://www.acm.org/education/curricula-recommendations

[2] Alice Programming Environment, http://www.alice.org.

[3] ANDREWS, D., NIEHAUS, D., JIDIN, R., FINLEY, M., PECK, W.,
FRISBIE, M., ORTIZ, J., ED KOMP. AND ASHENDEN, P.
Programming Models for Hybrid FPGA-CPU Computational
Components: A Missing Link. IEEE Micro. On page(s): 42- 53,
Volume: 24, Issue: 4, July-Aug. 2004

[4] BELARIN, F., M. CHIODO, H. HSIEH, A. JURESKA, L. LAVAGNO,
C. PASSERONE, A. SANGIOVANNI-VINCENTELLI, E. SENTOVICH,
K. SUZUKI, AND B. TABBARA, Hardware-Software Co-Design of
Embedded System: The POLIS Approach Norwell, MA: Kluwer,
1997..

[5] BENJAMIN, M., KAELI, D., AND PLATCOW, R. Experiences with
the Blackfin Architecture in an Embedded Systems Lab.. WCAE
'06

[6] BERRY, G. AND GONTHIER, G. The ESTEREL Synchronous
Programming Language: design, semantics, implementation. Sci.
Comput. Program. 19, 2 (Nov. 1992), 87-152.

[7] BOLOGNESI, T. AND BRINKSMA, E. Introduction to the IS0
specification Language LOTOS.. Amsterdam: North-Holland,
1989, pp. 23-73.

[8] BURNS. A. AND WELLINGS, A. Real-Time systems and
Programming Languages. Third Edition. Pearson Education
Limited. 2001.

[9] BUTLER, J. AND BROCKMAN, J. Web-based Learning Tools on
Microprocessor Fundamentals for a First-Year Engineering
Course. 2003. Proceedings of the American Society for
Engineering Education.

[10] CMP. Embedded Systems Design State of Embedded Market
Survey, 2006, http://www.embedded.com/columns/survey.

[11] COTTRELL, S. AND F. VAHID. A Logic Enabling Configuration by
Non-Experts in Sensor Networks. Conference on Human Factors
in Computing. 2005

[12] DIJKSTRA, E. Notes on Structured Programming. T.H.-Report 70-
WSK-03, Second Edition, April 1970.

[13] Ecos. http://ecos.sourceware.org/

[14] FAST GmbH. Study of worldwide trends and R&D programmes
in embedded systems, 2005.
ftp://ftp.cordis.europa.eu/pub/ist/docs/embedded/final-study-
181105_en.pdf

[15] GAJSKI, D., DUTT, N., WU, A. AND LIN, S. High-Level
Synthesis: Introduction to Chip and System Design. Springer
1992.

[16] Graphviz – Graph Visualization Software,
http://www.graphviz.org.

[17] HAREL, D. 1987. Statecharts: A Visual Formalism for Complex
Systems. Sci. Comput. Program. 8, 3 (Jun. 1987), 231-274.JIAN,
K. Constructing a Solid Real-Time Operating Systems Course in
Computer Science Major. J. Comput. Small Coll. 22, 4 (Apr.
2007), 65-74

[18] HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI, A., POLITI, M.,
SHERMAN, R., AND SHTUL-TRAURING, A. 1988. Statemate: A
Working Environment for the Development of Complex Reactive
Systems.. International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos, CA, 396-406..

[19] HOARE, C.A.R. Communicating Sequential Processes. Comm. of
the ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.

[20] HODGE, H. HINTON, H.S, AND LIGHTNER, M. Virtual Circuit
Laboratory. ASEE. American Society for Engineering Education.
2000

[21] IEEE, INC., IEEE Standard VHDL Language Reference Manual,
IEEE Standard 1076-1987. Los Alamitos, Calif.: IEEE CS Press,
1987.

[22] JEUKENS, I. AND STRUM, M. On the Choice of Models of
Computation for Writing Executable Specifications of System
Level Designs. In Proceedings of the 13th Symposium on
integrated Circuits and Systems Design.2000.

[23] JIAN, K. 2007. Constructing A Solid Real-Time Operating
Systems Course in Computer Science Major. J. Comput. Small
Coll. 22, 4 (Apr. 2007), 65-74

[24] JUURLINK, B. H. AND WIJSHOFF, H. A. A Quantitative
Comparison of Parallel Computation Models. ACM Trans.
Comput. Syst. 16, 3 (Aug. 1998), 271-318

[25] KOPETZ, H. AND BAUER, G. The Time-Triggered Architecture.
Proceedings of the IEEE. On page(s): 112- 126, Volume: 91,
Issue: 1, Jan 2003

[26] KORNECKI, A. Real-Time System Course in Undergraduate
CS/CE Programs. IEEE Transactions on Education. Volume 40.
Number 4. November 1997.

[27] LAMPORT,L. Time, Clocks, and the Ordering of Events in a
Distributed System. Comm. ACM, July 1978, pp. 558-565.

[28] LCC, A RETARGETABLE COMPILER.
http://www.cs.princeton.edu/software/lcc/

[29] LEE, E.A. What's Ahead for Embedded Software? IEEE
Computer, vol. 33, no. 9, pp. 18-26, Sept. 2000.

[30] LEVIS, P. AND CULLER, D. 2002. Maté: a tiny virtual machine
for sensor networks. SIGOPS Oper. Syst. Rev. 36, 5 (Dec. 2002),
85-95.

[31] LEE, E.A AND SANGIOVANNI-VINCENTELLI, A. A Framework for
Comparing Models of Computation IEEE Trans. CAD Integrated
Circuits and Systems, Dec. 1998, pp. 1217-1229

[32] LUCKHAM, D. C. AND VERA, J. An Event-Based Architecture
Definition Language. IEEE Trans. Softw. Eng. 21, 9 (Sep. 1995),
717-734

[33] OUIMET, M. AND LUNDQVIST, K. Incorporating Time in the
Modeling of Hardware and Software Systems: Concepts,
Paradigms, and Paradoxes. In Proceedings of the international
Workshop on Modeling in Software Engineering (May 20 - 26,
2007). International Conference on Software Engineering.

[34] OUIMET, M. AND LUNDQVIST, K. The TASM Language and the
Hi-Five Framework: Specification, Validation, and Verification
of Embedded Real-Time Systems. APSEC 2007

[35] SCHWARZ J.J., SKUBICH J., MARANZANA M., AND AUBRY R.,
Graphical Programming and Real-Time Design Instruction, in
Real-Time Systems Education, IEEE Computer Society Press,
Los Alamitos, CA, 1996, pp. 20-25.

[36] SMITH, J. AND NAIR, R. VIRTUAL MACHINES: Versatile
Platforms for Systems and Processes. Morgan-Kaufman
Publishers. 2005.

[37] STARK, R., SCHMID, J, AND BORGER, E. Java and the Virtual
Machine- Definition, Verification, and Validation. 2001.

[38] SKILLICORN, D.B., AND TALIA, D. Models and Languages for
Parallel Computation. ACM Comput. Surv. 30, 2 (Jun. 1998),
123-169

[39] TAFT S.. Ada 2005 Reference Manual, LNCS 4348, Springer-
Verlag. 2006

[40] TIME-TRIGGERED TECHNOLOGY. http://www.tttech.com/

[41] THOMAS, D.E AND MOORBY, P.R., The Verilog Hardware
Description Language. Kluwer Academic Publishers, 1991

[42] VAHID, F AND GIVARGIS, T. Embedded System Design: A
Unified Hardware/Software Introduction. John Wiley and Sons,
2001.

[43] VMWARE. http://www.vmware.com/

[44] WAVE VCD Viewer, http://www.iss-us.com/wavevcd/, 2008.

[45] WINDRIVER Systems. http://www.windriver.com/

[46] XEN. http://www.xen.org

