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ABSTRACT 
Computing was originally dominated by desktop and hence data-
oriented systems. However, embedded and hence time-oriented 
systems, which must measure input events or generate output 
events of specified time durations, or must execute at regular 
time intervals, are increasingly commonplace. Blinking a light 
on and off for 1 second represents a “Hello World” example of a 
time-oriented system. Time-oriented programming differs 
significantly from the more common data-oriented programming, 
and developing correct maintainable time-oriented programs is 
challenging. The current situation of embedded courses being 
senior-level courses hampers effective teaching of time-oriented 
programming, as early-learned programming habits can be hard 
to break. Early freshmen or sophomore-level introduction of 
time-oriented programming, involving the right balance between 
abstractions and resource awareness, may provide a better 
foundation.  A clean microcontroller with a timer, coupled with 
the synchronous state machine computation model, can provide 
such a balance.  

1. INTRODUCTION  

The Rise of Embedded Systems 
Embedded systems include computing systems that interact 
extensively with physical real-world devices. Examples are 
consumer electronics (cameras, cell phones, portable games), 
automotive electronics (cruise control, navigation), 
communications equipment (base stations, network routers), 
factory automation equipment (robotics, sensors, inventory 
control systems), office automation equipment (scanners, 
copiers, printers), medical devices (pacemakers, ventilators, 
ultrasound machines), home automation (security systems, 
temperature control, smart appliances), and much more. The 
decreasing cost and size and the increasing performance of 
computing chips, following Moore’s Law, have led to a dramatic 
proliferation of embedded systems in recent decades, as 
indicated by the tremendous growth in numbers of 
microprocessors worldwide shown in Figure 1. Novel embedded 
systems applications are introduced at a rapid rate, including 
items like smart ingestible pills, household robots, and bodily-
worn health monitoring networks.  Of the approximately 150,000 
U.S. patents granted per year, roughly 10,000-20,000 are 
embedded systems related [14].  

Current Courses: Details, Details, Details 
The teaching of embedded system programming, however, has 
progressed only moderately in the past two decades, and lacks a 
solid discipline. Many courses from the 1980s were oriented 
around an embedded processor chip known as a microcontroller, 

which has a small low-cost microprocessor coupled with key 
embedded processing features including program-accessible 
input/output pins, timers, serial communication devices 
(UARTs), analog-digital converters, and other peripherals. These 
small resource-constrained devices required detailed assembly 
programming and electronics knowledge to set up and use the 
microprocessor chip and its various peripherals. Many such 
courses have since replaced assembly programming by C 
programming and use some libraries to elevate the programmer’s 
focus, and many have adopted the “embedded systems” name. 
However, most such courses continue to emphasize 
microcontroller-specific programming and electronics details 
necessary to get a basic embedded system working, with little 
attention paid to higher-level embedded system design concepts. 
This is akin to driver education emphasizing how to add gasoline 
to a car, check the tires, adjust the mirrors, start the car, and go 
forward and stop, rather than emphasizing higher-level concepts 
like how to maintain defensive distances, approach intersections, 
or plan routes.  

Instructors are not to blame for the low-level emphasis. 
Setting up and running embedded systems courses is hard. 
Unlike desktop computing courses in which fairly standard and 
stable platforms and tools exist, embedded systems courses must 
deal with a rather chaotic technical landscape. Dozens of widely-
used microcontroller families exist, including 8-bit devices like 
the Intel 8051, Motorola 68HC05, 68HC08, 68HC11, Microchip 
PIC, Atmel AVR, Zilog Z80, and much more. For each family, 
dozens and sometimes hundreds of variations exist (different 
numbers of pins, size of on-chip RAM, support for external 
memory, etc.), produced by tens of different companies. 16-bit 
and 32-bit devices are also available and have similar variety. 
For a chosen device, a physical programming device (which 
downloads machine code into the physical chip) must be found. 
Assemblers and cross-compilers must be found that target the 
particular device. Development boards must be made or 
purchased that support the device, such that the device can 
interface with buttons, switches, LEDs, displays, and other 

Figure 1: Growth in number of microprocessors worldwide 
in past decade due to growth in embedded systems market.  
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components. Simulators or debuggers may be incorporated. Lab 
assignments must then be developed around this multitude of 
items, working around the various items’ bugs, sensitivities, or 
other imperfections (of which many exist). Hardware parts suffer 
damage (e.g., a microcontroller chip may burn out just by 
inserting it backwards into a programmer device, or an ageing 
programmer device may fail to consistently program chips 
correctly), requiring continual troubleshooting and correction. 
Furthermore, microcontrollers are tough devices to work with – 
due to historical artifacts or mass-production needs, the devices 
tend to require extensive configuration for a particular purpose. 
Due to each device or tool having a smaller audience than a PC 
or Windows-based C compiler, documentation is usually scarce 
(and is sometimes wrong), and simulation and debug tools are 
scant and often with bugs too. New chips, platforms, operating 
systems, compilers, debuggers, and even companies providing 
such items, come and go every few years.  

Given the challenging nature of building working embedded 
systems, instructors often focus primarily on teaching the student 
the details of how to use the myriad software and hardware tools, 
to configure and use the microcontroller and each of its key 
peripherals, to understand how interrupt service routines interact 
with a main program, and other details necessary to build 
functioning systems. Figure 2 gives some idea of the challenge, 
showing the initialization code required to set up a particular 
microcontroller for a particular usage; note the many distinct 
items that must be configured (and one small mistake may cause 
the system to fail). After that teaching process, which may take 
months, a course may have just enough time left for a student to 
build an interesting project, with little or no time for teaching a 
discipline of embedded systems programming. If a second 
embedded systems course does exist, the course is typically a 

project course rather than a course that teaches a disciplined 
embedded programming approach.  

As evidence of the low-level focus on modern embedded 
systems courses, consider the top-selling books in the embedded 
systems textbook market of 16,000 books per year, as reported 
by John Wiley and Sons: (1) The HCS12/9S12, An Introduction 
to Hardware and Software Interfacing, Huang, Delmar Cengage, 
2005 – 12%;  (2) The 68HC12 Microcontroller: Theory and 
Application (2nd edition of earlier book: Embedded Systems 
Design and Applications with the 68HC12 and HCS12), Barret 
and Pack, Prentice hall, 2004 – 9%;  (3) Software and Hardware 
Engineering: Motorola M68HC12, Cady and Sibigtroth, Oxford 
University Press – 7%.; (4) Embedded Microcomputer Systems: 
Real Time Interfacing, Valvano, Int. Thomson Publishers, 2006 
– 7%; (5) Microcomputer Engineering, Miller, Prentice Hall, 
2003 – 6%; (6) Computers as Components: Principles of 
Embedded Computing System Design, Wolf, Morgan Kaufman, 
2005 – 6%; (7) Embedded System Design: A Unified 
Hardware/Software Introduction, Vahid and Givargis, John 
Wiley and Sons, 2001 – 4%. Books 1-5 all focus on the details of 
particular microcontrollers. Some do address higher-level 
concepts, but typically do so late and rather lightly. Books 6 and 
7 (the latter authored by ourselves) sought to introduce a higher-
level discipline to embedded system design (in contrast to 
emphasizing programming).  

Because learning the myriad details of microcontrollers, 
interfacing, troubleshooting, etc., require rather sophisticated 
students, embedded systems courses are typically taught at the 
senior level, as illustrated in Figure 3. All of the above books are 
typically used in senior-level courses, and items 6 and 7 
sometimes in a second embedded systems course or even 
graduate course. We performed a Google search for “embedded 
systems” in .edu sites; the first 20 courses we found were all 
upper-division or graduate level, with typical names being “Real 
Time Embedded Systems” or “Introduction to Microcontrollers.” 

Thus, a student of a modern embedded systems course may 
develop a rather myopic view of embedded programming, 
viewing it as a collection of low-level details and methods 
necessary to configure and use a microcontroller. “High-level” 

Figure 2: Sample C initialization code for a particular 
microcontroller – extensive knowledge of details is necessary to 

properly configure a microcontroller for a particular use.  
// ------------------------------ 
// configure output ports 
// ------------------------------ 
ADCON0 = 0x00; // disable A/D converter  
CM1CON0 = 0x00; 
CM2CON0 = 0x00;//disable comparators */ 
ANSELH = 0x00; 
ANSEL = 0x00; // configure pins as digital channels 
TRISA = 0x08; // all bits output except RA3           
TRISB = 0xF0; // Port B inputs  
RABPU = 1;   
WPUB4 = 1;    // enable weak pull ups on RB4  
 IOCB4 = 1;   // enable interrupt on change for RB4 
TRISC = 0x00; // PORTC all set to outputs 
PORTA = 0x00;   
PORTB = 0x00; 
PORTC = 0x00; // initialize ports 
// -------------------------------- 
// Timer0 setup 
// -------------------------------- 
CLRWDT();   // turn off watch dog timer 
OPTION = 0x07;    // setup prescaler 
TMR0 = PRELOAD; // preload timer 
T0IE = 1; //enable timer0 interrupts 
// --------------------------------- 
// Setup button interrupts 
// --------------------------------- 
RABIE = 1; //Enable change on PORTB interrupts 
GIE = 1; //global interupts enabled  

Figure 3: Typical embedded system courses are senior-level, 
emphasizing myriad details. Adding time-oriented programming 

early in the training can provide a better foundation for such 
courses.   
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may merely mean using C rather than assembly language. The 
net result is that today’s professional embedded systems 
programmers create code that is amazingly ad hoc, being 
exceptionally difficult to maintain and often taking a long time to 
develop. The lack of discipline may explain in part why the 
majority of embedded systems project are completed late, on 
average 4 months late for the typical 14 month project [10]. 
Various companies with whom we interact, including Cisco, 
Broadcom, Western Digital, Pulmonetics (medical ventilators), 
Qualcomm, Freescale, Microsoft, and others, have commonly 
indicated that computing graduates, even those with computer 
engineering degrees and/or with embedded systems course and 
project backgrounds, lack the ability to program embedded 
systems due to “unawareness of resources,” “no programming 
discipline,” “inability to deal with time,” “a habit of hacking,” or 
even “excessive focus on objects or libraries,” requiring “long 
periods of training” before such graduates can write good 
embedded code.  

2. STRUCTURED TIME-ORIENTED 
PROGRAMMING 

Old Habits are Hard to Break 
Given the increasing importance and complexity of modern 
embedded systems, a more disciplined view of embedded 
programming is becoming essential (our definition of 
“disciplined” will be explained subsequently). We have been 
experimenting with the introduction of disciplined embedded 
programming methods for many years, and have concluded that 
an approach that attempts to introduce disciplined methods after 
an initial low-level microcontroller-details introduction, which is 
better of course than no introduction of disciplined methods at 
all, nevertheless is a sub-optimal approach. The reason is 
because students have spent several years learning data-oriented 
programming, leading to a perspective and a set of habits that 
can be hard to change, as illustrated in Figure 4. Instead, we 
claim that an approach that first introduces disciplined embedded 
programming methods and later teaches necessary low-level 

microcontroller details will lead to embedded system designers 
developing better programs, by creating an improved 
foundational perspective within the student.  

After over a decade of teaching embedded systems in various 
ways and interacting with dozens of embedded systems teachers 
and courses worldwide, the authors view structured time-
oriented programming as one of the key features of a disciplined 
embedded programming approach. A characteristic of embedded 
systems, which distinguishes them from traditional desktop 
(including server) computing systems, is the orientation around 
the notion of time. For example, an embedded system equivalent 
of a “Hello World” program might repeatedly blink an LED 
(light-emitting diode) on for 1 second and then off for 1 second, 
requiring an explicit notion of real time (“1 second”). In contrast, 
desktop computing has focused on data-oriented programming 
emphasizing data transformation—reading input data, 
transforming the data, and outputting new data, with no notion of 
real time—even since the design of early computers, which was 
driven by data-oriented applications like processing census data 
and computing bomb trajectories. Whereas time is a behavioral 
consequence of desktop programs, time is part of the explicit 
functionality of embedded systems. Explicit functionality of 
embedded systems also involves the related notion of events – 
external actions that can occur at any time and to which the 
system responds. For example, an alternative “Hello World” 
equivalent might turn on an LED for 1 second every time that a 
button is pressed, the button press forming an input event. Some 
desktop programming does incorporate time and event concepts 
(e.g., blinking a cursor in a graphical display, or responding to 
mouse click events), but to a lesser extent than embedded 
programming. For simplicity, rather than always referring to 
both time and events, we will in this paper take the liberty of 
using the term time to refer to both concepts, although we realize 
there are distinctions between the two concepts.  

While some time-oriented programming courses exist today, 
they tend to build on advanced concepts of real-time operating 
systems (RTOSes) or of parallel programming languages, using 
extensive abstraction to hide many lower-level details. For our 
purposes, the appropriate balance must be found between 
abstracting away low-level details to enable focus on higher-
level issues, while also exposing enough low-level details to 
ensure that programmers have resource awareness and can build 
systems using today’s embedded microprocessors, which may or 
may not be running RTOSes. Indeed, our interactions with 
companies that produce embedded systems have revealed an 
intense desire from those companies for more computing 
professionals that have a much stronger understanding of 
underlying computing resources; embedded programmers who 
only know abstractions and never learned the details of 
underlying resources may produce grossly inefficient code and 
be unable to hammer out the details often necessary to get real 
systems completely working.   

Virtual Microcontroller 
We propose the use of a virtual microcontroller as a step towards 
achieving the appropriate balance between abstraction and 
resource awareness. Fundamental resources in time-oriented 
embedded programming of a microcontroller include a 
microprocessor, a timer, and an interrupt service routine. A main 
program can initialize and activate a timer, which in turn 
automatically calls at specified intervals an interrupt service 

Figure 4: Current curricula teach years of data-oriented 
programming and then microcontroller details – leading to 

“undisciplined” embedded programmers having a hard time 
overcoming the wall of data-oriented programming habits. First 

teaching time-oriented abstractions establishes a theoretical 
foundation that may lead to better embedded programmers.  
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routine (ISR), pausing the main program’s execution during such 
calls. Creating time-oriented programs using just those basic 
resources, without the aid of an RTOS, represents a fundamental 
embedded programming skill, akin to a surgeon learning to 
perform surgery with a scalpel but without the aid of modern 
robotic surgical tools. The programmer (or surgeon) develops an 
intuitive understanding, which not only may help when using the 
more advanced tools, but also enables competence even when 
the more advanced tools are unavailable.   

The virtual microcontroller therefore consists of a simple 
microprocessor and a timer (along with required program 
memory and general-purpose I/O), as illustrated in Figure 5(b). 
All items are present in very straightforward form. For example, 
the I/O consists of eight inputs A0-A7 and eight outputs B0-B7 
accessible by name in C or assembly (microcontrollers often 
have I/O that can be configured for either input, output, or both, 
or can serve as memory address/data lines instead, and thus 
require configuration). The timer is set in C by calling a 
predefined function called TimerSet(T) where T specifies the 
interrupt interval in milliseconds (most microcontrollers instead 
require extensive configuration of various registers, such as 
mode registers, frequency registers, prescaler registers, and 
more, to obtain a particular interrupt rate). This simplified, or 
“clean,” computing platform is akin to the simplified platform 
commonly used in data-oriented programming courses, shown in 
Figure 4(a). The clean platforms provide a sufficient abstraction 
on which to program, introducing just enough resource concepts 
for solid understanding, but without overexposing the student to 
resource details.  

Synchronous State Machines – SynchSMs 
While a virtual microcontroller provides a clean platform for 
developing and executing time-oriented code, the C language 
(which is used in a majority of embedded systems [10], though 
our discussion applies equally to C++, Java, or assembly 
language) is not particularly well-suited for time-oriented 
programming. Left alone to figure out how to implement timed 
behavior using a microcontroller with a timer and ISR, students 
develop an “impressive” variety of methods, with some putting 
most code in the main function and others putting most code in 
the ISR, some using sequenced code and others used heavily 
iterated code and global status variables, and so on.  

Instead, we propose the use of synchronous state machines. 
Good computation models for data-oriented desktop processing 
include sequential programming or object-oriented programming 
models. For embedded processing, however, other computation 
models are common. In particular, state machines excel at 
modeling basic sequential control behavior, as well as more 
complex behavior. State machines (SMs) allow not only 
straightforward description of processing of events, but also 
provide an elegant basis for specifying timing. For programming 
purposes, a state machine can utilize declared variables and 
possess arithmetic operations and conditions, as in the FSMD 
model of [15]. In fact, each state can have a sequence of 
associated actions described using sequential programming 
constructs such as assignment statements, if-then-else statements, 
loops with constant bounds, and even (non-recursive) 
subroutines having such statements as described above. Such 
SMs are commonplace in hardware descriptions targeting 
synthesis to circuits. 

State machines provide a solid basis for a disciplined 
approach to time-oriented embedded system programming. The 
authors have developed and utilized such approaches in their 
courses during the past several years. A simple approach 
involves using a synchronous SM, or synchSM, whereby all 
states last for a defined time interval known as a tick rate or 
period, as in Figure 6. Thus, if the synchSM’s period is 1 second, 
then the shown synchSM will set output Led_o to 1 for 1 second, 
then to 0 for 1 second, then to 1 for 1 second, and so on, causing 

Figure 5: “Clean” computing platforms: (a) A simplified view of a computer provides the foundation for most desktop-programming 
courses, (b) likewise, a simplified view of a microcontroller can provide a good foundation for a time-oriented embedded programming 

course.   

 
 
 

Figure 6: SynchSM for the Blinking LED (time-oriented “Hello 
World” equivalent) example.  
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the LED to blink as desired.   
SynchSMs mesh well with the basic microcontroller time 

elements. A programmer can set the timer’s interrupt rate to the 
desired tick rate, and program the timer’s ISR to raise a global 
flag. The programmer’s main code, implementing the synchSM, 
can detect the raised flag (and reset it) and then proceed to the 
next state.  

Students may be well served by being encouraged to work 
with the synchSM abstraction extensively on a wide variety of 
examples, to develop a solid perspective of describing timed 
behavior using a timed computation model.  

Implementing SynchSMs in C – Models Matter, Not 
Languages 
Of course, programs are typically written using C code (or 
similar), bringing us to another important concept in structured 
time-oriented programming. The concept is that of 
conceptualizing system behavior using a computation model 
(e.g., synchSMs), and then implementing that model in C using a 
straightforward template-based approach. A straightforward 
template approach is shown in Figure 7, wherein the main 
program waits for a tick, and then processes the state machine’s 
transitions and state actions using switch statements. In contrast, 
today every programmer combines main code, timers, and timer 
ISRs in unique and creative ways. While creativity in some 
endeavors is a wonderful thing, creativity in programming makes 
programs harder to understand, debug, and maintain. A synchSM 
approach represents a highly-structured approach, akin to 
structured programming guidelines for data-oriented 
programming [12] but instead focused on time.  

An additional advantage of the state machine approach is 
that multiple concurrent state machines can be handled via 
straightforward round-robin processing. Straightforward counter 
methods can handle synchSMs with different periods. Priority 
schemes among the synchSMs could be introduced too, leading 
towards the basic idea of RTOSes.  

A similar approach can be used for other computation 
models common in embedded systems. Other common 
computation models in embedded systems include dataflow 
models, such as synchronous dataflow. With care, different 
models can even be implemented in a single C program on a 
single microcontroller.  

3. TOOLS 
Microcontroller Simulator 
Appropriate tools are needed to support the proposed approach to 
teaching structured time-oriented programming. We are 
developing a tool, the Riverside-Irvine Microcontroller 
Simulator (RIMS), to support programming of the proposed 
virtual microcontroller, seen in Figure 8.  

The tool graphically depicts a microcontroller with 8 input 
and 8 output pins. Concreteness is emphasized to ease the 
comprehension task for young students. Each input pin is 
connected to a switch that the user can move to the “0” or “1” 
position, and each output pin to an LED that illuminates when its 
pin is 1. The microcontroller’s C program is shown inside the 
microcontroller. The user is shown a 3-step process: (1) Load a 
C program (or write one directly in the C window and save it), 
(2) Compile the program, (3) Run the program. The compiler is 

built into the tool (using the open-source LCC compiler [28]) 
and the generated assembly code is then executed by an 
instruction set simulator, which we wrote and built into the tool. 
The running program may be “break’ed” at any time, executed 
step-by-step, and have any symbol values viewed, as with a 
standard debugger. All events on input and output pins, in 
addition to being graphically shown, are printed to an event text 
display also.  

To help teach the concept of the timer and timer ISR, a 
“status” bar shows the current value of the timer. Thus, as a 
program executes, the status bar fills, the ISR is called, and the 
status bar starts over. The student thus visually sees the “ticking” 
of the microcontroller’s timer and the associated ISR call.  

To further support the teaching of timing concepts, the 
textual event printout can automatically be converted to timing 
diagrams. Such conversion is accomplished by the RIMS tool 
generating standard VCD files, which can then be viewed using 
any of several VCD to timing diagram viewing tools, such as the 
freely-available Wave tool [44]. All of the above functionality 
(excluding the VCD viewer) exists as a single Windows 
executable, making installation and operation easy.   

Figure 7: Template approach for implementing a synchSM in C.  

 
 
 
 
 

#define Led_o B0 
 
int BL_Clk=0; 
void TimerISR() 
{ 
   BL_Clk = 1; 
} 
 
void main(void) 
{ 
   enum BL_StateType {BL_On, BL_Off}  
      BL_State; 
   B=0;//Init outputs  
   TimerSet(1000); // 1 second 
   TimerOn();  
 
   BL_State = BL_On; 
   while (1) { 
      switch (BL_State) {// State actions
         case BL_On:  
            Led_o = 1; 
            break; 
         case BL_Off:  
            Led_o = 0; 
            break; 
      } // State actions 
 
      while (!BL_Clk); BL_Clk = 0; 
 
      switch (BL_State) { // Transitions 
         case BL_On:  
            BL_State = BL_Off; 
            break; 
         case BL_Off:  
            BL_State = BL_On; 
            break; 
      } // Transitions 
   } // while(1)    
} // main 



  

State machine builder 
Because describing behavior as synchSMs is so central to our 
proposed approach, we are also developing a graphical synchSM 
capture tool – the Riverside-Irvine State machine Builder 
(RISB), a screenshot of which is shown in Figure 9. The tool 
allows a user to add states and transitions between states, to type 
actions for states and to type conditions for transitions, and to 
declare the state machine’s name, period, and any variables. 
Although the user works with a graphical depiction of the state 
machine, all graphical placement and routing of the state 
machine is automatically handled by the open source GraphViz 
tool [16] that we encapsulated within RISB, allowing the user to 
focus on the state machine’s functionality and not details related 
to the state machine’s graphical display. The tool can 
automatically translate a state machine to C code. The C code 
can then be executed on RIMC, with the current state being 
automatically highlighted in RISB, to help students visualize the 

execution of the state machine. Such automatic translation to C 
emphasizes the fact that writing the C code is not a creative 
endeavor, and instead should follow strict, automatable, 
guidelines. As such, structured time-oriented programs result.  

Physical prototypes 
Although the above described framework allows for learning the 
structured time-oriented embedded programming approach, 
creating working physical implementations can help crystallize 
embedded concepts. Thus, mapping the virtual microcontroller to 
physical platforms may be desired by many instructors of 
courses having lab components. We are therefore mapping the 
virtual microcontroller to various physical platforms, and plan to 
publish instructions for such mapping that instructors and their 
teaching assistants can follow to create numerous instances for 
their labs1. We have thus far mapped our virtual microcontroller 
onto three physical platforms – an Atmel AVR microcontroller, a 
Xilinx Spartan FPGA board, and a desktop PC using a USB 
interface to an external breadboard for the general-purpose I/O 
pins. Figure 10(a) shows a mapping onto the AVR 
microcontroller using a breadboard approach. Students could add 
input and output components, perhaps using a second board, to 
interact with the I/O. Figure 10(b) shows the same mapping but 
in a self-contained box where all inputs are connected to 
switches and outputs to LEDs, allowing for standalone operation 
of simple embedded programs having 8 input switches and 8 
output LEDs – the same as the RIMS PC-based visual simulator. 
Figure 10(c) shows mapping to an FPGA board (at the bottom of 
the picture). For any of these implementations, additional display 
functionality can be added using the VMC’s serial UART, which 
can be connected through a PC’s serial port to output on a serial 
terminal program, or connected through a custom serial-to-VGA 
device (which we have designed) to output directly to a monitor.  

To simplify the process of mapping programs to these 
physical implementations, we have developed an approach 
whereby a textual assembly file can be downloaded onto a USB 
stick, and that USB stick then plugged into the physical 
implementation for uploading to the VMC, as illustrated in 
Figure 10(b). Such an approach makes clear to the student what 
program is being executed, and enables easy migration of 
different programs to a physical platform or from one platform to 
another. We implemented the necessary USB read functionality 
and the just-in-time assembler for this textual assembly USB file 
approach, resulting in fully-functioning physical 
implementations.  

4. RELATED WORK  
An earlier section described the main existing embedded systems 
courses that are the target of the project. Several other items can 
be considered related to this project also.  

Another category of courses emphasizes real-time systems, 
typically based on an RTOS. Jian [23] presents a survey of the 
state of real-time systems education, showing that very few 
universities offer courses in the topics. Schwarz [35] observes 
                                                                 
1 Note: We do not plan to provide physical prototypes to other 

universities, but rather descriptions of how to build them for a 
few common physical platforms, which other universities can 
use or adapt.   

Figure 8: Screenshot of the virtual microcontroller simulation tool, 
RIMS.  

 

 

Figure 9: Screenshot of the state machine builder tool, RISB.  

 
  

 



  

that undergraduate real-time course offerings vary and lack any 
accepted standard of contents or discipline. The textbook by 
Burns [8] presents real-time systems and the programming 
languages that work well with them, used primarily at the senior 
or graduate level. Kornecki [26] argues that universities do not 
pay enough attention to practical software development in the 
field of time-oriented reactive programming. ACM’s curriculum 
guidelines make only short mention of the subject [1]. A number 
of real time operating systems have been introduced to provide a 
higher level of abstraction between the application software and 
embedded hardware, including the open source eCos [13], and 
VxVorks and RTLinux from WindRiver [45].   

Much progress has been made in the past two decades on 
capturing embedded system functionality. These include several 
event-based languages. Esterel [6] is a synchronous 
programming language for the development of complex reactive 
systems.  The notion of time is replaced with the notion of order, 
called the multiform notion of time, which means only 
simultaneity and presence of events are considered. Statecharts 
[17][18] is a visual formalism for complex systems. Statecharts 
extend traditional state diagram transition diagrams with notions 
of hierarchy, concurrency, and communication. They also 
include some timing mechanism (e.g., “timeout” events). 
Numerous other languages can be viewed as supporting 
event/time based descriptions, including VHDL [21], Verilog 
[41], Rapide [32], LOTOS [7], CSP [19], Ada [39], and more.  

Several approaches focus extensively on time. Kopetz [25] 
presents the time-triggered architecture, which is a computing 
infrastructure for the design and implementation of dependable 
distributed embedded systems. Applications are decomposed into 
autonomous clusters each with a fault-tolerant global time base. 
The global time base simplifies communication and guarantees 
timeliness of real-time applications. Commercial companies like 
TTTech [40] stemmed from this work. Lamport [27] discusses 
time-oriented programming in the context of events in a 
distributed system and how to synchronize items. Ouimet 
[33][34] introduces timed abstract state machines. ASMs consist 
of a set of mutually exclusive rules each guarded by a condition 
of variables. A rule whose condition at a given execution step 

will update external and internal variables. Timed ASMs involve 
timing extensions to ASMs, such as specifying the time duration 
of a rule’s execution (which may be a range; a specific value in 
the range will be randomly chosen during runtime).   

Other related approaches emphasize models of computation. 
The Polis framework [4] defines codesign finite state machines 
(CFSMs) as a formal model for communicating FSMs to which a 
system captured in a language like Esterel can be translated for 
analysis and synthesis.  Lee [31] presents a framework for 
comparing models of computation, including Kahn process 
networks, dataflow, sequential processes, concurrent sequential 
processes with rendezvous, Petri nets, and discrete-event 
systems. Other works [24][38] have focused on quantitatively 
comparing various computation models, specifically targeting 
parallel models. Jeukens [22] investigates how best to use 
various computation models to design increasingly complex 
systems. Andrews [3] investigates how best to leverage 
computation models for hybrid CPU-FPGA platforms. Lee [29] 
discusses various requirements of future embedded 
programming, including time concepts.  

Most of the above involve advanced concepts and thus not 
ideal for introductory undergraduate courses. Increasing attention 
is being paid to embedded systems education, through 
workshops (e.g., the Workshop on Embedded Systems 
Education, WESE, held since 2005), special issues of journals, 
and numerous special sessions and papers appearing in 
mainstream research venues. Numerous research projects attempt 
to improve engineering education. Hodge [20] introduces the 
concept of a Virtual Circuit Laboratory, a virtual environment 
for a beginning electrical engineering course that mimics failure 
modes in order to aid students in developing solid debugging 
techniques. The environment not only provides a convenient test 
environment, but also allows an instructor to concentrate more 
on teaching.  Butler [9] developed a web-based microprocessor 
fundamental course, which includes a Fundamental Computer 
that provides students in a first year engineering course a less 
threatening introduction to microprocessors and how to program. 

Other researchers have concentrated on developing or 
evaluating computing architectures for beginning students or 

Figure 10: Virtual microcontroller implementations:  (a) on an AVR microcontroller breadboard, with input/output wires that can be 
connected to other circuits, (b) in a black-box, with internal AVR-microcontroller-based circuitry exposed, and (c) on a Xilinx Spartan 3E 

FPGA, which happens to also use a connection to provide additional output to a terminal.  All three can execute the same virtual 
microcontroller program identically.  

    
 

(c) (b) (a) 



  

non-engineers. Benjamin [5] describes the BlackFin architecture, 
a hybrid microcontroller and digital signal processor.  The 
architecture provides a rich instruction set based on MIPS with 
variable width data, and parallel processing support.  Ricks [9] 
evaluates the VME Architecture in the context of addressing the 
need for better embedded system education.  The Eblocks project 
[11] concentrated on developing sensor blocks that people 
without programming or electronics knowledge could connect to 
build basic customized sensor-based embedded systems.  

Much research has involved virtualization [30][36], with 
several commercial products developed in response to the need 
for portable virtual machines. VMware [43] and the open source 
product Xen [46] concentrate on developing virtual machines 
that allow the end-user to run multiple operating systems 
concurrently. The Java Virtual Machine [37] allows the 
programmer to write operating system independent code, and 
tools like DOS Box and console emulators allow the user to run 
legacy applications in modern operating systems. 

5. CONCLUSIONS 
Embedded systems have experienced massive growth in the past 
two decades. Embedded system education has improved, but 
exists largely as a late add-on to a traditional data-oriented 
computing curriculum, leading to ad hoc modified data-oriented 
programming methods rather than a disciplined method targeted 
to the time-oriented nature of embedded systems. Early 
introduction of a structured time-oriented programming approach 
may help. Key features include a virtual microcontroller that 
exposes just enough low-level resources along with higher-level 
abstractions, a synchronous state machine (synchSM) 
computation model for explicit time-oriented programming and a 
clear method for capturing synchSMs in the prevailing C 
language, a set of easy to use tools that support synchSM and C 
capture, compilation, simulation, and debugging, and the ability 
to readily develop physical prototypes of a programmed virtual 
microcontroller. These items may catalyze adoption of early 
teaching of time-oriented programming, which we hope to see 
become part of a standard computing curriculum in the coming 
decade.  
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