
Control Flow Optimization in Loops using Interval Analysis

Mohammad Ali Ghodrat
School of Computer Sciences

University of California
Irvine, CA

mghodrat@ics.uci.edu

Tony Givargis
School of Computer Sciences

University of California
Irvine, CA

givargis@ics.uci.edu

Alex Nicolau
School of Computer Sciences

University of California
Irvine, CA

nicolau@ics.uci.edu

ABSTRACT
We present a novel loop transformation technique, particu-
larly well suited for optimizing embedded compilers, where
an increase in compilation time is acceptable in exchange for
significant performance increase. The transformation tech-
nique optimizes loops containing nested conditional blocks.
Specifically, the transformation takes advantage of the fact
that the Boolean value of the conditional expression, deter-
mining the true/false paths, can be statically analyzed using
a novel interval analysis technique that can evaluate condi-
tional expressions in the general polynomial form. Results
from interval analysis combined with loop dependency infor-
mation is used to partition the iteration space of the nested
loop. In such cases, the loop nest is decomposed such as to
eliminate the conditional test, thus substantially reducing
the execution time. Our technique completely eliminates
the conditional from the loops (unlike previous techniques)
thus further facilitating the application of other optimiza-
tions and improving the overall speedup. Applying the pro-
posed transformation technique on loop kernels taken from
Mediabench, SPEC-2000, mpeg4, qsdpcm and gimp, on aver-
age we measured a 175% (1.75X) improvement of execution
time when running on a SPARC processor, a 336% (4.36X)
improvement of execution time when running on an Intel
Core Duo processor and a 198.9% (2.98X) improvement of
execution time when running on a PowerPC G5 processor.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers; I.1 [Computing Method-
ologies]: Symbolic and Algebraic Manipulation

General Terms
Algorithms

Keywords
Interval analysis, Compiler Loop Optimization, Algorithmic
Code Transformation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

1. INTRODUCTION
Aggressive compiler optimization, in particular those that

address loops can significantly improve the performance of
the software, thus justifying the additional compilation time
requirements. This is in particular true in the embedded sys-
tem domain where software has become a key element of the
design process and performance is of a critical concern. Fur-
thermore, unlike a traditional compiler, intended for desktop
computing, it is acceptable for a compiler intended for em-
bedded computing to take longer to compile but perform
aggressive optimizations, such as the ones presented in [13].
In our case, the additional compiler execution time was of
the order of 10-msec per loop [4].

In contrast to existing work on loop transformation, we
present an algorithmic loop transformation technique that
substantially restructures the loop using knowledge about
the control flow combined with data-dependence informa-
tion within the body of the loop. The control flow and data-
dependences within the loop body is analyzed using a static
interval analysis technique previously outlined in [4]. In-
terval analysis provides information on the true/false paths
within the original loop body as a function of the loop in-
dices. The analysis of the loop iteration dependencies is
used to establish the possible space of loop restructuring.
Combining these two static analysis results, an algorithm is
provided that fully partitions the original iteration space
(i.e., original loop) into multiple disjoint iteration spaces
(i.e., generated loops). The bodies of these generated loops
are void of conditional branches and thus (unlike previous
techniques which leave branches in loops) our techniques
allows for more effective optimizations. Moreover, each of
these loops, and the ordering within them, are consistent
with the original loop iteration dependencies.

As an example consider the loop kernel shown below. This
loop kernel is taken from gimp benchmark [11].

#define STEPS 64
#define KERNEL_WIDTH 3
#define KERNEL_HEIGHT 3
#define SUBSAMPLE 4
#define THRESHOLD 0.25
for (yj = 0; yj <= SUBSAMPLE; yj++) {

y = (double) yj / (double) SUBSAMPLE;
for (xi = 0; xi <= SUBSAMPLE; xi++) {

x = (double) xi / (double) SUBSAMPLE;
x += 1.0; y += 1.0;
for (j = 0; j < STEPS * KERNEL_HEIGHT; j++) {

dist_y = y - (((double)j + 0.5) / (double)STEPS);
for (i = 0; i < STEPS * KERNEL_WIDTH; i++) {

dist_x = x - (((double) i + 0.5) / (double) STEPS);
if ((SQR (dist_x) + SQR (dist_y)) < THRESHOLD)

w = 1.0;
else

157

Figure 1: (a) 1st difference - gimp (b) 2nd difference - mp3 (c-e) 3rd difference - synthetic example (f) 3rd
difference - 186.crafty

w = 0.0;
value[i / STEPS][j / STEPS] += w;

}
}

}
}

Table 1: Interval analysis result for the expression
(SQR(distx) + SQR(disty)) < THRESHOLD

Space([xi][yj][i][j]) Evaluation result(false/true)
[0, 1][0, 1][152, 191][0, 191] false

[0, 1][2, 2][123, 191][0, 191] false

[0, 1][3, 4][157, 191][0, 191] false

[2, 2][0, 1][0, 28][0, 191] false

[2, 2][0, 1][163, 191][0, 191] false

[2, 2][2, 2][0, 63][0, 191] false

[2, 2][2, 2][128, 191][0, 191] false

[3, 4][0, 1][0, 40][0, 191] false

[3, 4][2, 2][0, 68][0, 191] false

[3, 4][3, 4][0, 34][0, 191] false

Using interval analysis [4] we statically compute informa-
tion as shown in Table 1 on the conditional expression in the
loop nest ((SQR(distx)+SQR(disty)) < THRESHOLD).
For example the 2nd row of Table 1 shows that when
(0 ≤ xi ≤ 1) && (0 ≤ yj ≤ 1) && (152 ≤ i ≤ 191) &&
(0 ≤ j ≤ 191) the expression (SQR(distx)+SQR(disty)) <
THRESHOLD evaluates to false. The transformed code,
using the 2nd row of Table 1 yields the following optimized
code:

for (yj = 0; yj <= 1; yj++) {
y = (double) yj / (double) SUBSAMPLE;
for (xi = 0; xi <= 1; xi++) {

x = (double) xi / (double) SUBSAMPLE;
x += 1.0; y += 1.0;
for (j = 0; j < STEPS * KERNEL_HEIGHT; j++) {

dist_y = y - (((double)j + 0.5) / (double)STEPS);

for (i = 0; i < 152; i++) {
dist_x = x - (((double) i + 0.5) / (double) STEPS);
if ((SQR (dist_x) + SQR (dist_y)) < THRESHOLD)

w = 1.0;
else

w = 0.0;
value[i / STEPS][j / STEPS] += w;

}
for (i = 152; i < STEPS * KERNEL_WIDTH; i++) {

w = 0.0;
value[i / STEPS][j / STEPS] += w;

}
}

}
}

In the transformed code, the evaluation of the conditional
expression for part of the most inner loop (i.e., the loop
with i as the index variable) is eliminated. Applying our
optimization to the rest of the loop kernel, while using the
entire information in Table 1, we obtain 16% speed-up on
SPARC, 21% on Intel Core Duo and 24% on PowerPC G5
as shown in Section 5.

The rest of this paper is organized as follows. In Section 2,
we outline the related work. In Section 3, we formulate the
problem, show the overall flow of the proposed transforma-
tion and establish some preliminaries. In Section 4, we es-
tablish the transformation technique. In Section 5, we show
our experimental results. In Section 7, we conclude.

2. PREVIOUS WORK
There are many transformation techniques targeting

nested loops. Since our work specifically applies to con-
trol flow optimization of loops we primarily focus on related
work that target control flow optimization. Of course, data-
flow level optimizations can be combined with control flow

158

Table 2: Properties which are being compared in Table 3
Property 1 Optimize control 'ow of a loop with nested conditional block
Property 2 Dependence analysis needed
Property 3 Conditional expression depends on loop index
Property 4 Conditional expression is an a¡ne function of loop variables
Property 5 Conditional expression contains logical operators
Property 6 Conditional expression is a function of loop indices and non-loop-index variables
Property 7 Conditional expression has a general polynomial form
Property 8 Conditional expression will be removed completely from loop body of the transformed code

Table 3: Comparison with other loop optimization techniques
Property(Table 2)

Optimization technique Summary of technique 1 2 3 4 5 6 7 8
Loop fusion Fuse two adjacent countable loops with the same loop limits X
Loop ↓ssion Broke a single loop into two or more smaller loops X
Loop interchanging For two nested loops, switch the inner and outer loop X
Loop skewing For two nested loops, change the indices in a way X

that remove the dependence from the inner loop
Strip-mining Decompose a single loop into an outer loop which steps between X

strips of consecutive iterations and an inner loop which steps
between single iterations within a strip

Loop tiling Same as strip-mining for nested-loops and convex shaped iteration space X
Loop collapsing Two nested loops that refers to arrays be collapsed into single loop X
Loop coalescing Same as Loop collapsing but the loop limits do not match X
Loop unrolling Duplicate the body of the loop multiple times and reduce the loop count
Loop unswitching Remove loop independent conditional from a loop X X
Loop peeling Remove the ↓rst or last iteration of the loop into separate code X X X
Index set splitting Divides the index set of a loop into two portions X X X
Loop nest splitting [3] For a nested loop, by using polytope model and genetic X X X X

algorithms, conditions having no e↑ect on control 'ow
are removed or moved up in loop nest

Our work For a nested loop, by using interval analysis technique [4] X X X X X X X X
and dependence analysis, the nested loop is partitioned
into multiple loops with the no condition

optimizations to further improve the generated code (i.e.,
data-flow optimizations may benefit from simpler control
flow within loops).

Table 2 provides a set of properties that are used to com-
pare and contrast loop optimization strategies using control
flow analysis. Furthermore, Table 3 summarizes existing
loop transformation techniques and provides an analysis of
their strength relative to the presented work.

Among all the techniques listed in Table 3, the three most
relevant ones are loop unswitching, index-set splitting and
loop nest splitting.

Loop unswitching [8], has similarities to our transforma-
tion in targeting conditional blocks within loops. Specifi-
cally, loop unswitching attempts to replicate the loop in-
side each branch of the conditional. In contrast, our tech-
nique attempts to completely eliminate the conditional block
within a loop by decomposing a loop into multiple indepen-
dent loops. In loop unswitching technique, the conditional
expression does not depend on loop indices, hence limiting
its applicability to loops containing trivial conditions, but
in our technique the conditional expression is a function of
loop indices.

Another technique, index-set splitting [12], does a similar
transformation but in a much limited way than our method.
First index-set splitting only considers affine expressions and
there is no discussion on how to handle cases where there
are dependences between loop iterations. In our method we
consider non-affine conditional expressions within the loop
and handle cases where there are dependences between loop
iterations and, when dependences allow, we eliminate the
conditionals from the loops.

A closely related work in control flow loop optimization is
suggested by Falk et al. [3]. The loop model used in their
work differs from ours. First, they consider conditional ex-
pressions that are strictly affine (vs. arbitrary polynomial in
our case) functions of the loop indices. Figure 1-a shows a
case in gimp [11] benchmark which is optimized by our tech-
nique but not by their method. Second, Falk’s loop model

assumes that the conditional expression is strictly a func-
tion of loop indices, but in our loop model the conditional
expression can include other variables computed within the
loop body. Figure 1-b shows a case in mp3 benchmark [14]
that can be optimized by our technique but not by their
method (here the transformed code is not shown to save
space). The final important difference between our work
and Falk’s is that in our transformed code the conditional
block is completely eliminated while in their work it is sim-
plified or hoisted to a higher point in the nested loops, but
not eliminated. To show this difference clearly, let’s first
consider a synthetic example shown in Figure 1-c. Figure 1-
c shows a case in which our technique (Figure 1-e) has re-
move the condition completely resulting in significant (30%
on SPARC and 68% on Intel) speedup while their technique
(Figure 1-d) has only partially eliminated the evaluation of
the conditional expression. A similar example 186.crafty
from SPEC-2000 [1] is shown in Figure 1-f where applying
the technique in [3] will not remove the conditions com-
pletely.

Our proposed transformation targets loops that follow the
normalized template shown in Figure 2-a. Here, there are n
loop nests, with n indices x1, ..., xn. For every index xk, the
value for lower (upper) bounds lbk (ubk) is assumed to be
statically computable signed integer constants. When un-
known bounds exists, an estimate (possibly profile-based)
can be used without affecting the correctness of the trans-
formed code. In particular, the closer the estimated bounds
to the actual, the higher the efficiency of the transforma-
tion. The body of the inner most loop contains at least one
conditional block, called the target conditional block.

A large number of arbitrary loop structures can be re-
written in the normalized form of Figure 2-a [8]. Here,
stcond expr computes the value of the branch condition v.

3. PROPOSED TRANSFORMATION
The proposed transformation decomposes the original

159

Figure 2: Transformation

nested loops of Figure 2-a into three parts, as shown in Fig-
ure 2-b. The first part sets up one or more nested loop
structures with iteration spaces for which the stcond expr is
known to be true at compile time. Likewise, the second
part sets up one or more nested loop structures with itera-
tion spaces for which the stcond expr is known to be false at
compile time. The third part sets up one or more nested loop
structures with an iteration space for which the stcond expr

can not be statically evaluated. The three parts combined
cover the entire iteration space of the original nested loops.
Since the evaluation of stcond expr is eliminated in parts one
and two, the decomposed code executes substantially fewer
instructions than the original code.

3.1 Preliminaries
In this subsection we summarize the analysis technique

developed in [4] and used for our transformation. Without
loss of generality, the remaining discussions in the paper will
use C/C++ notation. Every program can be represented as
a Control Data Flow Graph (CDFG) intermediate form. A
CDFG is a graph that shows both data and control flow in a
program. The nodes in a CDFG are basic blocks. Each basic
block contains straight lines of statements with no branch
except for the last statement and no branch destination ex-
cept for the first statement. The edges in a CDFG represent
the control flow in the program.

As defined in [4], a conditional expression cond expr is
either a simple condition or a complex condition. A sim-
ple condition is in the form of (expr1 ROP expr2). Here,
expr1 and expr2 are arithmetic expressions and ROP is a
relational operator (=, 6=, <, ≤, >, ≥). An arithmetic ex-
pression is formed over the language (+, −, ×, constant,
variable). A complex condition is either a simple condition
or two complex conditions merged using logical operators
(&&, ||, !).

An integer interval of the form [a, b] represents all possible
integer values in the range a to b, inclusively. The operations
(+, −, ×, /) can be defined on two intervals [a, b] and [c, d].
We refer the interested reader to [7] for a full coverage of
interval arithmetic.

We define an n-dimensional space to be a box-shaped re-
gion defined by the Cartesian product [l0, u0] × [l1, u1] ×

... × [ln−1, un−1]. Hence, for a given program with n input
integer-variables x0, x1, ..., xn−1, the program domain space
is an n-dimensional space defined by the Cartesian prod-
uct [min0, max0]× [min1, max1]× ...× [minn, maxn], where
mini and maxi are defined based on the type of the variable
xi (e.g. if xi is of type signed character then mini = −128
and maxi = 127).

Given the conditional expression cond expr with variables
x1, x2, ..., xk, the domain space partitioning problem [4] is to
partition the domain space of cond expr into a minimal set
of k-dimensional spaces s1, s2, ..., sn with each space si hav-
ing one of true(T), false(F), or unknown(U) Boolean value.
If space si has a Boolean value of true, then cond expr eval-
uates to true for every point in space si. If space si has a
Boolean value of false, then cond expr evaluates to false

for every point in space si. If space si has a Boolean value
of unknown, then cond expr may evaluate to true for some
points in space si and false for others.

For example, consider cond expr : 2×x0 +x1 +4 > 0 (do-
main space [−5, 5]× [−5, 5]). Figure 3 shows the partitioned
domain space and the corresponding Boolean values [4].

Figure 3: Partitioned Domain of 2x0 + x1 + 4 > 0

4. TECHNICAL APPROACH
We now begin to describe the technique proposed in

this paper. A candidate loop L has the structure shown
in Figure 2-a. The iteration space of L is defined as
[lb1, ub1]× [lb2, ub2]× ...× [lbn, ubn]. The body of L can be
decomposed into the CDFGs corresponding to stcond expr,
stthen, and stelse. The variable v, computed by stcond expr,
is defined in terms of the loop variables x1, x2, ..., xn and all
other variables which are alive when computing the value
of v. The transformation technique consists of a number of
steps, specifically:

• Compute the interval set of v by processing the CDFG
corresponding to stcond expr (Section 4.1).

• Compute the dependence vector of iteration space
(Section 4.2).

• Partition the iteration space (Section 4.3).

• Generate code (Section 4.4).

4.1 Interval Set Computation
In the following discussion, the code segment presented in

Table 4 is used to demonstrate the interval set computation.
In Table 4, loop variables x1 and x2 are assumed to be live
on entry (i.e., inputs to the stcond expr CDFG) and Boolean
variable v is assumed to be live on exit (i.e., output of the
stcond expr CDFG). We refer the reader to Section 3.1 for a

160

review of integer intervals, spaces and program domain space
used here.

At any given point in the CDFG, a variable v has an
interval, defining the range of possible values it may have.
At the point of declaration, the type of a variable v gives
the upper and lower bounds of such an interval (e.g., line 1
of Table 4). Along each path in the CDFG, originating from
the point of declaration of v, we recompute v’s interval when
v is redefined according to the following rules:

• If v is assigned a constant value C (or, expression eval-
uating to a constant value), then v’s interval is defined
to be [C, C].

• If v is assigned a unary arithmetic expression in the
form of v = OP xi, then v’s interval is defined to be
the corresponding arithmetic operation OP applied to
xi’s interval.

• If v is assigned a binary arithmetic expression in the
form of v = xi OP xj , then v’s interval is defined to be
the corresponding arithmetic operation OP applied to
xi’s and xj ’s intervals.

• If v is assigned a complex arithmetic expression, then
the complex arithmetic expression is decomposed into
a set of unary or binary operations as defined above.

• If v is assigned a statically undeterminable function,
than v’s interval is defined according to its type.

Let us extend the notion of v’s interval by associating
a conditional expression with v’s interval (third column in
Table 4). The goal is to capture the fact that v’s interval
takes on different values along different paths (forks based
on conditional expression) in the CDFG. For example, line 4
of Table 4 shows a conditional assignments to variable v,
based on the values of the input variables x1 and x2. In this
example, when (x1 > 0)&&(x2 > 0) v’s interval is defined
to be [1, 1], otherwise, v’s interval is defined to be [0, 0].

Let us establish an equivalence between a conditional ex-
pression and a set of spaces (fourth column in Table 4). For
each conditional expression cond expr, there exists a set of
spaces S1, S2, ..., Sk that collectively defines the part of the
domain space for which cond expr evaluates to true. For
example, line 4 of Table 4 shows the conditional expression
(x1 > 0)&&(x2 > 0) defined as [1, 10]× [1, 5].

Table 4: Interval-set example
Code (stcond expr) Interval Condition Space
// loop var: x1 [−10, 10]
// loop var: x2 [−5, 5]
1: bool v; [0, 1] true [−10, 10] × [−5, 5]
2: v=0; [0, 0] true [−10, 10] × [−5, 5]
3: if(x1>0&&x2>0)
4: v=1; [1, 1] (x1 > 0&& [1, 10] × [1, 5]

x2 > 0)

Formally, for a variable v, the interval set (i.e., v.iset)
is defined as {(Ij , Sj)|j ∈ (1...m)}, where Ij is an in-
teger interval and Sj a space. Furthermore,

Sm
j=1 Sj =

iteration space. Intuitively, the interval set captures the
range of values that a variable may receive during the exe-
cution of a program, taking the control flow into account.

A procedure for computing the output interval-set of a
CDFG follows:

1) Topologically sort the CDFG’s basic blocks and obtain
b0, b1, ..., bn, repeat steps 2-5 for each basic block in
sorted order.

2) Compute the interval set(s) for every DFG in bi.

3) Perform domain space partitioning analysis on the con-
ditional expression at the exit of bi [4].

4) Use the true and unknown spaces to compute the in-
terval set(s) of the input variables of bi’s jump-through
basic block.

5) Use the false and unknown spaces to compute the in-
terval set(s) of the input variables of bi’s fall-through
basic block.

Applying the above algorithm on the stcond expr CDFG
would yield the interval set of the Boolean variable v:

v.iset = {([1, 1], ST1), ([1, 1], ST2), ..., ([1, 1], STn1),

([0, 0], SF1), ([0, 0], SF2), ..., ([0, 0], SFn2),

([0, 1], SU1), ([0, 1], SU2), ..., ([0, 1], SUn3)}.

Furthermore, we define three sets of spaces:

T = {ST1, ST2, ..., STn1},
F = {SF1, SF2, ..., SFn2}, U = {SU1, SU2, ..., SUn3}.

For the example of Table 4, the interval set of the
Boolean variable v is:

v.iset = {([1, 1], [1, 10]× [1, 5]), ([0, 0], [−10, 0]× [−5, 5]),

([0, 0], [1, 10]× [−5, 0])}

4.2 Dependence Vector Computation
Data dependency in a loop is either of type loop-carried

or of type loop-independent. Loop-independent dependency
occurs when statements st1 and st2 access the memory lo-
cation M during the same loop iteration. Loop-carried de-
pendency occurs when statement st1 accesses the memory
location M in one iteration and st2 accesses it in some iter-
ation later. In this discussion, statements st1 and st2 may
belong to any of stcond expr, stthen or stelse.

For each iteration of the nested loop structure, we define
a vector I = {i1, ..., in} of integers showing the correspond-
ing values of the loop indices. If there is a data dependency
between statement st1 during iteration I = {i1, ..., in} and
statement st2 during iteration J = {j1, ..., jn}, then the de-
pendence vector is defined as J − I = {j1 − i1, ..., jn − in}.

The notion of dependence vector is well established in the
compiler literature [6]. The existing dependence vector anal-
ysis techniques make the conservative assumption that any
pair of statements within a loop body may execute during
the same iteration. For the proposed transformation, we ex-
tend the analysis of dependence vector to account for control
flow dependency between a pair of statements with the loop
body, as described below.

Figure 4 shows our general m-dimensional memory access
model. Figure 4-a shows the case when both statements
access an array during the execution of the then part. Fig-
ure 4-b shows the case when one statement accesses an array
during the execution of the then part and the other state-
ment accesses an array during the execution of the else part.

In the case of Figure 4-a, there exists a data dependence
if there are two iteration vectors I and J such that:

fk(I) = gk(J) ∀k, 1 ≤ k ≤ m &&

stcond expr(I) = true && stcond expr(J) = true (1)

161

Figure 4: General Memory Access Model

In the case of Figure 4-b, there exists a data dependence
if there are two iteration vectors I and J such that:

fk(I) = gk(J) ∀k, 1 ≤ k ≤ m &&

stcond expr(I) = true && stcond expr(J) = false (2)

In the case that both of the accesses are in the else
part, then stcond expr(I) and stcond expr(J) in Equation 1
are equal to false. Similarly, the case when the write ac-
cess is in the else part and the read access is in the then
part, stcond expr(I) = false and stcond expr(J) = true in
Equation 2.

4.3 Iteration Space Partitioning
Recall that sets T , F and U were computed according to

Section 4.1. Likewise, the dependence vector was computed
in Section 4.2. We define the first problem of iteration space
partitioning as below:

Problem 1: Given T , F and U and the dependence vec-
tor between the points in that space we are interested in
p = |T | + |F | + |U | sorted spaces (S1, S2, ..., Sp) in a way
that there is no loop-carried data dependence from Si to Sj

if i < j.
In general, solving Problem 1 requires finding the depen-

dencies for the whole iteration space (i.e., solving equations
∀k ∈ (1, ..., m)fk(i1, ..., in) = gk(i1, ..., in) in Figure 4) for
arbitrary equations, which is a known NP-hard [6] problem.
However, in two special cases, the problem can be solved
efficiently. The first obvious case is when it is known (e.g.,
via a pragma directive) that there is no loop-carried data
dependence. Here, the spaces can be sorted in any arbitrary
way. The second case is when the dependency relationship is
expressed as a linear equation of a special form. Specifically,
if fk’s and gk’s in Figure 4 can be expressed as:

∀k ∈ (1..n)fk(i1, i2, ..., in) = fk(ik) = αk,1 × ik + βk,1

∀k ∈ (1..n)gk(i1, i2, ..., in) = gk(ik) = αk,2 × ik + βk,2

If ∀k αk,1 = αk,2 then the dependence vector can be ex-
pressed as {β1,1 − β1,2, ..., βn,1 − βn,2}. Hence, Problem 1
can be re-defined as Problem 2 below:

Problem 2: Given T , F and U and the dependence vec-
tor in the form of {β1,1−β1,2, ..., βn,1−βn,2} we are interested
in p = |T |+ |F |+ |U | sorted spaces (S1, S2, ..., Sp) in a way
that there is no loop-carried data dependency from Si to Sj

if i < j.

Algorithm 1 shows the proposed solution for Problem 2.
Algorithm 1 first expand the boundaries of all the spaces
using the dependence vector (line 6). Algorithm 1 then,
finds all the spaces which have overlap with the expanded
region, which gives, for each space, the set of dependent
spaces (line 7). Using these dependencies, a set of relations
between spaces is built (lines 8-10). Finally, Algorithm 2 is
used as a subroutine to sort the spaces (line 12).

Algorithm 2 works as follows. In a partially sorted list
of spaces, if it reads a relation Si < Sj and if Si is located
after Sj in the list, their locations in the list are exchanged
(lines 16-21). If any of Si and Sj is not in the list, it is added
to the list in a way to preserve the precedence relation (i.e.
Si before Sj if Si < Sj and etc.) (lines 6-15).

Algorithm 1 Sort the spaces using the dependence vector

1: Input: T , F , U
2: Input: dependencyvector = {β1,1 − β1,2, ..., βn,1 − βn,2}
3: Output: Sorted{T, F, U}
4: relationSet← φ
5: for all Spaces Si ∈ {T, F, U} do
6: expandedspace ← expandSpace(Si, dependencyvector)
7: overlappedspaces ← findOverlap(expandedspace)
8: for all Spaces Sj ∈ overlappedspaces do
9: relationSet← relationSet ∪ (Si < Sj)

10: end for
11: end for
12: sortedSpaces← RelationalSort(relationSet, {T, F, U})
13: return(sortedSpaces)

Figure 5 shows an example run of Algorithms 1 and 2.
Figure 5-(a) shows the spaces that are dependent on the
space S3 by expanding the boundaries of S3 using the de-
pendence vector β. It also shows the relative set which is
built by applying Algorithm shown in Figure 1 on all the
spaces. Figure 5-(b) shows the result of executing Algo-
rithm 2 on the relative set shown in Figure 5-(a) and finally
Figure 5-(c) shows the sorted spaces under the dependency
vector β.

Figure 5: Example run of Algorithms 1 and 2

4.4 Code Generation
Given the sorted spaces (S1, S2, ..., Sp), code generation

entails emitting a loop for the Sis. We note that, Si =
[l1, u1]× [l2, u2]× ...× [ln, un]. Hence, the loop control seg-
ment would be generated according to the following tem-
plate:

for(x1 = l1; x1 ≤ u1; x1++)
for(x2 = l2; x2 ≤ u2; x2++)

162

...
for(xn = ln; xn ≤ un; xn++)
body

Moreover, the body of the generated loops contains only
stthen if Si ∈ T , only stelse if Si ∈ F , or the original loop
body if Si ∈ U .

Algorithm 2 Relational Sort

1: Input: T , F , U
2: Input: relationSet
3: Output: Sorted{T, F, U}
4: sortedList← φ
5: for all Relation rk = (Si < Sj) ∈ relationSet do
6: if (Si /∈ sortedList)and(Sj /∈ sortedList) then
7: sortedList.push(Si)
8: sortedList.push(Sj)
9: else if (Si ∈ sortedList)and(Sj /∈ sortedList) then

10: iindex ← sortedList.find(Si)
11: sortedList.insert(Sj , iindex)
12: else if (Si /∈ sortedList)and(Sj ∈ sortedList) then
13: jindex ← sortedList.find(Sj)
14: sortedList.insert(Si, jindex − 1)
15: else
16: iindex ← sortedList.find(Si)
17: jindex ← sortedList.find(Sj)
18: if iindex >= jindex then
19: sortedList.remove(Si)
20: sortedList.insert(Si, jindex − 1)
21: end if
22: end if
23: end for
24: return(sortedSpaces)

5. EXPERIMENTS
To evaluate the proposed code transformation technique,

several loop kernels from MediaBench [2] application suite
and SPEC-2000 [1] were chosen. We also experimented
with an mp3 encoder implementation obtained from [14], an
mpeg4 full motion estimation obtained from [3], GNU Im-
age Manipulation Program (gimp) [11] and also qsdpcm [9]
video compression algorithm which is obtained from [5].

By loop kernel, we mean the region of code that was im-
pacted by the transformation. For example, if the trans-
formed code was a conditional block within a for-loop, then
the time taken to execute that entire for-loop before and
after the optimization was used to determine the speedup.
The characteristics of the loop kernels selected for our ex-
periments are listed in Table 5. In Table 5 conditional ex-
pressions column shows the particular conditional expres-
sion(s). If there are more than one conditional expression in
a loop kernel, then we run our algorithm for each instance of
conditional expression separately (i.e., the algorithm is run
iteratively as long as improvements are obtained). Also, in
Table 5, Application column shows where we picked the loop
kernel and Function description column shows the function-
ality of the code where the kernel is taken from. We applied
our transformation technique at the source level to each of
the chosen benchmarks, compiled the original and the trans-
formed code, and measured the improvement. We did this
experiment for three types of processors: SPARC, Intel and
PowerPC. For all processors, we measured the performance
improvement together with code size increase.

Note that there are cases where we measured decrease
in code size (e.g., mpegdec-vhfilter), this is due to removal
of the conditional expression evaluation from the code and
small number of partitions that are generated. Note that
since there are real runtime results on real machines, they
naturally factor in any possible performance effects of code

size increase on caching. Thus the speedups are the real
effect of the transformation on actual running code.

Experiments with GCCs increasing levels of optimizations
(none, -O1, -O2, -O3) show that the proposed optimiza-
tion techniques yields additional performance improvements
when applied in conjunction with existing compiler opti-
mizations in vast majority of cases. In the few cases where
this is not true (e.g., 186.crafty in Intel or PowerPC or qs-
dpcm in PowerPC), the difference is within measurement
noise. Furthermore, this is a well known effect of interac-
tions between compiler optimizations and is indeed also vis-
ible without our transformations (e.g., 175.vpr for SPARC
and qsdpcm for Intel and PowerPC) as shown in Tables 6,
7 and 8.

Each loop kernel (original and transformed) was compiled
using different optimization levels of gcc [10], namely: no op-
timization (shown as no in the following sections); using -O1
switch; using -O2 switch and finally using -O3 switch. In
the following sections, the speedup calculations are based on
the ratio of the time to execute the optimized loop kernel to
the time to execute the original loop kernel. In each case the
execution time before code transformation (To) and the exe-
cution time after code transformation (Tn) are measured and
speedup improvement has been calculated using the follow-
ing formula: Improvement(%) = (1 − To/Tn) × 100. Each
bar in Figure 6, 8 and 10 shows the time improvement af-
ter applying our code transformation. For each benchmark
there are 4 bars, representing the time improvement for 4
cases of optimizations mentioned above.

5.1 SPARC
The results of experiments on SPARC CPU are summa-

rized in Table 6. The first half of Table 6 shows the result of
measured time before and after transformation for 4 differ-
ent optimization options. The second half of Table 6 shows
the result of code size before and after transformation for
the same 4 optimization options plus another optimization
for code size (-Os). The percentage of time and code size
change has been shown graphically in Figure 6 and Figure 7.

The experiments were run on a Sun workstation, with
2 SPARC CPUs (1503 MHz SUNW,UltraSPARC-IIIi) and
2 GB of memory, but the code ran for all experiments on
a single CPU. We used GCC compiler version 3.4.1 in or-
der to generate executables. In the best case, we observed
application speedup of 551% (6.51X). On average, we ob-
served application speedup of 175% (2.75X). On average we
observed 150.9% increase on code size.

5.2 Intel X86
The results of experiments on intel CPU are summarized

in Table 7. The first half of Table 7 shows the result of
measured time before and after transformation for 4 different
optimization options. The second half of Table 7 shows the
result of code size before and after transformation for the
same 4 optimization options plus another optimization for
code size (-Os). The percentage of time and code size change
has been shown graphically in Figure 8 and Figure 9.

The experiments were run on a MacBook with a Intel Dual
Core 1.8GHz and 1 GB of memory. We used GCC compiler
version 3.4.1 in order to generate executables. In the best
case, we observed application speedup of 965% (10.65X). On
average, we observed application speedup of 336% (4.36X).
On average we observed 134.2% increase on code size.

163

Table 5: Selected Application List
Application Function desc. Conditional expressions Properties(Table2)

1 2 3 4 5 6 7 8
mpeg4 Motion estimation (x3 < 0||x3 > 35||y3 < 0||y3 > 48) X X X X X X

(x4 < 0||x4 > 35||y4 < 0||y4 > 48)
qsdpcm Motion estimation ((4 ∗ x + vx − 4 + x4 < 0)|| X X X X X X

(4 ∗ x + vx − 4 + x4 > (N/4 − 1))||
(4 ∗ y + vy − 4 + y4 < 0)||

(4 ∗ y + vy − 4 + y4 > (M/4 − 1)))
gimp Create Kernel (32 ∗ x − 2 ∗ i + 1)2 + (32 ∗ y − 2 ∗ j + 1)2 < 4096 X X X X X

122.tachyon Parallel ray tracing (x == NMAX − 1), X X X X X X
(SPECMPI-2007) (Generate Noise Matrix) (y == NMAX − 1), (z == NMAX − 1)

186.crafty Chess program (j < 16), (j > 47) X X X X X
(SPEC-2000) (Generate Piece Masks)

175.vpr FPGA Circuit Placement i! = 4&&i! = DET AILED ST ART + 5&& X X X X X
(SPEC-2000) and Routing (Check i! = 5&&i! = DET AILED ST ART + 6

architecture ↓le)
252.eon Computer Visualization (i == 0), (j == 0), (k == 0) X X X X X

(SPEC-2000)
253.perlbmk PERL Programming ((c >=′ A′&&c <=′ Z′)|| X X X X X X
(SPEC-2000) Language (c >=′ a′&&c <=′ z′)||

(c >=′ 0′&&c <=′ 9′)||c ==′ ′)
Synthetic graphics Collision detection (x ∗ x + y ∗ y == x ∗ x ∗ y) X X X X X

mpgdec-initdec Initialize Decoder (i < 0), (i > 255) X X X X X
mpgenc-vh↓lter Ver./Hor. Filter,2:1 Subsample (i < 5), (i < 4), (i < 3), (i < 2), (i < 1) X X X X X

mp3-psych Layer 3 Psych. Analysis j < sync flush, j < BLKSIZE X X X X X X
mp3-align Read and align audio data j < 64 X X X X X

mpgenc-idct IDCT Initialize (i < −256), (i > 255) X X X X X
mpgdec-vh↓lter Ver./Hor. Interpolation Filter (i < 2), (i < 1) X X X X X

Figure 6: Effect of transformation on time for SPARC

5.3 PowerPC
The results of experiments on ppc CPU are summarized

in Table 8. The first half of Table 8 shows the result of
measured time before and after transformation for 4 different
optimization options. The second half of Table 8 shows the
result of code size before and after transformation for the
same 4 optimization options plus another optimization for
code size (-Os). The percentage of time and code size change
has been shown graphically in Figure 10 and Figure 11.

The experiments were run on a Apple PowerMac G5 with
a 1.6 GHz PowerPC G5 and 768 MB of memory. We used
GCC compiler version 4.0.1 in order to generate executables.
In the best case, we observed application speedup of 812%
(8.12X). On average, we observed application speedup of
198.9% (2.98X). On average we observed 136.2% increase
on code size.

6. ACKNOWLEDGEMENT
This work was in part supported by grant #0749508 from

the National Science Foundation.

7. CONCLUSION
Given the stringent design constraints and performance

requirements of embedded systems, as software becomes

Figure 7: Effect of transformation on code size for SPARC

more dominant, the importance of aggressive compiler op-
timizations also increases. Hence, it is acceptable for a
compiler intended for embedded computing to take longer
to execute but perform aggressive compiler optimizations.
We have presented a new loop transformation technique,
intended for embedded compilers. The transformation tech-
nique optimizes loops with nested conditional blocks and it
decomposes the loop nests in a way that conditional testing
is eliminated. Applying the proposed transformation tech-
nique on the loop kernels taken from Mediabench, SPEC-
2000, mpeg4, qsdpcm and gimp, on average we measured a
175% (1.75X) improvement of execution time when running
on a SPARC processor, a 336% (4.36X) improvement of ex-
ecution time when running on an Intel Core Duo processor
and a 198.9% (2.98X) improvement of execution time when
running on a PowerPC G5 processor. We used high-end
processors because better compilers are available, so as to
avoid the possibility that our technique looks better than
it should because of poor optimizations done by the com-
piler. Also, these processors are representative of high-end
embedded processors (Intel Core-duo has an embedded ver-
sion, so do PowerPC and SPARC). We measured a code size
increase of 150.9% for SPARC, 134.2% for Intel and 136.2%
for PowerPC. Note that despite the size increase, the overall

164

Table 6: Result of Experiments for Sparc-Time and code size(Shaded: Original;White: Transformed)
Time (Original and Transformed) Code size (Original and Transformed)

Benchmark No -O1 -O2 -O3 No -O1 -O2 -O3 -Os

mpeg4 228638 67032 98920 45740 91782 44674 91608 45208 362 651 178 303 196 306 196 577 180 283

qsdpcm 138730 108332 26234 19884 19602 14446 17408 14304 253 1860 135 1024 141 981 153 1088 128 874

gimp 114054 94422 45870 38664 44960 38368 44928 38274 265 2580 158 1498 149 1319 149 1321 140 1276

122.tachyon 177416 161306 44714 10348 38294 9928 30614 9932 166 693 80 179 76 139 153 139 74 137

186.crafty 216310 212102 51436 47782 44636 42702 23584 17602 380 552 198 307 117 285 238 435 143 314

175.vpr 14050 11972 5902 3204 5990 3038 5846 3054 148 351 84 190 94 211 94 211 87 180

252.eon 590 487 594 484 591 481 586 489 350 1428 139 268 81 192 78 192 101 168

253.perlbmk 10474 2512 7138 1084 6798 1068 6806 1062 108 199 61 102 60 101 60 101 60 101

graphics 4982 2466 2320 1152 1338 594 1308 588 82 81 44 44 48 42 48 42 43 43

mpgdec-initdec 3438 2408 670 412 670 308 642 310 72 91 38 51 39 48 39 48 39 47

mpgenc-vh↓lter 12706 8010 5040 2406 4234 790 4238 786 295 756 151 358 130 123 128 123 120 109

mp3-psych 6184 5532 3930 3270 3834 3128 3764 3088 186 325 127 215 120 213 119 212 107 183

mp3-align 15106 13740 3604 2980 2972 2386 2736 2352 99 104 49 51 52 50 52 50 48 50

mpgenc-idct 3486 2582 718 412 1152 332 748 386 241 100 44 59 43 53 43 53 43 52

mpgdec-vh↓lter 2034 900 552 94 582 96 582 96 157 262 82 76 71 64 71 64 66 60

Table 7: Result of Experiments for Intel-Time and code size(Shaded: Original;White: Transformed)
Time (Original and Transformed) Code size (Original and Transformed)

Benchmark No -O1 -O2 -O3 No -O1 -O2 -O3 -Os

mpeg4 36638 8366 16906 2866 16600 2738 17862 2846 365 636 211 305 193 270 212 290 204 288

qsdpcm 34452 27848 9460 7272 14850 10530 15930 11290 219 1486 179 1192 173 1091 218 1282 179 1125

gimp 18138 15936 16262 13380 16060 13448 16060 13448 210 2032 157 1372 133 1130 133 1130 131 1063

122.tachyon 40854 34438 15472 2502 15548 3246 8474 2486 143 649 82 190 73 135 95 138 73 135

186.crafty 37736 39652 19346 18116 21740 21110 8400 6840 346 508 272 422 250 420 362 488 314 494

175.vpr 2130 1400 1462 976 1272 732 1276 744 110 244 80 230 104 253 106 253 93 223

252.eon 126 123 24 11 35 25 28 25 285 1265 108 210 144 236 82 236 126 236

253.perlbmk 1850 462 762 152 762 150 756 150 83 158 59 100 64 106 64 106 60 100

graphics 250 122 58 22 52 30 52 30 60 60 48 48 53 48 53 48 53 48

mpgdec-initdec 540 448 158 52 140 60 140 60 57 68 49 53 54 54 57 54 49 54

mpgenc-vh↓lter 3012 1482 1000 158 980 92 980 92 254 653 175 126 176 129 176 129 171 129

mp3-psych 900 800 610 482 550 492 538 510 117 203 108 186 93 184 93 184 110 183

mp3-align 2770 2572 1240 644 846 614 786 640 74 71 59 54 59 61 59 61 59 51

mpgenc-idct 560 430 158 52 180 52 182 60 63 74 56 61 61 62 64 62 56 62

mpgdec-vh↓lter 438 170 216 30 110 12 110 20 136 216 99 82 103 80 103 80 97 80

performance is still improved by the above factors, i.e., cache
performance degradation, if any, due to the increased code
size is already factored into the results, since we measured
actual runtime of the original and transformed code.

8. REFERENCES
[1] Standard Performance Evaluation Corporation. Spec cpu2000.

Available as http://www.spec.org/cpu2000/.

[2] C. Lee et. al. Mediabench: A tool for evaluating and
synthesizing multimedia and communicatons systems. In
International Symposium on Microarchitecture, pages
330–335, 1997.

[3] H. Falk and P. Marwedel. Control flow driven splitting of loop
nests at the source code level. In Proceedings of DATE, pages
410– 415, 2003.

[4] M.A. Ghodrat, T. Givargis, and A. Nicolau. Equivalence
checking of arithmetic expressions using fast evaluation. In
Proceedings of the CASES, pages 147 – 156, 2005.

[5] I. Issenin and N. Dutt. Data reuse driven energy-aware mpsoc
co-synthesis of memory and communication architecture for
streaming applications. In CODES-ISSS 2006, pages 294–299,
2006.

[6] K. Kennedy and R. Allen. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan
Kaufmann, 2001.

[7] R.E. Moore. Interval analysis. Prentice-Hall, Englewood Cliffs,
N. J., 1966.

[8] S.S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[9] P. Stobach. A new technique in scene adaptive coding. In
Proceedings of EUSIPCO, 1988.

[10] The GCC Team. Gnu compiler collection. Available as
http://gcc.gnu.org/.

[11] The GIMP Team. Gnu image manipulation program. Available
as http://www.gimp.org/.

[12] M. Wolfe. High-Performance Compilers for Parallel
Computing. Addison Wesley, 1995.

[13] M. Wolfe. How compilers and tools differ for embedded
systems. In Proceedings of the CASES, page 1, 2005.

[14] www.mp3tech.org. Iso mp3 sources. Available as
http://www.mp3-tech.org/programmer /sources/dist10.tgz.

165

Table 8: Result of Experiments for PowerPC-Time and code size(Shaded: Original;White: Transformed)
Time (Original and Transformed) Code size (Original and Transformed)

Benchmark No -O1 -O2 -O3 No -O1 -O2 -O3 -Os

mpeg4 111968 19876 29638 4530 27166 4532 19562 4534 346 614 154 233 163 242 264 344 157 236

qsdpcm 71244 72052 9802 10412 9622 9346 16100 9188 240 1694 124 772 128 781 145 821 123 766

gimp 81894 67692 44642 35746 42344 34818 42320 34878 253 2361 141 1172 137 1156 154 1180 136 1140

122.tachyon 77394 64740 18878 6960 17888 8570 13286 7966 147 552 75 144 78 145 153 145 75 144

186.crafty 105844 103300 25782 27160 26090 26034 8590 8130 357 523 202 293 194 295 235 398 227 383

175.vpr 11986 9296 3500 2380 2974 2076 2972 2080 152 351 76 204 79 202 79 202 75 191

252.eon 423 417 67 51 62 44 62 44 239 955 92 184 92 197 84 197 86 196

253.perlbmk 8572 1748 1442 400 1452 390 1450 390 107 206 58 102 60 107 60 107 60 102

graphics 1756 1080 140 90 160 80 140 60 74 74 42 42 44 44 44 44 43 43

mpgdec-initdec 3828 2604 360 242 410 202 360 198 79 100 47 54 48 57 48 57 47 54

mpgenc-vh↓lter 7112 3724 1772 190 1670 190 1670 190 265 628 142 100 154 98 154 98 141 97

mp3-psych 4410 4828 2840 3084 3020 3192 2862 2950 192 350 132 214 135 223 135 223 130 219

mp3-align 17062 16092 2150 1162 1902 1104 2158 1162 121 126 69 54 71 56 71 56 69 54

mpgenc-idct 2960 1936 370 212 370 192 410 200 87 108 53 61 54 62 54 62 52 59

mpgdec-vh↓lter 1126 484 270 60 250 60 250 60 155 252 82 68 84 70 84 70 79 68

Figure 8: Effect of transformation on time for Intel

Figure 9: Effect of transformation on code size for Intel

Figure 10: Effect of transformation on time for PowerPC

Figure 11: Effect of transformation on code size for Pow-

erPC

166

