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ABSTRACT
The ability to postmortem failures in deployed systems due
to non-deterministic events is useful in crash investigations.
With this goal in mind, we propose FlashBox − a system
that acts as a black box for embedded systems, recording
non-deterministic events (interrupts). The FlashBox hard-
ware consists of a microcontroller and flash memory. The
FlashBox software is an extension to a compiler, enabling
recording capabilities at various granularities. There are no
source code modifications required to use FlashBox and no
assumptions made on processor capabilities such as hard-
ware counters. The FlashBox log can be used for faithful
replay with a goal to isolate faults and reason about failure.

We present a prototype implementation of FlashBox that
logs non-deterministic events on an AVR ATMega169 micro-
controller. The FlashBox prototype consists of a 8051 mi-
crocontroller with flash memory. The avr-gcc compiler has
been extended to log non-deterministic events. Based on our
experimental results, FlashBox results in 10−23% overhead
while providing capability to log non-deterministic events at
instruction level granularity. With decreasing cost of flash
memories, FlashBox provides a low cost logging mechanism.
The use of standard I/O communication protocols enhances
portability, enabling ease of integration for different classes
of embedded systems.

1. INTRODUCTION
Embedded systems software range from code running on

a tiny microcontrollers to full blown operating systems run-
ning on high end embedded processors. One of the common
threads underlying embedded systems software is to provide
software reliability and robustness. This is due to the fact
that embedded systems could be deployed in safety criti-
cal, real time and physical environments that are hard to
reach. While utmost importance is given to ensure software
reliability during design and testing phase of software devel-
opment, bugs do creep up resulting in failures, sometimes
catastrophic [7].
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Software failure in a runtime (deployed) system could be
due to various reasons. One of the reasons that is difficult to
catch during testing and design phase is due to causality i.e.,
bugs caused due to events that are interleaved in a way that
is unforeseen or not taken care of during testing. Thus, the
ability to postmortem a failed system and replay the exact
events that led to a failure mode cannot be undermined.
Such a capability could be crucial in embedded and real-
time systems that are often part of a bigger system and
a malfunction could lead to safety issues and revenue loss.
For example, a critical piece of software running on BMW
745i had to be recalled, due to de-synchronization error, at
millions of dollars in cost [30].

Traditionally, desktop class systems have facilities and
mechanisms to log events that occur post deployment. The
mechanisms provided could be hardware assisted, modifying
software with logging support, installing special monitoring
software or using a hybrid scheme involving one or more
mechanisms [13, 15, 20]. On a failure, the logs are used to
determine the cause of a failure, and in some cases repro-
duce the exact failure scenario. Such postmortem analysis of
embedded systems, however, is non-trivial. Embedded sys-
tems, specifically post deployment, are hard to debug due to
the following reasons. Most embedded systems have limited
or no user interface making it difficult to interactively debug
a deployed system. The amount of processing power in em-
bedded systems is limited therefore, the operating system
may not have the luxury of running logging or monitoring
daemons. A given system could be deployed in a physi-
cally hostile environment. The amount of secondary storage
in an embedded system might be limited and not available
for logging events. Moreover, using an embedded system to
log itself will consume main memory to store intermediate
buffers, thereby affecting overall system performance.

In this paper, we propose FlashBox - a flash based sys-
tem to record non-deterministic events (interrupts) in em-
bedded systems that can aid in crash investigation and re-
play. FlashBox is a minimally invasive monitoring system
composed of a flash memory and an off the shelf 8-bit micro-
controller. FlashBox acts similar to a flight data recorder
(blackbox) when integrated along with an embedded sys-
tem. The software running on a system to be monitored
logs non-deterministic events, interrupts in our case, to the
FlashBox. There is no need for any source code modifica-
tions. FlashBox is a compiler assisted approach. Compiling
applications with our modified compiler ensures that non-
deterministic events are logged. We do not require that the
system being monitored support any special hardware for



logging. The following are the contributions of this paper
−− (i) A minimally invasive, low-cost system architecture
to log non-deterministic events in deployed embedded sys-
tems with no assumptions on processor capabilities. (ii)
Compiler techniques to aid logging non-deterministic events
during run-time. (ii) A demonstrable system based on mi-
crocontroller, flash and extensions to avr-gcc compiler.

Software safety has long been an important issue in the
embedded systems design [11]. Interrupts are an integral
part of an embedded system software and also notorious for
causing bugs that are hard to catch due to non-determinism.
Eg: a malfunctioning Therac-25 medical system resulting in
people receiving overdose of radiation has been well docu-
mented as one of the worst bugs in software history [12, 7].
The bug was non-deterministic (due to interrupts) and trig-
gered by a way keys were pressed by an operator. The moti-
vation behind this work is to record such non-deterministic
events on deployed systems using a low cost, portable so-
lution, thereby providing data that can be used to replay,
reason and pinpoint the cause of a system crash.

Our methodology is motivated by the fact that embedded
systems impose certain limitations that hinder the adoption
of traditional debug replay schemes [9, 8, 17, 23, 13, 27]
on deployed systems. For instance, an embedded processor
may not have atomic test and set instructions that can avoid
certain class of errors. Some of the existing techniques like
watchdog timers simply reboot the system and provide lit-
tle or no information on what caused the reboot. On board
storage could be a serious deterrent to logging techniques.
Formal verification could be hard in case of embedded soft-
ware where often code consists of a mix of high level lan-
guage and low level assembly routines. Moreover, formal
verification techniques impose restrictions on coding style
and model checking require that the code be represented
in a form that is verifiable. Further, it cannot be assumed
that the embedded system is networked thereby eliminating
the logging over a network or providing a feedback path. A
large class of solution has been based on modifying processor
architecture/data-path, which might be cost prohibitive and
based on the assumption that the processor IP is available.

The rest of the paper is organized as follows: Section 2
motivates the problem and addresses the related work fol-
lowed by system architecture in Section 3. Section 4 consists
of experimental results, analysis followed by conclusions.

2. RELATED WORK
One of the early approaches in dealing with non-determinism

due to interrupts proposed in [23], was to convert the sources
of non-determinism into messages that arrive at well defined
points. However, this model was intended for distributed
systems and does not fit in embedded systems where ex-
act timing is desired. In [21], the authors propose a thread
library that logs software interrupts (signals) for determin-
istic replay of threads. 1 The user level thread library is
based on software counters [3]. Support for software coun-
ters may not be present in embedded processors. Besides,
the proposed thread library is designed to log only signals.
In our approach, we avoid using software counters due to
potential overhead and the lack of software counter support
in a large class of embedded processors. Our approach logs

1We use interrupt to mean hardware interrupts and signal
to mean software interrupts provided by a library

non-determinism due to interrupts and signals.
In [2], the goals of the authors is to statically check the

stack size and latency analysis due to interrupts. One of
the side effects of such an analysis is increased confidence
in correctness of interrupt related code. While static analy-
sis increases the confidence in code correctness, it does not
eliminate timing related errors that are non-deterministic.
Static analysis and model checking based approaches try to
address the correctness of a given code thereby eliminating
the need for testing execution paths or the need for logging
software. However, such approaches are limited to what kind
of code can be proven to be correct, and often, require that
the programmer specify the source code in a form that can
be verified [6]. In [18], the authors present a novel approach
called RID - a restricted interrupt discipline whose goal is
to design systems that makes the software robust by reduc-
ing the possibility of aberrant interrupts. Such an approach
though useful, is not intended to log non-determnistic inter-
rupts. RID can be used in conjunction with our approach.

In [17], the authors propose a system for high availabil-
ity servers that maintains a state (checkpoints) and rolls
back to a previous safe state on a software failure and starts
re-executing. However, there are no guarantees that the re-
execution will not lead to the same failure. This approach
could eliminate non-deterministic bugs, but it is not suited
for embedded and real time systems due to: (i) extensive
checkpointing infrastructure built into the OS; and (ii) the
fact that a real time system might be interacting with out-
side world (sensors, actuators) in which case reverting back
to an earlier state is not a possibility. Further, approaches
such as [17, 22] assume a full blown OS running on a system.
This may not always hold true for embedded systems.

TTVM proposed by [9, 4] is an approach where a virtual
machine is used to run an unmodified OS along with gdb

in order to debug an operating system. Such an approach
could be used in our work in order to perform a postmortem
after a system crash. The advantage of a virtual machine is
that it is a software solution and can provide mechanisms
to freeze an operating system and also allows for the ability
to feed the recorded interrupts as stimulus to the operating
system being debugged. However, unlike desktops, running
deployed systems on a virtualized environment may not be
a feasible on embedded processors. A technique like TTVM
can be used for replaying. liblog, a user space library is
based on the idea of intercepting libc function calls and
logging the function details along with the data [8]. Being
aimed at distributed systems, liblog assumes the existence
of spare resources, specifically processor, memory, network
bandwidth and disk. liblog assumes that any activity out-
side of libc call is deterministic. Further, the granularity
of replaying is at libc function call. Our approach is more
fine grained and lightweight in terms of overhead. Jockey
[19], like liblog is also a user space library and shares the
limitations of user space replay debugging tool.

In [27], Thane et. al., share the similar goal of debug re-
play of real-time systems. The authors propose three kinds
of logging mechanisms, two of which assume hardware sup-
port. The “type 2 - software recorders” based logging ap-
proach proposed in [27] is intended to serve as a blackbox
that records events. This approach is closest to ours. How-
ever, the proposed software recorders are not minimally in-
trusive and do an in-system logging. The authors propose
using a “marker” which is a tuple consisting of timestamp,
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Figure 1: FlashBox Architecture

program counter, stack pointer and a checksum of the regis-
ter set. Calculating and storing this tuple is more expensive
compared to our approach due to (i) the amount of data
stored at each marker and (ii) the checksum calculation that
is done at each timestamp. Further, the replay method as-
sumes access to instruction level simulators, JTAG or ICE.
In the absence of of such hardware features, it is assumed
that the underlying RTOS has the necessary hooks to record
desired events. In our case, we do not make an assumption
of such features. There is extensive work done by Thane et.
al., [24, 25, 26] in the area of log and replay techniques for
debugging real time systems, thus, based on special hard-
ware support (JTAG, BDM etc). We are concerned with
providing logging for in-field, deployed systems and thus do
not make any assumptions on traditional hardware debug-
ging facilities. A survey of rollback techniques can be found
in [5]. There have been approaches (Eg: [29, 16]) that as-
sume architectural changes.

3. SYSTEM ARCHITECTURE
FlashBox comprises of a hardware and a software compo-

nent. The hardware component consists of a flash memory
and a microcontroller. The software component is a modi-
fied compiler. Figure 1 depicts the FlashBox system archi-
tecture in the following phases: During compile time, appli-
cation source code is compiled using an additional compiler
flag, -FB. During run time, the FlashBox code sends (logs)
occurrence of non-deterministic interrupts to the FlashBox
hardware. The target system is interfaced with the Flash-
Box hardware using a standard protocol like UART, I2C or
GPIO pins. The log of interrupts can be used for faithfully
reproducing the exact timeline of interrupts that occurred
during runtime. Such an information can be used in con-
junction with a simulator (Eg: [28]) or a virtual machine
(Eg: [9]) to investigate (or recreate) a system crash.

3.1 FlashBox Hardware
A separate hardware approach was chosen so that the pro-

cess of logging is minimally invasive. The flash could be di-
rectly interfaced with the target system. However, such an
approach would impose overhead on the target system due
to the flash controller software, the logging technique and
main memory consumption. Moreover, making the Flash-
Box hardware a separate standalone entity makes it easier
to be plugged into existing systems. The growing sizes and
lowering cost is the primary motivation behind the choice of
flash memory as a storage medium for FlashBox [10]. Be-
sides, the newer high density flash technologies like the MLC
large block NAND lend themselves very well to data that is
written sequentially, such as log data in our case.

3.2 FlashBox Compiler
We have implemented the FlashBox compiler by adding

code to existing gcc compiler (avr-gcc) for the Atmel AVR

class of processors [1]. Code generation for the FlashBox is
enabled by using -FB option along with avr-gcc. In order to
capture this non-determinism due to interrupts, the Flash-
Box compiler checkpoints the instances in a process’s exe-
cution path at which interrupts occur. Thus, whenever one
of the desired interrupt triggers, the additional code due to
the FlashBox compiler executes in the context of the inter-
rupt service handler. This additional code logs the interrupt
number and any additional data that might be required to
uniquely identify the instance in time when the interrupt
occurred. The process of logging implies an overhead on
the target system. Therefore, depending on how accurately
the non-deterministic events are logged, we provide two ap-
proaches to compiling an application for FlashBox that are
a trade off between accuracy of logging versus overhead on
the target system.

3.2.1 Approach 1
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Figure 2: Approach 1

In this approach the overhead on the target system due to
FlashBox is minimal. Each occurrence of a non-determinsitic
interrupt is logged by the FlashBox. Figure 2 depicts a hy-
pothetical situation. An interrupt occurs at time t0 leading
to the next PC value i.e., 11 getting stored on the stack. The
control jumps to the IVT at time t1 which redirects the PC
to address 100 corresponding to the ISR for interrupt num-
ber 5. Starting t2, the ISR starts executing and sends log
data to the FlashBox hardware. The FlashBox hardware
uses its own clock as time stamp (i.e., t), and records the
pair 〈5, t〉 uniquely identify the interrupt and the instance in
time when the interrupt occurred. The advantage of this ap-
proach is that it is minimally invasive on the target system.
This approach provides a way of logging non-deterministic
interrupts with minimal overhead by delegating the job of
time stamping non-deterministic interrupts to the FlashBox
system. While this approach may not accurately pin point
the exact times during replay, it might still be useful in nar-
rowing down a range of time during which non-deterministic
events occur. The disadvantage of this approach is poten-
tial lack of accuracy while replaying. Since the FlashBox
hardware uses its own clock, the time stamp can only be as



accurate as the clock resolution of the FlashBox hardware.
Note that the accuracy can be improved by using a common
clock source or a phase locked oscillator.

3.2.2 Approach 2
SIGNAL(SIG_OVERFLOW2) {

   /* Prologue */

   push r16

   ...

   /* Body */

   

   /* Epilogue */

   ...

   pop r16

}

int foo(void) {

}

   

SIGNAL(SIG_OVERFLOW2) {

   /* Prologue */

   push r16

   ...

   /* FlashBox code */

   /* Body */

   

   /* Epilogue */

   ...

   pop r16

}

int foo(void) {

}

   

-FB1 -FB2

-FB2

Code 
Generated

Compiler
Options

Figure 3: FlashBox code insertion

In this approach, the FlashBox compiler generates all the
code generated by approach 1 (-FB1 option). Additionally,
this approach logs the value of PC when a non-deterministic
interrupt occurs. This value of PC is obtained from the
stack of the function that was interrupted. However, the
PC cannot uniquely pin point the instance when a non-
deterministic interrupt occurs due to the following two cases:
case (i) during loop iterations, the execution of a program
iterates over the same set of PC values. Thus, if there are
more than one instance of a non-deterministic interrupt that
occurs at different iterations of a loop, but at the same value
of the PC, the combination of interrupt vector number and
PC cannot distinguish between the multiple occurrence of
the non-deterministic interrupts. case (ii) during the exe-
cution of a function call, the PC iterates over the same set
of PC values. It is therefore possible that a given function
f(), is called from two different places in a program, and
a non-deterministic interrupt occurs at the same PC value
during execution of f(). Such a case makes it difficult to dis-
tinguish between the two instances of the non-deterministic
interrupts. This ambiguity can by eliminated by logging the
PC value before invocation of the function f(). However,
not all function calls need to be logged before their invoca-
tions. Note that, if a function call exists within a loop body,
the loop entry is logged by the FlashBox. Therefore, a func-
tion call within a loop need not be logged before its invo-
cation. Such an analysis can drastically reduce the number
of functions that need to be logged before their invocation.
The algorithm to determine a subset of function calls that
need to be logged is presented in the next sub section.

Approach 2 logs the following: (i) the interrupt number
and the PC value during the execution of an ISR, (ii) the
PC value before the entry of a loop, (iii) the PC value before
invocation of a function, (determined by algorithm 2), and
(iv) a marker at every iteration of a loop that serves as a loop
iteration counter. The advantage of this approach is that it
provides precise log of non-deterministic events. Thus, it
can be used to faithfully replay the exact instances of non-

deterministic events in an application’s runtime. However,
the accuracy comes at a cost of runtime overhead. Figure 3
illustrates the additional code generated by approach 3 (i.e.,
-FB2) for a given signal handler and a function represented
in terms of basic blocks.

3.2.3 Algorithm
There are three algorithms to generate code that logs data

on the FlashBox hardware. The first algorithm, integrated
into the compiler, generates logging code at every execution
of a signal or an ISR. Algorithm 1 describes the process of
generating logging code in the context of loops for the -FB2

option. This algorithm is invoked post assembly code gen-
eration phase. The algorithm does two passes over every
function. In the first pass (lines 6-15), the algorithm makes
a list of all labels and back edges. In the second pass (lines
16-27), the log instructions are generated for each back edge.
The code generation function returns the number of addi-
tional instructions added (denoted by variable count). This
value is used by the linker at a later phase to reserve space in
the instruction memory. The complexity of this algorithm
is O(N) per function given N instructions in a function.

Algorithm 2 determines a subset of functions in a program
for which logging code needs to be generated. Its inputs are
a program call tree and a list of loops. The call tree depicts
the calling sequence with main as the root node (Figure 4)
and is used to determine the list of functions that need log-
ging. Such functions are determined using a recursive depth
first traversal of the program call tree.

Algorithm 1 FlashBox code for loops

1: Input: Function func, Flag flg
2: Output: Function func with FlashBox code if required
3: List labels L← φ, List backedges B ← φ
4: Instructions count← 0
5: if func 6= signal and func 6= ISR then
6: for all instruction I ∈ func do
7: if I ∈ label type then
8: L = L ∪ 〈I, I.loc()〉
9: else if I ∈ jump type then
10: T ← I.target()
11: if (L.lookup(T )) ∈ L then
12: B = B ∪ T
13: end if
14: end if
15: end for
16: for all instruction I ∈ func do
17: if I ∈ B then
18: count = generate logcode();
19: generate label();
20: count+ = generate logcode();
21: update instr count(func, count);
22: end if
23: end for
24: end if

The functions that need FlashBox code before their invo-
cations are determined in the following two cases: (i) if a
function is outside of any loop and none of its caller func-
tions (or ancestors) are part of a loop either (lines 4-6). (ii)
if a function is part of the loop, however, the same function
was called earlier in the same loop. (lines 7-9). Lines 10-13
follow the recursive algorithm for depth first traversal. The
algorithm when applied to the code section shown in Figure
4 generates FlashBox code only for function g() before it is
called by main(). Note that additional code is not generated
for either f() or g() which are called inside the context of a
loop. For recursive calls we place the code inside function.



Algorithm 2 FlashBox code for functions

1: gen fb func(T)
2: Input: Program Call Tree T , Loop List L
3: Output: Program annotated with FlashBox code
4: if T /∈ L and ancestor(T ) /∈ L then
5: generate fb code()
6: end if
7: if T ∈ L and siblings(T ) = T then
8: generate fb code()
9: end if
10: T ← visited
11: for all vertices v adjacent to T not visited do
12: gen fb func(v)
13: end for

4. EXPERIMENTAL RESULTS
Figure 5 shows our prototype. The target system is an

AVR butterfly board running Atmel ATmega169V (8MHz)
8-bit processor with 16KB of program memory and 512 bytes
of data memory [1]. The butterfly board was chosen due to
availability of gcc, glibc and support for multiple interrupts.
The FlashBox hardware shown in Figure 5 consists of a 8051
microcontroller with external flash. We used NOR flash as
a proof of concept. However, without loss of generality, this
can be replaced with a NAND flash and additional software
to manage flash.

main() {     f() {

  ...         ...

  for(...) {  g();

    ...       ...

    f();     }

  }

  ...

  g();

}
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f g
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main() {     f() {

  ...         ...

  for(...) {  g();

    ...       ...

    f();     }

  }
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}
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Figure 4: FlashBox code for function calls
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Figure 5: Experimental Setup

4.1 Benchmarks
We use two sets of benchmarks to evaluate our approach.

The first set of benchmarks consists of two applications
based on earlier work in the area of non-determinism. The
first application is based on a bug described in [18]. This
application called ADC, is part of TinyOS distribution for
sensor networks. The bug occurs if an analog to digital
convertor interrupt arrives at an unexpected period in time
when the size of a circular buffer is being reset. The code was
rewritten in C from its original implementation in the NesC
language. The second application is based on an example
from avionics provided in [6]. In this case if the interrupts do
not arrive at a specific interval (10 Hz), the altitude meter
in avionics system could lose its accuracy over an extended
period of time. Our second set of results evaluate (i) the
overhead due to loops and function calls, and (ii) the effect
of hardware interface between the target system and the
FlashBox hardware. We chose UART and GPIO for com-

parisons as these represent the worst and best case scenario
in terms of lines of code required to log data (as per Table 1).
We chose six applications from the powerstone benchmark
suite [14].

Table 1: Interface Protocol Variations for AVR
Protocol UART I2C SPI GPIO

Instructions 21 18 20 8
Pins 3 3 5 8

4.2 Results
Table 2 is intended to highlight the error due to using

separate clocks on the target system and the FlashBox in
case of approach 1. We ran the first set of benchmarks on
the setup shown in Figure 5. There is no direct way of mea-
suring clock cycles on the ATmega169 microcontroller. We
therefore inserted loop counters in both the target system
and the FlashBox. The conversion from loop counters to
cycles were done on a simulator. The numbers shown in Ta-
ble 2 was derived by converting loop counters into estimated
clock cycles on the target system. Note that a given number
of clock cycles on the FlashBox can be converted into an es-
timate of clock cycles on the target since we know the clock
frequencies of both the target and the FlashBox. Further,
we only show approach 1 since it results in the worst case
error due to a non-PC based logging approach.

Although the percentage error of estimated cycles is neg-
ligible (< 1%), this number is not sufficient to accurately
log when an interrupt occurs. For example, in case of ADC,
if the loop body is of the order of 1000 cycles, the Flash-
Box would estimate that 48359 iterations of loop elapsed
between two successive occurrences of interrupts (as opposed
to 48377 loop iterations on the target). Thus, while a non-
PC based approach may not be good at pin pointing the
exact interrupt instance, it can still be used to narrow down
to a range of when an interrupt occurs. Further, the esti-
mates in such cases can be improved by logging more fre-
quently at some pre-identified points (finer granularity) in
the application.

Table 2: Logging error in non-PC based approach
Application FlashBox Estimate Target Estimate

ADC 48359407 48377319
Avionics 10335144 10325304

We used the Avrora cycle accurate simulator [28] to run
our second set of benchmarks. We used simulation due to
the fact that the ATmega169 microcontroller does not pro-
vide mechanisms for program instrumentation (eg: evalu-
ating the total cycle count) and also due to the existence
of profiling tools (eg: gcov) in software. The powerstone
benchmarks has a lightweight implementation of common
glibc functions. Thus, for all our results, the overhead num-
bers presented take into account the overhead of FlashBox
due to logging the application and the overhead due to log-
ging the library functions used by the application.

Figure 6 depicts the overhead due to FlashBox. The
benchmarks are compiled with -FB2 option (approach 2)
since this option is the most intrusive thereby providing a
worst case scenario. Further, two kinds of interfaces UART
and GPIO are considered. The first two plots depict the per-
centage increase in execution cycles due to FlashBox code.
The benchmark entitled “average” is the arithmetic average



of all benchmarks. The next two plots depict the percent-
age increase in code size due to FlashBox. The increase in
code size is calculated over the size of hex file generated post
compilation and linking.

 Loop iteration (cycles)  
�
�
�
�

��

��
Code size (eeprom bytes)
 Function call (cycles) 
 Loop entry (cycles) 
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����
�
�
�

�
�
�

�
�
�
��
�
�

�
�
�

��
��
��
����
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
� �
�
�

�
�
�

�
�
�
�

�
�
�
�

������
��
��
��
��
��

��
��
��
��
��
��

��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
����
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
� �
�
�

�
�
�

�����
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�����
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�����
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�
�

�����
�
�
�
���
�
�
�����
��
��
��
�������
�
�
�
������
��
��
��
��

���������
�
�
�
������
��
��
��
��

���������
�
�
�
������
��
��
��
��

��
�������
�
�
�
��������
��
��
��
��

  0%

  50%

  60%
ad

pc
m

en
gi

ne fir
po

cs
ag

qu
rt

uc
bq

so
rt

av
er

ag
e

ad
pc

m
en

gi
ne fir

po
cs

ag
qu

rt
uc

bq
so

rt
av

er
ag

e

ad
pc

m
en

gi
ne fir

po
cs

ag
qu

rt
uc

bq
so

rt
av

er
ag

e

ad
pc

m
en

gi
ne fir

po
cs

ag
qu

rt
uc

bq
so

rt
av

er
ag

e

 F
la

sh
B

ox
 O

ve
rh

ea
d 

(%
)

Target − FlashBox Interface
UART GPIO UART GPIO

  30%

  20%

  10%

  40%

Figure 6: FlashBox execution, code size overheads

The following analysis is made based on Figure 6: (i)
the interface used to communicate between the target sys-
tem and the FlashBox hardware has a drastic impact on
the overhead, both in terms of execution cycles and code
size, more so on the execution cycles. Comparing UART
and GPIO, it can be seen that a GPIO based interface re-
sults on an average close to 10% lesser overhead compared
to a UART based interface. This is due to the fact that a
GPIO interface is a parallel interface compared to a UART
interface (serial). Moreover, data to be sent on UART re-
quires a setup code. Similarly, it can be seen that using
a GPIO interface results in lesser code size compared to a
UART interface. (ii) the overhead due to logging function
calls is negligible. This can be attributed to the fact that
most of the functions are executed in the context of a loop
as determined by Algorithm 2. (iii) the only application
that shows a noticeable overhead due to logging function
calls is ucbqsort, which is a recursive function. Since recur-
sive functions log every call of the function, such functions
impose considerable overhead in case of FlashBox. (iv) the
runtime (execution cycle) overhead depends on the number
of loops as well as the computational complexity of the pro-
gram. For example in case of pocsag, the total number of
loop iterations (3355) is lower compared to 19809 loop itera-
tions in engine. However, the percentage overhead of engine
is less than that of pocsag. This is due to the fact that en-
gine is computationally much more expensive (i.e., runtime
takes more cycles) compared to pocsag, thereby amortizing
the overhead due to loops in the overall program runtime.
(v) the contribution due to FlashBox code inside a loop en-
try dominates the total runtime overhead. This is obvious
due to the fact that programs spend most of their execution
cycles within loops. Also, note that if the “loop iteration”
overhead is omitted from the histograms, the resulting his-
tograms (loop entry + function call) would be the overhead
due to approach 2. Approach 1 does not include any of the
overheads presented in Figure 6.

Table 3 shows the log data generated (in bytes) by each
run of the benchmark. Note that the amount of log data
generated could depend on the program inputs. Therefore
the numbers for data in Table 3 are not absolute. For ex-

Table 3: Runtime statistics

adpcm engine fir pocsag qurt ucbqsort
Log Data 8418 75186 1605 11670 189 20520
Functions 2/12 1/6 1/7 1/17 2/6 2/6

1: __vector_5:
2: /* prologue: frame size=0 */
3: push ...
4: ...
5: /* prologue end (size=19) */
6: /* FlashBox code begin: -FB3 */
7: in r28,__SP_L__ // load PC from Stack
8: in r29,__SP_H__
9: ld r22,-Y // r22 = PC (High)
10: ld r23,-Y // r23 = PC (Low)
11: ldi r25,lo8(5) // r25 = Vect. Number
12: ldi r30,lo8(192) // Setup UART comm
13: ldi r31,hi8(192)
14: ldi r26,lo8(198)
15: ldi r27,hi8(198)
16: .B30: ld r24,Z // Begin send UART
17: sbrs r24,5
18: rjmp .B30
19: st X,r25 // Send Vect. Number
20: .B31: ld r24,Z // Begin send UART
21: sbrs r24,5
22: rjmp .B31
23: st X,r23 // Send PC (Low)
24: .B32: ld r24,Z // Begin send UART
25: sbrs r24,5
26: rjmp .B32
27: st X,r22 // Send PC (High)
28: /* FlashBox code: end */
29: ... // Handler code
30: /* epilogue: frame size=0 */
31: pop ...
32: ...
33: reti
34: /* epilogue end (size=19) */

Figure 7: Code generated by FlashBox

ample the log data generated for ucbqsort would vary de-
pending on the input size of numbers to be sorted (since the
number of recursive calls is proportional to numbers to be
sorted). However, this is true for any benchmark, thus, the
log data generation rate is application specific. The second
row shows the number of functions that were logged over
total number of function calls. For example, in case of fir,
the total number of functions in call tree were 7 out of which
1 function was logged by FlashBox. Note that, comparing
Table 3 and Figure 6, it can be seen that the overhead of
logging function calls is negligible thereby showing the effi-
cacy of Algorithm 1. The exception is the case of recursive
function calls − ucbqsort in this case.

4.3 Code Generation
Figure 7 shows the code generated inside a signal handler

(SIG OVERFLOW2) by FlashBox for a UART interface. The
code generated does not save and restore registers used by
the FlashBox code (lines 6-28) as the default signal handler
saves (lines 2-5) and restores (lines 30-32) the registers. The
code generated logs the interrupt vector number (lines 16-
19), and the two byte PC (lines 20-27).

Note that (i) the number of instructions in case of GPIO
would be much less (8 instructions) compared to the UART
implementation. (ii) due to the architecture specifics of the
ATmega169V microcontroller, the PC is not register acces-
sible. Thus, in order to log the PC value for loops, multiple
instructions are required. These instructions contribute to
the overall runtime overhead. In case of an architecture
like MIPS, where the PC is register accessible, the overhead



would reduce to a single instruction, thereby showing lesser
runtime overhead due to FlashBox code.

Adding FlashBox code to loops that are used for timing
would disrupt the purpose of such loops. Using approach
2 for infinite loops with minimal loop body can prove ex-
pensive due to the amount of data that would be generated.
However, this problem can be solved by applying approach
2 for such loops. Also, the scope of faithful replay is limited
by the size of flash memory. This, however, is a limitation
with any kind of debug-replay mechanism. One of the ways
to address this issue is to discard data based on age.

5. CONCLUSIONS AND FUTURE WORK
We presented FlashBox − a system to log non-determinism

due to interrupts in embedded systems. FlashBox hardware
is minimally intrusive making it easy to integrate with exist-
ing systems using well known I/O communication protocols.
FlashBox software is a compiler assisted approach that can
be integrated into existing compilers. Further, there are no
source code modification necessary. Thus, for systems where
the ability to postmortem or debug is critical, FlashBox can
be integrated with a tolerable overhead.

For our future work, we would like to investigate ways to
optimize the checkpointing code generated by FlashBox and
evaluate the power consumption overhead. Adding Flash-
Box code to loops that are used for timing is disruptive.
Using approach 2 for infinite loops with minimal loop body
is expensive. The compiler can be extended to take hints
from the programmer in order to optimize the two cases.
Also, the scope of faithful replay is limited by the size of
the flash memory. This, however, is a limitation with any
debug-replay schemes. One of the ways to address this is to
discard data based on age.
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