
Source Routing made Practical in Embedded
Networks

Arijit Ghosh and Tony Givargis
Center for Embedded Computing Systems

School of Information and Computer Science
University of California, Irvine, USA 92697

Abstract—Reducing packet latency is an important require-
ment in embedded networks. Source routing can be used to
reduce processing delay at intermediate nodes and thereby
reduce the overall packet latency. However source routing is
not scalable which makes it unsuitable for larger networks. The
addition of the source route to every packet reduces the system
goodput (application level throughput). Further, source routes
ignore dynamic network conditions which might lead to routing
failures. In this paper, we propose strategies to counter these
problems. We propose a topology encoding scheme that reduces
the overhead and makes source routing scalable. We propose a
lazy correction scheme that makes it take cognizance of dynamic
network conditions. Through simulations on reasonably large
sized network with realistic models for traffic and failure, we
show that source routing is indeed usable in practical scenarios.

I. INTRODUCTION

Wired embedded network systems (EmNets), including sen-
sor networks, distributed control applications, and ubiquitous
computing environments, often have strict latency require-
ments. We define network latency as the one-way delay
incurred by a packet from the time when it is transmitted by
the source to the time when it is received by the destination.
A major component of the network latency using dynamic
routing protocol is the packet processing at each intermediate
node. Traversing the different layers of the network stack as
well as the routing table lookup at each hop takes up a non-
trivial amount of time. We simulated a 4000 node random
graph with 100,000 packets routed between 600,000 randomly
chosen pairs of nodes. We injected 500 failed links in a manner
that 50% of the chosen routes have at least one failed link
along them. An incredible 93% of the route lookups turned
out to be redundant.

To understand the reason behind this, let us consider the
case where a single link fails. Let there be a source node
A and a destination node B. Let the link between nodes C
and D fail. Let Pold and Pnew be the paths between A and
B before and after the link fails. If CD /∈ Pold, then Pold =
Pnew and all intermediate lookups will be redundant. Let us
now consider the case where CD is in Pold. Then obviously,
Pold 6= Pnew. As the link state information propagates from
C and D to the rest of the network, all nodes (at any given
time) can essentially be divided into two regions: nodes that
have received the update and have the newest routes belong
to the fresh region; all others belong to the stale region. If

P Q R S T U

Case 0:
At t0: Packet p at P Link Q-R fails
At t1: p reaches Q Q has link state information Route lookup in Q

is NOT redundant

Case 1:
At t0: Packet p at P Link R-S fails
At t1: p reaches Q Link state information Route lookup in Q

reaches Q is NOT redundant

Case 2:
At t0: Packet p at P Link S-T fails
At t1: p reaches Q Link state information Route lookup in Q

reaches R IS redundant

Fig. 1. Redundancy: example topology

A is already in the fresh region, then A will generate Pnew

making all intermediate lookups redundant. Now consider the
case when A is in the stale region. A will generate Pold as
the route of the packet. All intermediate nodes in the stale
region will produce the same result as A and hence will cause
redundant lookups. As soon as the packet reaches a node in
the fresh region, Pnew will be generated. Lookup in this case
is not redundant. But from now on until B, again all lookups
will be redundant. Thus, unless the path of a packet traverses
the boundary between the two regions, all intermediate route
lookups will be redundant.

Let A be n hops away from B and generate r packets/second.
Let t and p be the propagation time (between consecutive
nodes) and the packet processing time respectively. Let P
be the number of packets that will have exactly one non-
redundant route lookup. Then, P = n × (t + p) × r

Imagine a packet traversing a n-hop path from P to U as
shown in Figure 1. For a route lookup at each hop to be non-
redundant, all of the following three conditions must strictly
hold. One, the Mean Time To Failure (MTTF) between links
must exceed the sum of the average packet processing time and
propagation time between two consecutive hops of the packet.
Two, all failures should occur along the path of the packet.
Three, the currently failed link can be no farther than two hops
away from the current hop. Let the link between S and T fail

when the packet is at P. Let the processing and propagation
time of both the data and link update packets be the same.
Then, when the packet reaches Q, the link update will only
have reached R. Thus, the lookup at Q will be redundant.

The alternative is to use source routing where all route
computation takes place only once, at the source. This could
potentially eliminate a great deal of processing delay. How-
ever, source routing is usually considered impractical. In this
paper, we analyze a typical EmNet and show that source
routing IS feasible in practical deployments. The average
number of hops between any two pairs of nodes in a 10000
node network is at most 6 hops. By employing a topology
encoding scheme, we show that this imposes a modest memory
requirement of 50KB and a reduction of goodput by less
than 1%. We propose a lazy correction scheme that reacts
to network dynamics. Finally, we propose a hardware short-
circuiting scheme that operates at the link layer to take further
advantage of source routing.

II. SOURCE ROUTING WITH LAZY CORRECTION

Source routing is a simple approach where the sender
specifies the complete route of the packet along the network.
Although simple and attractive, source routing has a few
disadvantages. First, source routing is not scalable. Each node
has to maintain the path to all nodes in the network which
incurs a space complexity of O(N), Further, the entire route is
included in the packet header. This reduces the goodput of the
system. Second, once a route is specified, it is not changed.
By not taking cognizance of changing network conditions,
source routing could cause a packet to traverse a longer path.
In the worst case, it might even fail to deliver a packet.
Third, source routing presents a security hazard since it allows
address spoofing. In this paper we address the issues related
to scalability and network dynamics and leave security as part
of our future work.

A. Scalability

We address the scalability issues by proposing two tech-
niques. The first is a scheme to encode the topology. The
second is to build the sensor network according to a particular
topology. Neither of the approaches reduce the storage com-
plexity. But our analysis shows that in practical scenarios, the
actual number of bytes used will be significantly reduced.

1) Topology Encoding: Let us consider a random topology.
Classical random graphs, also known as Erdös-Rényi graphs,
are defined by the degree distribution of node k, P(k) = exp(-
λ)λk/k!. To uniquely identify N nodes in a ER topology, we
need log2N bits. To reduce the number of bits, we propose
an encoding scheme based on logical labels assigned to
neighbors. Let M be the average number of neighbors of a
node in a random graph. In our simple encoding scheme, a
node assigns a logical label to each of its neighbor, from 0
to M-1. The logical label is independently assigned by each
node. When a node joins the network and shares its neighbor
information, it includes the logical label corresponding to the
neighbor identifier. The source node can now compute the

.

.

.

.

.

.

E1.E2.E3.E4E

D1.D2.D3.D4D

C1.C2.C3.C4C

B1.B2.B3.B4B

A1.A2.A3.A4A

IP AddressNode

3, 2, 3Encoded

A1.A2.A3.A4, B1.B2.B3.B4,
C1.C2.C3.C4, D1.D2.D3.D4

Unencoded

Route from A to D

 A

B

F

E G

C

H

D

I0 1

2

3
0

1
4

0
5 2

1

2

1

2

0

3 0

0

0

1

2

1

Fig. 2. Path encoding: example graph

route in terms of the labels. Consider the example graph in
Figure 2. Let node A be the sender of a packet to node D.
Each node assigns a logical label to its neighbor which is
indicated next to the edge connecting the node to the respective
neighbor. For example, B assigns the logical labels 0, 1, 2, 3
and 4 to neighbors E, G, C, A and F respectively. Under our
encoding scheme, the path from A to D is indicated by 2-2-
3. In a random graph where M � N [1], this path encoding
scheme saves a considerable amount of space (66% for M =
1000). The maximum value of M in the current Internet is
around 2000 [2].

It is well known that the average path length (APL) of ER
networks scale in proportion to ln N [3]. In [4] it has been
analytically shown that the APL is given by

APL =
lnN− γ

ln(pN)
+

1
2

where γ ' 0.5772 is the Euler’s constant and pN = 〈k〉
The APL for ER graphs with 〈k〉 = 4, 10 and 20 is equal
to 6, 4 and 3 respectively for a network with N = 10,000.
Correspondingly, the diameter d of a graph, defined by the
maximal distance between any pair of vertices is given by
ln N/ln(pN). From a ER graph of infinite nodes, it has also
been shown that 90% of the nodes have an average degree of 5
while less than 0.00001% of the nodes have an average degree
of 200 [5]. From the above statistics, we can conclude that a
route computed by the source to any node will be bounded by
a few hops in a reasonably large network (≤ 6 for a 10000
node network) and that the majority of the logical labels in
the path will be small integers.

Our objective is to encode this path with a bit pattern that
is quite efficient, is extremely fast to decode and leverages the
statistical insights in making the common case fast (Amdahl’s
law). We use the following technique. All labels are classified
into two groups ∆0 and ∆1. Labels that are less than 32 bits
belong to the former group while all others belong to the latter.
Accordingly, items in ∆0 and ∆1 are encoded by 5 and 8 bits

respectively. To distinguish between the labels belonging to
the two groups in the path, we prefix a signature of 10 bits in
which a 0/1 indicates if the current label belongs to ∆0/∆1.

Although extremely unlikely, it is still possible that a label
has a value of more than 255. In this case, we use a hop-
by-hop mechanism to negotiate part of the path for which the
labels are large. Let a path from node n1 to nk be denoted
by n1,n2, . . ., ni, X, n(i + 1), . . . nj , Y, Z, n(j + 1), . . ., nk,
where X, Y and Z are labels grater than 255. In this case, the
n1 computes the partial route to the intermediate node ni. At
ni, the packet falls back to the default hop-by-hop forwarding
mechanism to reach X. X now computes the partial path to
nj . From here, again the packet gets forwarded one hop at a
time up to Z. Finally, Z computes the rest of the path to nk.
Clearly, falling back to the hop-by-hop forwarding mechanism
compromises the speed, However, this is a tradeoff we chose
to allow scalability of source routing.

Algorithm 1 Encoder
Find the path from source to destination
Specify the path in terms of labels
for each label do

if label > 255 then
break;

end if
if path[i] < 32 then

encode with 5 bits
set corresponding signature bit to 0

else
encode with 8 bits
set corresponding signature bit to 1

end if
end for

Algorithm 2 Decoder
if I am destination then

return
end if
if remaining path is empty then

compute remainder path to destination
end if
if path not found then

drop packet and return
else

encode(remainder path)
end if
Shift the first signature bit
if bit is 0 then

label = shift and decode the first 5 bits
else

label shift and decode the first 8 bits
end if
use label to decide which is the next hop

From the above, we can see that the maximum number of

bytes to encode the route in a 10000 node network is about
5. It is hard to imagine an EmNet to scale geographically
(like the Internet) or in node density (like wireless mote-like
sensornets) to have millions of nodes. The space overhead
for a 10000 node network is about 50 KB which is modest by
current technology standards. Let us consider a TCP/IP packet
with a MTU of 1500 bytes. Let the TCP and IP headers each
be 20 bytes. For simplicity, let us consider the rest of the
packet to contain data. Then an overhead of 5B represents a
reduction of less than 1% in the goodput of the system. This
shows that source routing is definitely practical in relatively
large sized embedded networks.

2) Engineered topology: In mathematics and physics, a
small-world network is a type of mathematical graph in which
most nodes are not neighbors of one another, but most nodes
can be reached from every other by a small number of hops or
steps. Many empirical graphs are well modeled by small-world
networks. Social networks, the connectivity of the Internet, and
gene networks all exhibit small-world network characteristics.
Small-world networks have high representation of cliques, and
subgraphs that are a few edges shy of being cliques. The
highest-degree nodes are often called “hubs”. If a network
has a degree-distribution which can be fit with a power law
distribution, it is taken as a sign that the network is small-
world. These networks are known as scale-free networks. The
probability P(k) that a node in the network connects with k
other nodes is proportional to k−γ . The coefficient γ may vary
approximately from 2 to 3 for most real networks [6]. It was
proved that an uncorrelated power-law graph having 2 < γ < 3
will also have a network diameter d that is proportional to O(ln
ln N) [7]. So from the practical point of view, the diameter
of a growing scale-free network might be considered almost
constant while the diameter of a 1 million node network is
approximately 3 hops. Thus, if a EmNet is built to exhibit the
properties of a scale-free network, then it makes using source
routing more practical by making the APL almost constant.

B. Network dynamics - Lazy Correction

A second problem of source routing is that it is oblivious
to network dynamics. A packet might end up in a “dead
end” where the next hop mentioned in the source route is no
longer reachable. Routing then fails even though the network
is connected. To remedy this situation, we propose a lazy
correction scheme. In this strategy, a packet is allowed to move
on along the source specified route until it reaches a node ni

which can not reach the next hop n(i+1). In this case, ni simply
discards the rest of the route and recomputes the remainder of
the path from itself to the destination. The packet is forwarded
along the new route. Since ni is closer to the destination than
the source, it will have a more recent update on the state of
the links between itself and the destination as compared to the
source. If ni is unable to find a path, the packet is dropped.

Our approach does not affect the convergence and loop-
free characteristics of the underlying routing protocol. Our
strategy affects where the rerouting decision will be made and
not the route itself. However, it definitely could mean that

Shifter

Multiplexer

Shifter

R
e
g
i
s
t
e
r

Binary
To

Decimal
Converter

……

30

InterfaceLabel

No. of hops Path bit string

1

5 8

10 Path bit string

Index
Lookup table

Legend

Shifter
No. of bits to shift

No. of bits to skip Bit string

Fig. 3. Short circuiting hardware

a path travels a longer route than otherwise. We show with
experiments that on an average, the path stretch is about 1.13.

III. SHORT CIRCUITING

Using source routing provides an opportunity to reduce
processing delays at intermediate nodes. However, the benefit
can only be had if the packet can be forced to bypass the
network layer by being “short circuited” through a lower layer.
The idea is to provide an alternate datapath for packets in the
node to leverage source routing. Every node maintains a label
lookup table which stores the association between a label (and
thereby a neighbor) and a physical interface. When a node
receives a packet, it checks if the path is empty. If yes, it
sends the packet to higher layers. If not, then depending on the
signature bit, it shifts out the next 5/8 bits, decodes it to index
into the label lookup table and finds the corresponding physical
interface. Using a fixed length encoding allows us to build an
extremely simple and efficient short circuiting hardware as
shown in Figure 3.

IV. EVALUATION

We use a two level event-driven simulation. At the session
level, the simulator generates flows at a source node. Flows
arrive according to a Poisson distribution. We randomly pick
flows from one of the following: a single channel MPEG2
encoded HDTV at 20 Mbps [8], a PAL or NTSC-equivalent
SDTV at 3 Mbps, a DolbyDigital ‘AC-3’ audio with a maxi-
mum 13.1 channels at 6 Mbps [9] and a standard AAC audio
channel at 128 Kbps, At the packet level, it manages the
lifetime of a packet. Specifically, it has routing, queueing,
failure and delay modules. The routing module simulates a
link-state based shortest path algorithm. The queueing strategy
used is Worst Case Weighted Fair Queueing (Wf2q) [10]. We
choose a failure model described in [11]. To decide when the
failure happens, we picked a random number from the Weibull
distribution with parameters α = 0.046 and β = 0.414. We use
the power law with slope = -1.35 to decide where the failure

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 5 10 15 20 25 30 35

N
um

be
r

of
 p

ac
ke

ts

Number of hops

HDTV
SDTV
Dolby
AAC

Fig. 4. The number of packets that will incur exactly one non-redundant
lookup before all lookups become redundant increases linearly with distance
from link failure.

occurs according to the following. Link states are flooded only
when a link fails. We employ a simple flooding strategy as
follows. Upon receiving a link state update (LSU) message,
a node updates its database and forwards the information to
all its neighbors, except the one from which the update was
received. Duplicate messages are discarded. LSU messages are
kept in a separate queue and are treated with highest priority
by each node. We run our experiments on random graphs
generated by Georgia Tech’s GT-ITM topology generator. All
links are bidirectional. To reduce the number of variables, we
use a constant propagation delay of 1ms for all links. All links
are assumed to have a capacity of 1 Gbps.

We will evaluate the scalability and effects of network
dynamism on source routing. Recall that in source routing, a
packet encounters exactly one routing lookup and only when
it moves from the stale to the fresh region. To see how many
packets, P, encounter a non-redundant lookup, we generated
the 4 flows at a source on a linear topology. We induced a
single failed link and varied the hop-distance of it from the
source. As shown in Figure 4, P increases linearly with the
hop-distance as was analyzed in Section 1.

Scalability: We first want to see if the complexity of our
encoding scales in proportion to the average path length. We
generated different ER networks with up to 10000 nodes. For
each topology, we set the average out degree of the nodes to
be 4, 10 and 20. We then computed the shortest path between
all pairs of nodes and used our encoding technique to compute
the number of bits. As can be seen in Figure 5, the increase
in the number of bits is definitely O(ln N). For example, the
difference in the number of bits between 2500 and 5000 nodes
is 7 (degree = 20). Similarly, the difference between 1000 and
10000 nodes for degree 4 is 10. To evaluate the effectiveness
of our encoding, we created 5 topologies with 4000 up to
8000 nodes with unrestricted node degrees. We computed all
pair shortest paths and counted the number of bits required
for encoding. As can be seen from Fig. 6, 98% of the paths

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1000050001

N
um

be
r

of
 b

its

Number of nodes

Degree = 4
Degree = 10
Degree = 20

ln N

Fig. 5. Scalability of encoding

were encoded with 50 bits or less. Compare this with similar
topologies with 32 bit IP-like addresses. The same statistics
stood at 250 bits (Fig.7). As can be seen from Fig. 8, even
the lowest 5% of the unencoded paths are almost 55% more
inefficient (fraction of extra bits used).

Network dynamics: Traditional source routing can fail
since the route is never adjusted to reflect the network dy-
namics. Our approach never fails because we introduce the
notion of lazy correction. However, lazy correction does have
its drawback. Since it delays its decision to take a better route,
there will inevitably be path stretch. Let psource and pdynamic

be the paths using source and dynamic routing respectively.
We define the path stretch λi of a packet i as:

λi =
psource

pdynamic

The average path stretch, Λ, is the average over all packets.
To check this we ran the following two experiments on a 10000
node random topology. We induced up to 500 link failures
using our failure model and routed 10000 packets between all
nodes that had at least one failed path on their source route.
As can be seen from Figure 9, the penalty is not too severe.
More than 80% of the paths have a stretch ≤ 1.5. Less than 1%
have a stretch ≥ 3.5. On an average though, the path stretch
is only 1.13 as shown in Table 1. We next set the number of
failed links at a high value of 5000. We generated flows of
different duration as indicated by the number of packets. As
expected, with increased failures and increased duration of the
flows, some packets do show higher path stretch. About 1% of
them have a stretch ≥ 3.5 (Figure 10). However, the average
path length again is fairly low as shown in Table 2.

In summary, we show in this section that source routing
is very scalable. The path can be encoded efficiently with
about 50 bits. There is a penalty of path stretch. However,
experiments show that it is less than a factor of 1.2. Packet
procesiing in the Linux 2.6.9 kernel takes about 15 ms [12].
In contrast, propagation delay for a distance of 1 km is about

TABLE I
AVERAGE PATH STRETCH - 10000 NODES, 10000 PACKETS BETWEEN ALL

PAIRS OF NODES

Failures Average path stretch, Λ
100 1.13381
200 1.13414
300 1.1338
400 1.129
500 1.13

TABLE II
AVERAGE PATH STRETCH (Λ) - 10000 NODES, 5000 FAILED LINKS

Number of packets Average path stretch
1000 1.13
25000 1.0981
50000 1.09884

3µs. From this, we can conclude that the increase in packet
latency for traveling extra hops will be more than offset by
the order of magnitude reduction in the processing delay.

V. PREVIOUS WORK

Techniques to improve packet latency have long been a
subject of intensive research in the networking community.
Many approaches targeting different parts of the networking
subsystem have been proposed. There are many service models
and mechanisms to reduce packet latency in wired networks.
The Integrated Services [13] model is characterized by re-
source reservation. For real-time applications, before data are
transmitted, the applications must first set up paths and reserve
resources. In Differentiated Services [14], packets are marked
differently to create several packet classes and receive different
services. MPLS [15] is a fast forwarding scheme based on
labels assigned to packets. Traffic Engineering is the process
of arranging how traffic flows through the network. A thorough
discussion of all the relevant approaches can be found in [16].

Source routing (SR) is a very old technique that has been
used extensively in both wired and wireless networks. In SR,
the entire path that the packet travels is included in it. This
implies that a node has to maintain a route to every other
node. This imposes an O(N) routing table overhead. The
typical approach to solving this problem is by introduction of
hierarchies [17]. In this paper, we also propose a topological
solution but is different from existing hierarchical solutions.
The second problem of scalability comes from the increased
size of packet headers due to the inclusion of the path. A
solution to this was proposed in [18]. In this, the direction of
the neighbors are encoded in the source path. We expand on
this idea and make it more general so that it can be applied
to topologies with arbitrary number of neighbors.

VI. CONCLUSION

In this paper, we have shown that in spite of its perceived
shortcomings, source routing is actually usable in practical
sized networks. If EmNets are built as scale-free networks and
if a topology is encoded in terms of labels, then source routing
imposes only a modest overhead on storage requirements and

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 20 30 40 50 60 70 80

of bits

4000 nodes
5000 nodes
6000 nodes
7000 nodes
8000 nodes

Fig. 6. WITH encoding

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300 350 400 450

of bits

4000 nodes
5000 nodes
6000 nodes
7000 nodes
8000 nodes

Fig. 7. WITHOUT encoding

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

of bits

4000 nodes
5000 nodes
6000 nodes
7000 nodes
8000 nodes

Fig. 8. Ineffciency

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

Hop Stretch

100 failures
200 failures
300 failures
400 failures
500 failures

Fig. 9. Effect of number of failures

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6

C
D

F
Hop Stretch

1000 packets
10000 packets
50000 packets

Fig. 10. Effect of number of packets

goodput performance. Source routing allows routing layer
functionality to be bypassed at intermediate nodes. We pre-
sented a hardware architecture that will allow short-circuiting
of a packet through the link layer. As part of our future work,
we wish to investigate how source routing can work with
different packet scheduling algorithms to reduce latency even
further.

ACKNOWLEDGMENT

This work was in part supported by grant #0749508 from
the National Science Foundation.

REFERENCES

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of small world
networks,” Nature, vol. 393, no. 6684, pp. 440–442, June 1992.

[2] “http://www.caida.org/research/topology/as core network/.”
[3] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs

with arbitrary degree distributions and their applications,” Phys. Rev. E,
vol. 64, no. 026118, 2001.

[4] A. Fronczak, P. Fronczak, and J. A. Holyst, “Average path length in
random networks,” Phys. Rev. E, 2002.

[5] M. Stumpf and C. Wiuf, “Sampling properties of random graphs: The
degree distribution,” Phys. Rev. E, vol. 72, 2005.

[6] H. Seyed-allaei, B. Ginestra, and M. Marsili, “Scale-free networks with
an exponent less than two,” Phys. Rev. E, vol. 73, 2005.

[7] R. Cohen and S. Havlin, “Scale-free networks are ultrasmall,” Phys. Rev.
E, vol. 90, 2003.

[8] “Moving picture experts group, october 2006
http://www.chiariglione.org/mpeg.”

[9] “Dolby laborotories inc. www.dolby.com.”
[10] J. B. H. and Zhang, “Wf2q : Worst case fair weighted fair queuing,” in

INFOCOM, 1996.
[11] A. M. et. al., “Characterization of failures in an operational ip backbone

network,” IEEE Trans. on Networking, vol. 16, October 2008.
[12] J. Demter and et. al., “Performance analysis of the tcp/ip stack of linux

kernel 2.6.9,” Technical Report No. IFI-TB-2005-03, ICS, University of
Guttingen, Germany, April 2005.

[13] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture: an overview,” Internet RFC 1633, June 1994.

[14] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” Internet RFC 2475, December
1998.

[15] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” Internet draft ¡draft-ietf-mpls-arch-01.txt¿, March 1998.

[16] X. Xipeng and L. Ni, “Internet qos: a big picture,” IEEE Network, March
1999.

[17] V. Hadimani and R. Hansdah, “An efficient distributed scheme for
source routing protocol in communication networks,” Lecture notes in
Computer Science, vol. 3347, November 2005.

[18] C. Glass and L. Ni, “The turn model for adaptive routing,” in ISCA,
1992.

