
Efficient Dynamic Voltage/Frequency Scaling Through
Algorithmic Loop Transformation

Mohammad Ali Ghodrat
School of Information and Computer Sciences

University of California, Irvine
mghodrat@ics.uci.edu

Tony Givargis
School of Information and Computer Sciences

University of California, Irvine
givargis@ics.uci.edu

ABSTRACT
We present a novel loop transformation technique, particu-
larly well suited for optimizing embedded compilers, where
an increase in compilation time is acceptable in exchange
for significant reduction in energy consumption. Our tech-
nique transforms loops containing nested conditional blocks.
Specifically, the transformation takes advantage of the fact
that the Boolean value of a conditional expression, determin-
ing the true/false paths, can be statically analyzed and this
information, combined with loop dependency information,
can be used to break up the original loop, containing con-
ditional expressions, into a number of smaller loops without
conditional expressions. Subsequently, each of the smaller
loops can be executed at the lowest voltage/frequency set-
ting yielding overall energy reduction. Our experiments with
loop kernels from mpeg4, mpeg-decoder, mpeg-encoder, mp3,
qsdpcm and gimp show an impressive energy reduction of
26.56% (average) and 66% (best case) when running on a
StrongARM embedded processor. The energy reduction was
obtained at no additional performance penalty.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers; I.1 [Computing Method-
ologies]: Symbolic and Algebraic Manipulation

General Terms
Algorithms

Keywords
Algorithmic Loop Transformation, Compiler Optimization
for Low Power, Dynamic Voltage/Frequency Scaling

1. INTRODUCTION
Fueled by a growing demand for a rich set of functional-

ity, the complexity of embedded systems and the underly-
ing compute requirements continue to rise. Consequently,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$10.00.

maintaining the energy consumption of a typical embedded
system below an acceptable level poses a major design chal-
lenge. Moreover, for the large class of portable embedded
systems, low-energy design has become a first class concern.

Aggressive compiler optimization, in particular those
that address loops, can significantly improve the perfor-
mance/energy requirement of the software, thus justifying
the additional compilation time overhead. This is in par-
ticular true in the embedded system domain where software
has become a key element of the design process and perfor-
mance/energy requirement is of a critical concern. Further-
more, it is acceptable for a compiler intended for embedded
computing to take longer to compile but perform aggressive
optimizations, such as the ones presented in [28] and [8].

In what is know as intra-task Dynamic Voltage/Frequency
Scaling (DVFS), the compiler statically annotates the ap-
plication software with DVFS instructions at branch points
(i.e., immediately following a branch instruction) such that
all execution paths of the task execute in the same amount
of time (i.e., the deadline) [9] [20] [22] [2] [12] [10]. En-
ergy reduction is achieved whenever execution follows a
path shorter than the critical path. Ideally, the DVFS in-
structions take effect instantaneously without incurring any
power or time overhead.

In most implementations, however, there is a time-lag and
an energy cost associated with voltage and/or frequency
scaling. As a result, ideal intra-task DVFS is not practi-
cal. In particular, application of DVFS to loop bodies con-
taining conditional branches usually is not feasible as the
time/energy overhead of scaling at loop iteration level is
greater than the potential saving in energy. As an exam-
ple, using the formulas provided in [3], to switch from volt-
age/frequency pair (1.55 V, 624 MHz) to voltage/frequency
pair (0.9 V, 104 MHz), we incur an overhead of 3.185 µS
(time) and 26 µJ (energy). For the code sample shown in
Figure 1, each iteration takes 0.26 µS and 0.33 µJ when
executed at (1.55 V, 624 MHz). Thus, DVFS cannot fea-
sibly be applied on a per iteration basis. A more practical
solution may be to make a single adjustment for the entire
execution of the loop rather than per iteration.

Our technique transforms loops containing nested condi-
tional blocks. Specifically, the transformation takes advan-
tage of the fact that the Boolean value of a conditional ex-
pression, determining the true/false paths, can be statically
analyzed and this information, combined with loop depen-
dency information, can be used to break up the original loop,
containing conditional expressions, into a number of smaller
loops without conditional expressions. Subsequently, each

203

for (x=9;x<36;x++){ x1=4*x;

 for (y=13;y<49;y++){ y1=4*y;

 for (y=0;y<13;y++){ y1=4*y;
for (x=0;x<9;x++){ x1=4*x;

(b)

0

2

3

0 8 9 35
x

i

F

U
T

for (x=0;x<36;x++){ x1=4*x;
 for (y=0;y<49;y++){ y1=4*y;
 for (k=0;k<9;k++){ x2=x1+k!4;
 for (l=0;l<9;l++){ y2=y1+l!4;
 for (i=0;i<4;i++){ x3=x1+i; x4=x2+i;
 for (j=0;j<4;j++){ y3=y1+j; y4=y2+j;
 if (x3<0 || x3>35 || y3<0 || y3>48)
 then_block1;
 else
 else_block1;
 if (x4<0 || x4>35 || y4<0 || y4>48)
 then_block2;
 else
 else_block2;
} } } } } }

 .
 . // (k, l, i, j loops not shown)
 .
 if (x3>35 || y3>48) then_block1;
 else else_block1;
 if (x4<0 || x4>35 || y4<0 || y4>48)
 then_block2;
 else else_block2;
 } } } } }

 .
 . // (k, l, i, j loops not shown)
 .
 then_block1;
 then_block2;
 } } } } }
}

 for (y=0;y<49;y++){ y1=4*y;
 .
 . // (k, l, i, j loops not shown)
 .
 then_block1;
 then_block2;
 } } } } }
}

(y3<0 || y3>48)(x3<0 || x3>35)

12 13

j

0

2
3

T

U

T
U

F

11

y
480

(c)

(a)

(d)

Figure 1: Motivational example

of the smaller loops can be executed at the lowest volt-
age/frequency setting yielding overall energy reduction.

The rest of this paper is organized as follows. In Section 2,
we outline the related work. In Section 3, we formulate the
problem and show a motivational example. In Section 4, we
establish some preliminaries. In Section 5, we establish our
low-energy code transformation technique. In Section 6, we
show our experimental results. In Section 8, we conclude.

2. RELATED WORK
Dynamic voltage/frequency scaling (DVFS) techniques

can be broadly categorized into interval-based tech-
niques [9] [20], intra-task techniques [22] [2] and inter-
task [12] [10] techniques. Interval-based technique is a
history based technique, and it will assign a new volt-
age/frequency to the current interval based on the pre-
vious intervals’ workload. In inter-task DVFS technique,
the granularity of the voltage/frequency assignment is at
the task-level. Each task will be assigned a different volt-
age/frequency based on its workload and its deadline. Intra-
task DVFS techniques apply at finer granularity, modulating
voltage/frequency of a single task as it executes. Our tech-
nique is considered an intra-task also, since it applies on the
loop body.

Compiler optimization techniques for low power can be
applied at different steps of compilation: common perfor-
mance optimizations [1], instruction selection [25], instruc-
tion scheduling [26], register allocation [15], memory access

time optimization [19] and source code transformation for
low power [21] [6].

Our work can be categorized as a source code transforma-
tion technique. All the mentioned techniques are orthogonal
to our technique and can be applied in parallel to ours. The
work in [21], like our work, uses a compiler performance op-
timization that yields energy reduction as one of its byprod-
ucts.

Our proposed technique, to the best of our knowledge, is
the first that addresses intra-task voltage scaling of loops
with nested conditional branches, in particular addressing
the voltage/frequency switching overhead.

3. PROBLEM FORMULATION
Loops contribute to a large amount of execution time, so

any optimization (performance/power) on loops can have a
significant improvement on the entire program. If a loop has
a nested conditional block, each of its iteration can take dif-
ferent time, depending on which path of conditional block is
taken. Given the cost of voltage/frequency scaling, a per it-
eration DVFS approach will yield poor energy (and possibly
performance) savings, as the overhead of switching will add
to a greater sum than the savings in power. In this paper, we
provide a solution that allows for fine grain DVFS of loops
that eliminates the before mentioned overhead problem.

Imagine that we can partition the loop iteration space into
a series of disjoint subspaces with this property that in each
subspace either of then part or else part of the conditional

204

block is executed but not both. In this case, if the worst
case execution time for the then or else part is less than the
worst case execution time of the original conditional block,
then each subspace can finish its job sooner than the worst
case execution time for the conditional block, and we can
use this time slack to enable DVFS technique. Below we
present a motivational example:

3.1 Motivational example
Consider the code shown in Figure 1-a, which is a loop

kernel from MPEG4. If the conditional expression (x3 <
0||x3 > 35)||(y3 < 0||y3 > 48) is analyzed statically
(shown in Figure 1-b and c), we realize that (x3 < 0||x3 >
35)||(y3 < 0||y3 > 48) is true when 9 ≤ x ≤ 35 or
13 ≤ y ≤ 48 as explained in [7]. The loop in Figure 1-a
can be transformed as shown in Figure 1-d as explained
in [8]. Now if we measure the time taken for the high-
lighted nested loop (loop on y ∈ [13, 48]) to execute on
StrongARM SA1100, we obtain 130454 cycles. The original
loop nest executing on StrongARM SA1100 takes 6380215
cycles. Considering a constant execution time (before and
after transformation), we can use the difference in execution
time (6249761 cycles) to enable DVFS for the given loop
nest. In this case, by lowering the voltage and frequency
of the processor from (Vdd = 1.55V and f = 624MHz) to
(Vdd = 1.1V and f = 312MHz), the code will take 420 µS
time and 1.08 mJ energy instead of the original 10224 µS
time and 50.6 mJ energy. This is 97.86% reduction in energy
for the mentioned loop nest.

4. PRELIMINARIES
In this section we review two previous contributions which

are the basis of this work. In Section 4.1, we review the anal-
ysis technique behind conditional expression evaluation [7]
and in Section 4.2 we review the transformation technique
for loops with nested conditional blocks [8] which is the ba-
sis of our first step in our code transformation technique
presented in this paper(see Section 5).

4.1 Domain Space Partitioning
In this subsection we summarize the analysis technique

developed in [7] and used for our transformation. Without
loss of generality, the remaining discussions in the paper will
use C/C++ notation. Every program can be represented as
a Control Data Flow Graph (CDFG) intermediate form. A
CDFG is a graph that shows both data and control flow in a
program. The nodes in a CDFG are basic blocks. Each basic
block contains straight lines of statements with no branch
except for the last statement and no branch destination ex-
cept for the first statement. The edges in a CDFG represent
the control flow in the program.

As defined in [7], a conditional expression cond expr is
either a simple condition or a complex condition. A sim-
ple condition is in the form of (expr1 ROP expr2). Here,
expr1 and expr2 are arithmetic expressions and ROP is a
relational operator (=, 6=, <, ≤, >, ≥). An arithmetic ex-
pression is formed over the language (+, −, ×, constant,
variable). A complex condition is either a simple condition
or two complex conditions merged using logical operators
(&&, ||, !).

An integer interval of the form [a, b] represents all possible
integer values in the range a to b, inclusively. The operations
(+, −, ×, /) can be defined on two intervals [a, b] and [c, d].

We refer the interested reader to [16] for a full coverage of
interval arithmetic.

We define an n-dimensional space to be a box-shaped re-
gion defined by the Cartesian product [l0, u0] × [l1, u1] ×
... × [ln−1, un−1]. Hence, for a given program with n input
integer-variables x0, x1, ..., xn−1, the program domain space
is an n-dimensional space defined by the Cartesian prod-
uct [min0,max0]× [min1,max1]× ...× [minn,maxn], where
mini and maxi are defined based on the type of the variable
xi (e.g. if xi is of type signed character then mini = −128
and maxi = 127).

Given the conditional expression cond expr with variables
x1, x2, ..., xk, the domain space partitioning problem [7] is to
partition the domain space of cond expr into a minimal set
of k-dimensional spaces s1, s2, ..., sn with each space si hav-
ing one of true(T), false(F), or unknown(U) Boolean value.
If space si has a Boolean value of true, then cond expr eval-
uates to true for every point in space si. If space si has a
Boolean value of false, then cond expr evaluates to false

for every point in space si. If space si has a Boolean value
of unknown, then cond expr may evaluate to true for some
points in space si and false for others.

For example, consider cond expr : 2×x0 +x1 +4 > 0 (do-
main space [−5, 5]× [−5, 5]). Figure 2 shows the partitioned
domain space and the corresponding Boolean values [7].

Figure 2: Partitioned Domain of 2x0 + x1 + 4 > 0

4.2 Iteration space partitioning
In this subsection we summarize the loop transformation

technique developed in [8] and used for our transformation.
The proposed transformation technique presented in [8] tar-
gets loops that follow the normalized template shown in
Figure 3-a. Here, there are n loop nests, with n indices
x1, ..., xn. The body of the inner most loop contains at least
one conditional block, called the target conditional block.
Here, stcond expr computes the value of the branch condi-
tion v.

The proposed transformation in [8] decomposes the origi-
nal nested loops of Figure 3-a into three parts, as shown in
Figure 3-b. The first part sets up one or more nested loop
structures with iteration spaces for which the stcond expr is
known to be true at compile time. Likewise, the second
part sets up one or more nested loop structures with itera-
tion spaces for which the stcond expr is known to be false at
compile time. The third part sets up one or more nested loop
structures with an iteration space for which the stcond expr

205

can not be statically evaluated. The three parts combined
cover the entire iteration space of the original nested loops.
Since the evaluation of stcond expr is eliminated in parts one
and two, the decomposed code executes substantially fewer
instructions than the original code.

!"#$%&'()*'+&',-*'+&'(&'.'/

0

0

!"#$%&1()*1+&1,-*1+&1(&1.'/

2

3$($456"1789&:#+

;!$%3/

455<91+

9)49

459)49+

=

!"# !$#

!"#$%&'(>>>>>>>>000/
0

0

!"#$%&1(>>>>>>00/

455<91+

!"#$%&'(>>>>>>>>>/
0

0

!"#$%&1(>>>>>>>>>/

459)49+

!"#$%&'(>>>>>>>>>/
0

0

!"#$%&1(>>>>>>>>>/2

3$($456"1789&:#+

;!$%3/

455<91+

9)49

459)49+

=

4
5
6
"
1
7
8
9
&
:
#

;4
$5#-

9
4
5
6
"
1
7
8
9
&
:
#

;4
$!?
)4
9

4
5
6
"
1
7
8
9
&
:
$;4
$

-
1
@
1
"
A
1

Figure 3: Loop transformation

5. TECHNICAL APPROACH
Figure 4 shows the proposed transformation technique

whose inputs come from the output of the technique pre-
sented in [8]. For selected loop nests, we add two function
calls at the beginning and the end of the loop nest. The
first function call assigns a lower energy voltage/frequency
pair to the processor. The second function call changes the
voltage/frequency pair to another operating point.

���

��������								

�

��������						

�

������

��������									�

��������									�

���
��

��������									�

��������									��

����
�����������

������

������

��
�

���
��

�

�
�
�
�
�
�
�
�
�
�

�

����

�

�
�
�
�
�
�
�
�
�
�

�

���
�

�

�
�
�
�
�
�
�
�
�
� ��

�

�
�
�
�
�
�
�

�

��������������� ����!���

��������								

�

��������						

�

������

�

��������������� ����!���

�

��������������� ����!���

��������								

�

��������						

�

���
��

�

��������������� ����!���

���

Figure 4: Voltage/frequency scaling transformation

Figure 5 shows our proposed methodology for low energy
code transformation in seven steps. In step (1), we extract
all the loops which have the template shown in Figure 3-a.
In step (2), we use the work in [7] to evaluate the conditional
expression nested in each loop. In step (3), we use the work
in [8] to transform the loop, which gives us a series of nested
loops for disjoint subspaces of the iteration space in the form
shown in Figure 3-b.

!""#$%&'(&)*

+",)-(-",./*0/"+1*

&2(3.+(-",

4"53+&*+")&

6"7.-,*'#.+&*

#.3(-(-",-,8

9(&3.(-",*'#.+&*

#.3(-(-",-,8

:;<=*>*?"@&3*

&'(-7.(-",

=3.,'A"37&)*

'"53+&*+")&

BCD

BED BFD

BGD

H"/(.8&IJ3&K*

L''-8,7&,(

=3.,'A"37*(M&*

+")&

=3.,'A"37&)*'"53+&*

+")&

B6HJ4*&,.0/&)D

BND

BOD

Figure 5: Block diagram of our proposed methodol-
ogy

In step (4), we use measurement-based prediction or static
analysis technique [17] [14] [27] to estimate the worst case
execution time and power for original and transformed loop
partitions. One can use a functional/power simulator to
gather these numbers also, which is the method that we
have used.

In step (5), we use a 0-1 Integer Programming technique
to assign each loop partition a pair of (voltage, frequency)
which minimizes the total energy consumption of the system.
Assume the following:

• Variable vfi,j is a binary integer that is 1 when loop i
has the voltage/frequency pair (vj , fj),

• Ei,j and Ti,j are the energy and the execution time
of the loop i when it runs with voltage/frequency pair
(vj , fj)

• i ∈ [1,#loop partitions]

• j ∈ [1,#voltage/frequency pairs]

• Minimize:
P

i

P
j vfi,j × Ei,j + Eoverhead

• With the constraint:P
i

P
j vfi,j × Ti,j + Toverhead ≤ DEADLINE

• Eoverhead =
P

i

P
j vfi,j × Eov(i, j)

• Toverhead =
P

i

P
j vfi,j × Tov(i, j)

206

Table 1: Selected Application List
Benchmark # Application Function description Conditional expressions

B1 mpeg4 Motion estimation (x3 < 0||x3 > 35||y3 < 0||y3 > 48)
(x4 < 0||x4 > 35||y4 < 0||y4 > 48)

B2 qsdpcm Video compression ((4 ∗ x + vx− 4 + x4 < 0)||
(4 ∗ x + vx− 4 + x4 > (N/4− 1))||

(4 ∗ y + vy − 4 + y4 < 0)||
(4 ∗ y + vy − 4 + y4 > (M/4− 1)))

B3 gimp Create Kernel (32 ∗ x− 2 ∗ i + 1)2 + (32 ∗ y − 2 ∗ j + 1)2 < 4096
B4 mpgdec Initialize Decoder (i < 0), (i > 255)
B5 mpgenc Ver./Hor. Filter,2:1 Subsample (i < 5), (i < 4), (i < 3), (i < 2), (i < 1)
B6 mp3 Layer 3 Psych. Analysis j < sync flush, j < BLKSIZE

where Ei,j and Ti,j are calculated in step (4).
DEADLINE is the time taken by the original code (Fig-
ure 3-a) running at the maximum frequency of the CPU.
Eoverhead and Toverhead are the total energy and time
overhead incur in voltage/frequency switchings. Eov(i, j)
and Tov(i, j) are the energy and time overhead when
there is a switching from voltage/frequency (vi, fi) to volt-
age/frequency (vj , fj), and are pre-computed using the fol-
lowing formulas [3] [30]:

Eov(i, j) = (1− µ)× C × |v2
i − v2

j |
Tov(i, j) = (2× C/IMAX)× |vi − vj |

Based on [3] and [30], µ represents the energy efficiency of
the power regulator which is considered to be 90%. Also, C
is the voltage regulator’s capacitance which is considered to
be 10µF and IMAX is the maximum allowed current which
is assumed to be 1A.

We note that in addition to all the transformed loop parti-
tions, in this step, we assign a voltage/frequency pair to the
original (unoptimized/untransformed) loop partitions also
(the unknown section in Figure 3-b).

In step (6) the code is transformed by adding the func-
tion calls needed to change the voltage and frequency at the
boundaries of the loop partitions.

6. EXPERIMENTAL RESULTS
To evaluate the proposed code transformation technique,

several loop kernels from MediaBench [4] application suite
were chosen. We also experimented with an mp3 encoder
implementation obtained from [29], an mpeg4 full motion es-
timation obtained from [5], GNU Image Manipulation Pro-
gram (gimp) [24] and also qsdpcm [23] video compression
algorithm obtained from [13].

By loop kernel, we mean the region of code that was im-
pacted by the transformation. For example, if the trans-
formed code was a for-loop with a nested conditional block
within, then the energy taken to execute that entire for-loop
before and after the optimization was used to determine the
energy reduction percentage. The characteristics of the loop
kernels selected for our experiments are listed in Table 1. In
Table 1, conditional expressions column shows the particular
conditional expression(s). If there are more than one condi-
tional expression in a loop kernel, then we run our algorithm
for each instance of the conditional expression separately
(i.e., the algorithm is run iteratively as long as improve-
ments are obtained). Also, in Table 1, Application column
shows the origin of the loop kernel and Function description
column shows the functionality of the code where the kernel
is taken from. We applied our transformation technique at

the source level to each of the chosen benchmarks, compiled
the original and the transformed code, and measured the im-
provement. We did these experiments using the StrongARM
SA100 for which we had a power simulator available [18].
Moreover, the StrongARM SA100 is very similar to Intel
PXA270 [11] which is a good candidate for applying DVFS.
Table 2 shows several voltage/frequency pairs obtained from
the Intel PXA270 manual [11].

Table 2: Voltage/Frequency points for experiments
Frequency(MHz) 624 520 416 312 312 208 104

Voltage(V) 1.55 1.45 1.35 1.25 1.1 1.15 0.9

6.1 Results
For the experiments we followed the steps shown in the

block diagram of Figure 5. After applying the first three
steps, we obtain a series of loop partitions, some of which
are transformed and some are not. We compare the energy
for three scenarios:

• Original: The original energy and power is measured
for the loop without any transformation and for the
highest voltage/frequency point (V=1.55 V and f=624
MHz). The measured time from this step is used as
the deadline for the next two methods (DEADLINE in
the 0-1 Integer Programming formulation of Section 5).
The energy and power results for the 6 selected bench-
marks are shown in the 2nd and the 3rd columns of
Table 3.

• Coarse-grain DVFS: The coarse-grain DVFS applies
the DVFS technique once and for the entire trans-
formed loop (Figure 3-b). For frequency assignment,
we find the lowest frequency (fCG) that the trans-
formed code can run and meet the deadline (i.e.,
DEADLINE in the 0-1 Integer Programming formu-
lation). Assuming that the transformed code takes
Ctrans cycles to execute, and the measured power for
transformed code for the (VCG, fCG) is PfCG , then:

Ttrans = Ctrans × (1/fCG)

Etrans = Ttrans × PfCG

Where Ttrans is the time to run the transformed loop
with the selected frequency. This time might be lower
than DEADLINE and since we desire a unique point
of reference for all the 3 scenarios, we place the CPU
into idle mode for the duration of time up-to the dead-
line:

207

Tidle−cg = DEADLINE − Ttrans

Eidle−cg = Tidle−cg × Pidle

Here, we use the power consumption of the idle mode
for different frequency settings from the Intel PXA270
manual [11] to compute Eidle−cg. We compute the
total energy as follows:

Ecoarse−grain = Etrans + Eidle−cg

The energy and power results for the 6 selected bench-
marks are shown in the 4th and the 5th columns of
Table 3.

• Fine-grain DVFS: For each benchmark, for each trans-
formed loop partition and for each voltage frequency
points (Vj , fj) mentioned in Table 2, we ran the power
simulator [18] and measured the number of cycles (Ci)
and total power consumption (Pi,j) reported by the
simulator for each transformed loop partition. For
each voltage/frequency point (Vj , fj), we compute the
energy and the time for each transformed loop parti-
tion by:

Ti,j = Ci ∗ (1/fj)

Ei,j = Pi,j ∗ Ti,j

The Ei,j ’s and Ti,j ’s are the inputs to step (5) in Fig-
ure 5, which will return the set of voltage/frequency as-
signments for the loop partitions. For loop partition i,
we define the index of assigned voltage aVi and the in-
dex of assigned frequency aFi. Similar to coarse-grain
DVFS, there may be some idle time, during which we
place the CPU into idle mode to obtain the total en-
ergy as follows:

Tidle−fg = DEADLINE −
X

Ti,aVi

Eidle−fg = Tidle−fg × Pidle

The energy for the fine grain DVFS (Efine−grain) can
be computed as below:

Efine−grain =
X

Ei,aVi + Eidle−fg

The energy and power results for the 6 selected bench-
marks are shown in the 6th and the 7th columns of
Table 3.

Figure 6 shows the energy reduction percentage for both
coarse-grain and fine-grain methods compared to the origi-
nal case. As can be seen in Figure 6, on average fine-grain
scenario does better in energy reduction compared to coarse-
grain, when compared to original version (26.56% reduction
for fine-grain and 22.7% reduction for coarse-grain). Also
in best case, fine-grain can gain 66% energy reduction com-
pared to original, but coarse-grained can gain 56% energy
reduction compared to original. This is expected, since fine-
grain matches itself better to the speed need of the software,

but coarse grain mostly runs faster and then sits idle. As
can be seen in Table 3, for mp3 and mpegdec, the fine-grain
approach essentially achieves the same performance as the
coarse-grain, yielding similar energy savings.

0 

10 

20 

30 

40 

50 

60 

70 

B1  B2  B3  B4  B5  B6  Avearge 

En
er
gy
 R
ed

uc
8
on

 (%
) 

Fine grain 

Coarse grain 

Figure 6: Energy reduction percentage for the se-
lected benchmarks

7. ACKNOWLEDGEMENT
This work was in part supported by grant #0749508 from

the National Science Foundation.

8. CONCLUSION
We presented a novel loop transformation technique, par-

ticularly well suited for optimizing embedded compilers,
where an increase in compilation time is acceptable in ex-
change for significant energy consumption decrease. Our
contribution was specifically, enabling DVFS technique for
the loop nests containing conditional blocks without ad-
versely affecting their execution time. Specifically, the trans-
formation takes advantage of the fact that the Boolean value
of a conditional expression, determining the true/false paths,
can be statically analyzed and this information, combined
with loop dependency information, can be used to break up
the original loop, containing conditional expressions, into
a number of smaller loops without conditional expressions.
Subsequently, each of the smaller loops can be executed at
the lowest voltage/frequency setting yielding overall energy
reduction. Applying the proposed transformation technique
on loop kernels taken from Mediabench, mpeg4, qsdpcm and
gimp, we measured an impressive energy reduction of 26.56%
(average) and 66% (best case) when running on a Stron-
gARM embedded processor. The energy reduction was ob-
tained at no additional performance penalty.

9. REFERENCES
[1] A. Aho. Compilers principles, techniques and tools.

Addison Wesley, Reading, Massachusetts, 1988.

[2] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt,
A. Veidenbaum, and A. Nicolau. Profile-based
dynamic voltage scheduling using program
checkpoints. In DATE ’02: Proceedings of the
conference on Design, automation and test in Europe,
pages 168–175, 2002.

[3] T. D. Burd and R. W. Brodersen. Design issues for
dynamic voltage scaling. In ISLPED ’00: Proceedings
of the 2000 international symposium on Low power
electronics and design, pages 9–14, 2000.

208

Table 3: Measured Energy (Joule) and Power (Watt) numbers for the selected loop kernels (same deadline)
Original) DVFS coarse-grain DVFS fine-grain

Application Energy Power Energy Power Energy Power
mpeg4 2.856 4.821 1.250 2.111 0.962 1.624
qsdpcm 0.221 5.451 0.171 4.218 0.162 3.991

gimp 1.269 5.634 1.223 5.426 1.231 5.466
mpgdec 0.00084 5.053 0.00072 4.345 0.00072 4.332
mpgenc 0.0217 5.268 0.0156 3.788 0.0136 3.292

mp3 0.00121 4.843 0.00107 4.285 0.00106 4.285

[4] C. L. et. al. Mediabench: A tool for evaluating and
synthesizing multimedia and communicatons systems.
In International Symposium on Microarchitecture,
pages 330–335, 1997.

[5] H. Falk and P. Marwedel. Control flow driven splitting
of loop nests at the source code level. In Proceedings of
DATE, pages 410– 415, 2003.

[6] Y. Fei, S. Ravi, A. Raghunathan, and N. K. Jha.
Energy-optimizing source code transformations for
operating system-driven embedded software. Trans. on
Embedded Computing Sys., 7(1):1–26, 2007.

[7] M. Ghodrat, T. Givargis, and A. Nicolau. Equivalence
checking of arithmetic expressions using fast
evaluation. In Proceedings of International Conference
on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 147–156, 2005.

[8] M. Ghodrat, T. Givargis, and A. Nicolau. Control flow
optimization in loops using interval analysis. In
Proceedings of CASES, pages 157 – 166, 2008.

[9] K. Govil, E. Chan, and H. Wasserman. Comparing
algorithm for dynamic speed-setting of a low-power
cpu. In MobiCom ’95: Proceedings of the 1st annual
international conference on Mobile computing and
networking, pages 13–25, 1995.

[10] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B.
Srivastava. Power optimization of variable voltage
core-based systems. In DAC ’98: Proceedings of the
35th annual conference on Design automation, pages
176–181, 1998.

[11] Intel. Intel xscale technology-basd embedded
processor. Available as
http://www.intel.com/design/embeddedpca/
applicationsprocessors/302302.htm.

[12] T. Ishihara and H. Yasuura. Voltage scheduling
problem for dynamically variable voltage processors.
In ISLPED ’98: Proceedings of the 1998 international
symposium on Low power electronics and design,
pages 197–202, 1998.

[13] I. Issenin and N. Dutt. Data reuse driven energy-aware
mpsoc co-synthesis of memory and communication
architecture for streaming applications. In
CODES-ISSS 2006, pages 294–299, 2006.

[14] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L.
Min, C. Y. Park, H. Shin, K. Park, S.-M. Moon, and
C. S. Kim. An accurate worst case timing analysis for
risc processors. IEEE Trans. Softw. Eng.,
21(7):593–604, 1995.

[15] H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and
D. Ghosh. Techniques for low energy software. In
ISLPED ’97: Proceedings of the 1997 international
symposium on Low power electronics and design,
pages 72–75, 1997.

[16] R. Moore. Interval analysis. Prentice-Hall, Englewood
Cliffs, N. J., 1966.

[17] K. D. Nilsen and B. Rygg. Worst-case execution time
analysis on modern processors. In LCTES ’95:
Proceedings of the ACM SIGPLAN 1995 workshop on
Languages, compilers, & tools for real-time systems,
pages 20–30, 1995.

[18] U. of Michigan. The simplescalar-arm power modeling
project. Available as
http://www.eecs.umich.edu/ panalyzer/.

[19] P. R. Panda and N. D. Dutt. Low-power memory
mapping through reducing address bus activity. IEEE
Trans. Very Large Scale Integr. Syst., 7(3):309–320,
1999.

[20] T. Pering, T. Burd, and R. Brodersen. Voltage
scheduling in the iparm microprocessor system. In
ISLPED ’00: Proceedings of the 2000 international
symposium on Low power electronics and design,
pages 96–101, 2000.

[21] A. Peymandoust, T. Simunic, and G. de Micheli. Low
power embedded software optimization using symbolic
algebra. In DATE ’02: Proceedings of the conference
on Design, automation and test in Europe, pages
1052–1058, 2002.

[22] D. Shin, J. Kim, and S. Lee. Intra-task voltage
scheduling for low-energy, hard real-time applications.
volume 18, pages 20–30, 2001.

[23] P. Stobach. A new technique in scene adaptive coding.
In Proceedings of EUSIPCO, 1988.

[24] T. G. Team. Gnu image manipulation program.
Available as http://www.gimp.org/.

[25] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: a first step towards software
power minimization. IEEE Trans. Very Large Scale
Integr. Syst., 2(4):437–445, 1994.

[26] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee.
Instruction level power analysis and optimization of
software. J. VLSI Signal Process. Syst.,
13(2-3):223–238, 1996.

[27] V. Venkatachalam and M. Franz. Power reduction
techniques for microprocessor systems. ACM Comput.
Surv., 37(3):195–237, 2005.

[28] M. Wolfe. How compilers and tools differ for embedded
systems. In Proceedings of the CASES, page 1, 2005.

[29] www.mp3tech.org. Iso mp3 sources. Available as
http://www.mp3-tech.org/programmer
/sources/dist10.tgz.

[30] F. Xie, M. Martonosi, and S. Malik. Efficient
behavior-driven runtime dynamic voltage scaling
policies. In Proceedings of CODES+ISSS, pages
105–110, 2005.

209

