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ABSTRACT 
Physical models utilize mathematical equations to model physical 
systems like airway mechanics, neuron networks, or chemical 
reactions. Previous work has shown that physical models can 
execute fast on FPGAs (field-programmable gate arrays). We 
introduce an approach for implementing physical models on 
FPGAs that applies graph theoretic techniques to make use of a 
physical model’s natural structure—tree, ring, chain, etc.—
resulting in model execution speedups. A first phase of the 
approach maps physical model equations to a structured virtual 
PE (processing element) graph using graph theoretic folding 
techniques. A second phase maps the structured virtual PE graph 
to physical PE regions on an FPGA using graph embedding 
theory. We also present a simulated annealing approach with 
custom cost and neighbor functions that can map any physical 
model onto an FPGA with low wire costs. Average circuit 
speedup improvements over previous works for various physical 
models are 65% using the graph embedding and 35% using the 
simulated annealing approach. Each approach’s more efficient use 
of FPGA resources also enables larger models to be implemented 
on an FPGA device. 

Categories and Subject Descriptors 
B.5.2 [Design Aids]: Automatic synthesis 
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED 
SYSTEMS]: Real-time and embedded systems 

Keywords 
Real-time emulation, field-programmable gate array (FPGA), 
ordinary differential equations, physical models, cyber-physical 
systems, differential equation synthesis, high-level synthesis, 
system-level synthesis, processing elements, PE networks, graph 
embedding, placement, simulated annealing, emulation 

1. INTRODUCTION 
Fast physical model simulations are required in various domains, 
including biomedical engineering, physics, chemistry, and much 
more. A physical model represents some observable physical 
phenomena, usually as a set of normal, partial differential, or 
ordinary differential equations. The set of equations can be solved 
using time-stepping equation solvers.  

In the cyber-physical system domain, previous work uses physical 
models to interact with and test devices such as ventilators [16], 
pacemakers [13], and unmanned aerial vehicles [9]. Using 
physical model simulations for testing can be preferable over the 
actual physical environment when such an environment is 
difficult, expensive, or dangerous to create or use. Physical 
models may also be more accurate than physical analogs, e.g., a 
balloon may capture some of the behavior of a lung, but may not 
be able to accurately model various lung diseases.  

Our previous research has been able to speed up physical model 
simulation up to three orders of magnitude versus multicore 
desktop processors, by partitioning physical model computation 
across hundreds of processing elements (PEs) on an FPGA [12], 
each PE optimized to execute time-stepping equation solvers [11].  

Many physical models share the same natural structure as the 
corresponding physical system. For example, a Weibel lung 
model [27] utilizes a binary tree structure because the lung 
physiology itself is a tree in which the trachea is the root and 
where gas exchange occurs at the leaves. Similarly, atrial cell 
models utilize a three-dimensional mesh structure to simulate the 
propagation of electrical signals across tissues of cardiac cells 
[29]. Equations of the physical system are grouped naturally, e.g., 
the volume and pressure of a lung branch have data dependencies 
and thus should ideally be placed within the same PE to minimize 
communication costs. Generally, the natural structure of a 
physical model provides an optimal grouping of equations that 
minimizes communication costs. 

A key contribution of this work is utilizing the natural structure of 
simulated physical model during placement of a PE network onto 
an FPGA. By using graph embedding techniques that have been 
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Figure 1: Two-phase approach of mapping physical model 
equations onto a structured graph of virtual PEs, and mapping 
virtual PEs onto a FPGA utilizing graph embedding techniques. 
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extensively researched in graph theory literature, the structure of 
the physical model can be embedded onto a two-dimensional grid 
of PE elements on an FPGA. By performing graph embeddings, 
the resulting circuit incurs less communication cost and enables 
higher circuit frequencies, translating to faster execution of 
physical models. A secondary contribution is the definition of a 
simulated annealing approach that provides cost and neighbor 
functions for minimizing distances between PEs placed on a grid 
of physical regions on a FPGA, used for unknown model 
structures and also for evaluating the first contribution. 

Figure 1 details a two-phase approach for embedding a physical 
model onto an FPGA. The first phase maps the physical model 
equations to a structured virtual PE graph. A structured virtual PE 
graph has virtual PE nodes that contain groups of equations, have 
connections to other virtual PE nodes, and is structured in the 
form of the physical model. Physical placement can then be 
performed by defining physical PE regions where virtual PEs may 
be mapped, and then either applying the appropriate graph 
embedding algorithm or using a general simulated annealing 
approach to perform the mapping. In the right side of Figure 1, a 
graph embedding algorithm maps a binary tree to a two-
dimensional grid by placing the root in a physical PE region in 
middle of the grid, and expanding the child subtrees out in 
different directions. 

The rest of the paper is structured as follows. Section 2 describes 
past work on accelerating physical models, as well as other 
applications of graph embedding theory. Section 3 describes some 
example physical models with specific structures. Section 4 
describes the process of partitioning equations to virtual PEs. 
Section 5 describes the mapping of virtual PEs to physical PE 
regions, either by using a graph embedding or simulated annealing 
approach. Section 6 discusses experiments showing circuit 
frequency speedups when using different placement strategies.  

2. RELATED WORK 
Our past research efforts on fast execution of physical models on 
FPGAs [11][12] have achieved orders of magnitude of 
acceleration over executing on desktop processors  and several 
times speedups over graphical processing units, with 
improvements even when considering time/dollar-cost. Speedup 
was achieved by parallelization of differential equations across 
hundreds of PEs, for complete applications and not just kernels. 
FPGAs excel at executing physical models because the massively-
parallel local-neighbor communication of physical models 
represents an excellent match for FPGA fabrics, avoiding 
common memory or external input/output bottleneck problems. 
An automated flow was presented that translates a specification of 
the physical model into an equation dependency graph, partitions 
equations into PEs via simulated annealing, schedules 
computations and custom point-to-point communications, and 
finally generates HDL for commercial tool synthesis. PEs may be 
either generic computation units with an ALU and programmable 
instructions, or a custom datapath targeted at a specific equation. 

Recent work has shown additional speedups by creating 
heterogeneous networks of general, programmable PEs, and PEs 
with custom datapaths for solving specific equations [12]. de 
Pimentel also utilized an FPGA to accelerate a heart model on an 
FPGA [19], and interfaced the simulation with a pacemaker via 
analog-digital converters. Tagkopoulos built a custom FPGA for 
the simulation of gene regulatory networks [22].  

While the above past efforts used heuristics to map equations to 
PEs and have relied on commercial tools to place PEs, we propose 
that a mapping of equations to PEs that maintains physical model 
natural structure and performs placement based on the structure 
can yield faster circuits and faster execution of physical models. 

The problem of mapping algorithms with communication 
structures that differ from the interconnection scheme of the host 
architecture was first considered in the 1980s. Bokhari 
summarized the issue and offered a heuristic for mapping 
algorithm tasks to adjacent processors in a “finite element 
machine” array processor [5]. Later, Berman and Snyder offered a 
general solution for embedding common structures such as cubes, 
meshes, linear arrays, and trees [3]. Much of that research has 
been used in distributed and high-performance computing 
domains for mapping tasks to processors to minimize 
communication costs [4]. VLSI design has also utilized graph 
embedding techniques, including minimizing communication 
between a binary-tree structured processor network implemented 
on an optimally sized square [23]. 

The general problem of placing logic into a programmable FPGA 
fabric has previously been considered as a graph embedding 
problem, as opposed to the typical approach of iterative heuristics 
and recursive partitioning. Banerjee proposed converting netlists 
into hypergraphs and embedding the hypergraphs onto the two-
dimensional grid of FPGA resources using a recursive space-
filling curve [2]. This approach can yield up to 2x faster runtimes 
for placement, but yields little improvement to the critical path 
delays needed for faster physical model simulations. 
Gopalakrishnan proposed a new approach called CAPRI to create 
an initial placement of a design based on the embedding of a 
netlist into the target FPGA platform [10]. CAPRI models the 
routing delays of the target FPGA platform in a metric space and 
uses matrix projections to minimize distortion between graph 
abstractions of the netlist and platform. These previous works 
have focused on mapping to low-level FPGA resources like 
CLBs, whereas our work focuses on the best placement of a 
network of hundreds of individual PEs in abstracted FPGA 
physical regions.  

3. PHYSICAL MODEL STRUCTURES 
Physical models often have a natural structure associated with a 
corresponding layout in the physical world. Consider a human 
lung, which begins at the trachea and splits into nearly identical 
left and right lobes. Each lung contains more than twenty 
additional splits as the airway passage diameters decrease and 

 

 

 

 

 

Figure 2: Various physical models and graphs of their representative structures. 

 

Weibel lung Atrial heart cells Neuron synapses Wave Hemodynamics 

182



eventually are able to support blood-gas exchange alveoli. The 
lung has thus often been modeled as a binary tree of twenty or 
more generations such that gas flow at the trachea can be used to 
compute the pressure and volume of internal branches [27]. 
Similarly, cell models that simulate electrical activity across heart 
atrium walls utilize a three-dimensional mesh structure to allow 
neighboring cells to propagate signals. Figure 2 shows some 
examples of physical models and their corresponding structures, 
which are described below.  

Weibel lung: The classical binary tree shaped lung model, in 
which an inlet flow at the root of the tree is used to compute 
volume and pressure at lower branches [27]. Each node of the tree 
computes the volume V and flow F of the corresponding branch: 
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Atrial heart cells: A 3-dimensional mesh of cells, where each cell 
propagates signals to its neighbors [29]. vi is the membrane 
potential of cell i and is computed by the following equation. 
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Neuron synapses: A 1-dimensional array of cells that simulates 
the firing of neuron synapses. s is the synaptic variable, v is the 
membrane potential, and w is a channel gating variable [21]. 
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Wave: A wave model has a two-dimensional mesh network 
structure and is often used to model the propagation of sound, 
acoustics, etc [17]. The amplitude of the signal at node i is given 
by: 

iyyxx
i ucuuuuc
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Hemodynamics: A model that simulates the circulation of the 
human body, and includes submodels for the left/right heart 
ventricle and pulmonary/systemic tissues [25]. The hemodynamic 
model is arranged in a circular structure. Since there are many 
different types of equations to model this system, we omit the 
detailed descriptions here. 

Large physical models such as those described above can be 
partitioned to hundreds of PEs in a network to achieve very fast 
simulation speeds. By maintaining the structure associated with 
the physical model during physical placement of PEs onto an 
FPGA, the routing overhead between PEs can be minimized. The 
natural structure of a physical model typically uses an optimally 
minimal number and length of wires, because only local 
communication between cells, lung branches, etc. is required. 

Previous work in physical model simulation attempted to recover 
the physical model structure via heuristic annealing algorithms, 
after having converted the specification of the physical model's 
equations to an equation dependency graph [11]. However, 
finding the globally optimal solution for physical models 
containing thousands of equations and hundreds of PEs is not 
feasible with this approach. Instead of attempting to recover 
structures with heuristics, we propose to preserve the connections 
as they were modeled so as to minimize communication cost. 

4. PHASE 1: MAPPING EQUATIONS TO 
VIRTUAL PEs 
Given the specification of a physical model that enumerates the 
physical model equations, a map must be built that groups 
equations into a structured virtual PE graph G that maintains the 
structure of the physical model. Equations must first be 
partitioned to a structured virtual PE graph of unconstrained size. 
Second, the graph must be reduced in size via folding to fit into 
available resources of the target platform. The target platform, 
which is typically an FPGA but could be an ASIC, is the device 
that the circuit will be placed on. There are limited resources on 
the target platform, thus folding is necessary for physical models 
whose structured virtual PE graphs exceed the size of the target 
platform. 

4.1 Partitioning equations 
Let G=(v,e), where v={v1,v2…,vn} is a set of n vertices and 
e={e1,e2,…,ek} is a set of k edges between vertices in v. Let 
E={E1,E2,...,Em} be the set of equations defined in the 
specification of the physical model. The set of vertices v represent 
virtual PEs, which may have equations from E allocated to them. 
The set of edges e represent communication channels between 
virtual PEs. If an edge ei=(v,u) exists, then there exists 
dependencies between the equations hosted in v and u. The graph 
G and its nodes and edges are defined by the structure of the 
physical model; a three-level binary-tree shaped Weibel lung 
model thus would have a graph that contains: 

Gv={v1,v2,v3,v4,v5,v6,v7} 

Ge={(v1,v2),(v1,v3),(v2,4),(v2,v5),(v3,v6),(v3,v7)}) 

Each equation Ei can be allocated to a vertex vi in G according to 
a surjective mapping function f : EGv. The function f depends 
on the structure of G, and maps groups of equations that represent 
the same physical element, e.g., a lung branch or atrial cell, to a 
single vertex. The result of applying the map function f to each 
equation yields a structured virtual PE graph G which maintains 
the basic structure of the physical model, and where each vertex 
(virtual PE) contains equations that represent some physical 
element of the physical model.  

4.2 Folding 
A physical model may be very large – a Weibel model with 11 
generations contains 4000 differential equations. In order to meet 
the physical constraints of using a real platform when mapping 
virtual PEs to physical PEs, the virtual PE graph G must first be 
scaled down. We perform graph folding on G by applying a 
homomorphic folding function φ that maps the larger graph to a 
smaller, more compact version G’ while preserving the structure 
of G. In particular, φ maps G to G’, where the size n of the vertex 
set of G’ is less than or equal to the number of supportable PEs in 
the target platform S; φ : GG’ | G’n < S. φ must also maintain 
the topology of G in G’ by either maintaining an existing edge of 
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G in G’, or by merging the equations of vertex a ∈ G into vertex b 

∈  G' such that the length of any edge connected to the merged 
vertices is constant. Informally, structures that are symmetric can 
generally be folded by cutting the graph into two subgraphs, and 
merging vertices that share the same position in each subgraph. 
Folding of graphs has been previously explored in graph theory 
literature [1][7][26]. Aleliunas [1] and Ellis [7] utilized folding 
techniques in order reduce the aspect ratio of rectangular graphs 
into forms that could be embedded onto a two-dimensional grid. 
Other work has developed algorithms for folding strongly 
balanced hypertrees in order to embed them into hypercube 
structures [26]. 

The exact definition of φ depends on the physical model structure. 
Different physical models can reuse the same folding functions as 
long as their structures match, thus a folding function for each 
structure type must be identified. A potential pitfall of folding is 
that structured virtual PE graph sizes tended to be reduced by 
halves, potentially creating a situation where almost half of the 
physical PE regions of the target platform are empty. One solution 
is to simply manually merge the final few virtual PEs if the size 
constraint of the target platform is only slightly less than the size 
of the structured virtual PE graph. The following section provides 
examples that target binary tree physical models, describing the 
mapping function f and folding function φ which result in the 
generation of a structured virtual PE graph. 

4.3 Lung model example 
A small Weibel lung model with three generations of bifurcating 
airways is structured as a binary tree with 23-1 = 7 branches, or 
fourteen interdependent differential equations for computing the 
pressure and volume of each branch. Let the set of equations E in 
the specification of the physical model be ordered such that the 
first l equations compute the volume and pressure of the root 
node, the next l equations compute the left child of the root, 
followed by l equations for the right child of the root, and so on. 
Equations can thus be initially partitioned to vertices in G via f(ei) 
= i / l. The left side of Figure 3(a) shows a representative 
structured PE graph, where EqNx represents the equations 
allocated to each node. 

Consider if the target platform for the three-generation Weibel 
lung model is an FPGA that contains only enough resources for 
three PEs. Since each vertex in the graph represents a virtual PE 
that must eventually be physically placed, an excess of four PEs 
will not fit into the device. The graph can be folded as shown in 
the right side of Figure 3(a), by merging nodes in such a way as to 
maintain the graph structure. Let TR be the root of the graph G, 
and T1 and T2 be the subtrees whose roots are the left and right 
children of TR, respectively. We fold T2 into T1 by traversing 
down each subtree simultaneously, and moving any equations 
within the current node of T2 into the equivalent node of T1. The 
root node TR is also merged into the root node of T1, otherwise TR 

would contain only a single child. This method maintains the 
adjacency of vertices in T2 within T1, as long as each subtree is 
symmetrical. Non-symmetrical structures can still be folded 
imperfectly by merging the vertices in T2 that have no 
corresponding vertex in T1 such that a minimum of additional 
edge length is required.  

5. PHASE 2: MAPPING VIRTUAL PEs TO 
PHYSICAL PEs 
Once a structured graph of virtual PEs has been created, each 
virtual PE must be mapped to a physical location on the target 
platform. This mapping must consider both the average and 
maximum distances between PEs to reduce congestion and critical 
paths introduced via inter-PE communication channels. The 
simple solution to this problem is to let a commercial synthesis 
tool flatten the design hierarchy, and run heuristic algorithms to 
select an appropriate placement. However, a circuit that contains 
hundreds of PEs is sufficiently complex such that modern tools 
cannot find good solutions without having additional constraints 
specified. Our approach defines a two-dimensional grid of 
physical PE regions on a target FPGA platform. Each physical PE 
region in the grid contains just enough resources to implement a 
single PE. Physical PE regions are defined at specific locations to 
create a two-dimensional grid that can be addressed using a XY 
Cartesian coordinate system. Whether or not the physical PE 
region actually contains a physical PE depends on the subsequent 
mapping. Virtual PEs can be mapped to physical PE regions on 
the grid using either structure-specific graph embedding 
techniques that place a guest graph into a host graph 
algorithmically, or by a generic simulated annealing approach 
with custom cost functions to reduce wire length.  

5.1 FPGA platform two-dimensional grid 
When performing place and route operations on large PE 
networks using commercial tools (Xilinx ISE 13.4) and a flattened 
netlist, we noticed that the critical path most often manifests 
between memories or logic components that belong to the same 
PE. Each PE in our design requires two memories (BRAMs), one 
multiplier (DSP), and approximately 250 lookup-tables (LUTs). 
We expected that communication channels between different PEs 
would be the primary cause of delay. Because of the complexity 
of large PE networks, the tools are not able to always place 
components of the same PE nearby each other. This problem can 
be addressed via the use of placement constraints during synthesis 
and place and route.  

We first utilize Relationally Placed Macros (RPMs) to establish 
relative distances between PE memories. RPMs have been shown 
to provide faster circuit designs, even with modern tools [20]. On 
Xilinx FPGAs, a Cartesian coordinate system is used to specify 
the locations of components like DSPs and BRAMs (Figure 4). 
BRAM and DSP modules are physically located in homogeneous 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Contraction of the PE dependency graph by 
folding: (a) binary tree (b) 3-dimensional mesh. 
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columns that stretch the height of the FPGA. We create an RPM 
for a PE using the Xilinx RLOC constraint by specifying that the 
offset between its instruction and data memories should be X=0, 
Y=1, and that the offset between the instruction memory and the 
DSP should be exactly X=-4, Y=0. The RPM thus ensures that PE 
memories are placed in neighboring BRAMs within the same 
BRAM column, and that the related DSP module is in the closest 
available location in a neighboring DSP column. 

RPMs are useful for ensuring the close locality of BRAM and 
DSP modules that belong to the same PE, but we still must 
constrain each PE to specific physical PE regions on the target 
platform. We utilize the Xilinx AREA_GROUP constraint during 
place and route to place PEs into physical PE regions. A selection 
of physical components of the FPGA (BRAM, DSPs, and slices) 
is first grouped into a pblock. We use the Xilinx PlanAhead tool 
to manually create pblocks in a grid structure. Each Pblock 
contains enough resources for a PE: two BRAMs, multiple DSPs, 
and more than 300 LUTs. The PEs in the design netlist can then 
be constrained via the AREA_GROUP constraint to a specific 
pblock region. The use of pblocks not only designates an exact 
location to place a PE, but also helps the place and route tools by 
requiring that the components in a PE hierarchy be placed within 
the pblock area. Since the area of the pblock is roughly what is 
required of a PE, the resulting PE implementation is densely 
packed and optimized. The use of placement constraints helps to 
shift the circuit critical path from internal PE connections to PE 
network communication channels. 

We target a Xilinx XC6VSX475T. The Virtex6 platform contains 
approximately 297K LUTs, 2K DSP units, and 1K Block RAM 
(36KB each) memories. The grid size that can be constructed is 
14x39, yielding a maximum of 504 PEs. For the vast majority of 
physical models, 500 PEs is sufficient for much faster than real-
time simulation speeds.  We note that our approach is not limited 
to one specific tool, platform or vendor; all FPGAs consist of a 
regular, reconfigurable fabric and most vendors allow blocks of 
resources to be grouped to create uniform structures. We consider 
only the specifically denoted FPGA and vendor (Xilinx) above to 
ease the discussion. 

5.2 Graph embedding based placement 
Physical models that exhibit common structures are able to take 
advantage of graph embedding techniques during physical 
placement. Graph embedding is the process of mapping a guest 

graph of architecture g onto a host graph of a different 
architecture h. Graph embedding has studied for at least 30 years 
by mathematical theorists, and many optimal solutions have been 
found for the embedding of structures like trees and meshes onto 
grids and hypercubes [6][15][24]. The typical metric that graph 
embedding algorithms are evaluated by is maximum dilation, or 
the maximum number of nodes that a wire may need to pass 
through to be completed. Since in physical model-solving PE 
networks the communication channels are point-to-point between 
PEs, the dilation is always exactly one. We thus alter the metric’s 
definition slightly to be the maximum wire length between any 
two PEs. A second important metric is the average dilation, or the 
average wire length of all communication channels in the circuit. 

By taking advantage of the research on graph embedding 
techniques to map virtual PEs to physical PEs on the target 
platform, the resulting physical placement can achieve smaller 
maximum and average dilation in the circuit. Smaller maximum 
dilation implies a reduction in the critical path, since once a PE 
has been constrained using RPMs and pblocks the longest wires 
for any complex network is typically connected between different 
PEs (as opposed to internal PE connections). Lower average 
dilation means that less routing resources will be required, which 
typically results in faster circuits [28]. In the next sections, we 
first define the graph embedding problem. We then show how to 
utilize a graph embedding technique called H-tree construction to 
embed a binary tree structured physical model into a 2D grid of 
PEs. 

5.2.1 Graph embedding 
The graph embedding problem relates to the general mapping 
problem [3], where computational tasks must be placed onto a 
host architecture such that communication between PEs is 
minimized. Let GT = (VT,ET) be the guest graph, where GT is the 
structured virtual PE graph (see section 4). Let GH = (VH,EH), 
where GH is a graph that represents the physical PE layout. VH is a 
set of all the physical PE regions, and EH is initially empty 
because no connections exist until virtual PEs are placed. An 
embedding of GT onto GH is a result of applying an injective 
mapping function ψV : VT → VH to every vertex in GT. Once the 
vertex mapping has been completed and a placement is created, 
then an additional mapping ψE : ET  → EH can be inferred 

automatically by creating an edge e = (u,v) ∈ EH for every edge p 

= (l,k) ∈ ET where ψV
-1(l) = u and ψV

-1(k) = v. 

The quality of the graph embedding is denoted by the average and 
maximum dilation of the result of applying ψV and ψE. Since 
dilation in the context of PE networks on FPGAs with point-to-
point communication is wire length, we use a basic Euclidean 
distance measure  D = sqrt( (y2-y1)2 + (x2-x1)2 ). While possible 
to measure dilation using specific FPGA routing architecture 
characteristics [10], at a macro level the simple distance between 
physical grid locations will suffice. 

5.2.2 Example: Binary tree embedding onto 2D grid 
Embedded binary trees onto two-dimensional grids is a 
thoroughly researched area [6][14][24]. It has been proven that the 
graph embedding of a binary tree onto optimally-sized square 
grids have an O(sqrt(n)) maximum dilation, where n is the 
number of generations of the tree. We utilize the H-tree 
construction technique that is used in VLSI for the layout of tree 
architectures onto optimally sized square hosts [23][30]. H-tree 
construction creates an H-fractal tree shaped liked that of Figure 
5, where each subsequent branch of the tree alternates between 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A 4x4 grid of physical PEs on a FPGA. Physical PEs 
are constrained to specific areas using pblocks. 
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horizontal and vertical tracks and wire length is halved. This 
process is done by splitting the graph recursively into four 
subtrees until leaf nodes can be placed. Where each split occurs, a 
track is used to host the root of the split and its two children, 
which are the roots of the actual 4 subtrees. In Figure 5, the tree is 
labeled by breadth-first ordering, such that the root is ‘0’, the left 
child is ‘1’, the right child is ‘2’, and so on. Leaf nodes are not 
labeled for figure clarity. The thick dashed boxes represent the 
subtrees of the first recursive split; the row of vertices ‘0’, ’1’, and 
‘2’ have a horizontal track allocated to them. The thin dashed 
boxes represent the subtrees created by a second recursive split of 
each of the first four subtrees. Additional horizontal tracks are 
added for the three relevant parent nodes of each split subtree. 
Following the second split, leaf nodes can be placed nearby their 
parents. 

For optimally-sized square grids, the method demonstrated in 
Figure 5 produces optimal results (in terms of dilation). However, 
for rectangular-shaped grids such as the 14x39 PE grid available 
on our target FPGA, H-tree construction can not be immediately 
applied without some modifications. For example, the number of 
vertical tracks required for a 7-generation tree using the H-tree 
method is 31, or more than twice the number of available columns 
in the FPGA PE grid. We can take advantage of the fact that our 
FPGA can route wires between PEs diagonally, as opposed to the 
strict row-column ordering of previous H-tree considerations [14]. 
Also, since the width of the target is the limiting factor to the 
number of possible recursive splits, it’s not possible to maintain 
the nice H-fractal shape of the graph embedding in a rectangular 
grid. We therefore define a base case for the bottom k-generations 
of a tree that can no longer maintain H-fractal shape, such that an 
optimal placement of lower generations and leaf nodes can be 
completed. 

To embed the tree, we first perform placement via recursive splits 
down to the leaves of the tree, than perform compaction and 
reordering of rows to further minimize maximum wire length.  

1. Separate the grid into 4 quadrants to host the initial split 
of the tree. 

2. Place the root node M0 and its children L0, R0 in the center 
row of the grid. M0 is placed in a column in the center of 
the grid. L0 and R0 are placed in a middle column of the 
neighboring upper and lower quadrants 

3. Place each child of L0 and R0 onto the same vertical track 
as its parent, and onto the center row of a quadrant 
(Figure 6a). 

4. Recursively split each subtree by placing the children of 
the subtree’s root on the same row, and allocating 
additional rows to host new subtrees (Figure 6b). 

5. At generation N-1, utilize a known placement to place the 
final levels (non-fractal shape). 

The process described in the steps above can be seen in Figure 6. 
The binary tree is split into four subtrees and assigned to a 
quadrant of the grid. The blue lines mark connections between 
physical PE regions that contain a mapped virtual PE, which are 
marked with blue dots. The graph embedding follows the H-tree 
fractal shape design until the grid becomes too narrow to maintain 
the shape when placing the final two generations of the tree. At 
that point, a base case known placement is utilized to place the 
remaining virtual PEs into physical PE regions with minimal wire 
lengths. Note that rows four and ten contain no mapped virtual 
PEs, which unnecessarily inflates the maximum wire length. A 
simple greedy algorithm can be used to compact the graph 
embedding by moving the row with the longest wire until no 
improvement can be made. 

5.3 Simulated annealing based placement 
This section provides a general method for mapping a structured 
virtual PE graph to physical PEs by using a simulated annealing 
approach. Such a general method can be useful when a physical 
model has no obvious structure for which a graph embedding 
algorithm could be used, such as an unbalanced or asymmetrical 
tree [8]. Simulated annealing also yields useful comparisons to the 
graph embedding approach by providing reasonable PE 
placements. We define a cost function that considers FPGA 
architectural features, critical path length, and wire congestion; it 
is shown experimentally that our cost function correlates linearly 

 

 

 

 

 

 

 

 

 

 

Figure 5: Six level binary-tree placed on a square 2-dimensional 
mesh. Dashed boxes indicate recursive splits into subtrees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Embedding 7-level binary tree into a rectangular 2D 
grid: (a) Initial split of 4 subtrees (not to scale), (b) Two 

additional recursive splits. White rows host root and children 
of a split branch. For clarity, not all branches are shown. 
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with resulting circuit frequency. We also present a neighbor 
function that swaps PEs using vectors based on the placement of 
connected PEs. Our neighbor function provides faster 
convergence and results in lower cost placements than performing 
random swaps of PEs. 

5.3.1 Cost function 
The cost function of the simulated annealing based placement 
approach is defined as: 

Cost = w1*Sum + w2*Max + w3*Gaps 

Sum is the total of all the wire lengths in the design. By 
minimizing the sum of the wire lengths, the wire congestion in the 
design is reduced, which impacts critical path timing less. Max is 
the maximum wire length in the design. Minimizing Max is the 
key goal during simulated annealing, because it will likely 
represent the critical path in the circuit. Gaps is the number of 
wires that cross an area on the FPGA that must be routed through 
or around. For example, on most Xilinx Virtex 6 chips there is a 
large gap in the middle for monitoring or programming 
components and where user design logic can not be placed (see 
Figure 11). Wires through such gaps incur extra routing delays 
and thus we strive to reduce the amount of those types of 
connections. The constants w1, w2¸ and w3 are weighting 
coefficients that can be used as tuning knobs for the algorithm. 
Typical values of w1, w2, and w3 are 0.1, 10, and 1 respectively. 
w2 is the most critical parameter, and should be selected based on 
the total number of wires in the design. If there are many wires, 
the w1*Sum factor may be very high, and the maximum wire 
length Max factor may not contribute much to the cost of the 
current solution – in such cases w2 should be increased to offset 
this effect. Figure 7 shows a linear regression representing how 
the cost function relates to the resulting circuit frequency of a PE 
network placed using simulated annealing. 

5.3.2 Neighbor function 
The neighbor function in a simulated annealing algorithm moves 
the current state of the design in order to explore the solution 
space of the problem. The neighbor function presented here 
attempts to cluster connected PEs together, hopefully reducing 
wire lengths in the process. A random physical PE region P1 that 
contains a mapped virtual PE V is first selected to be moved. Each 
connection e = (P1,Pp) in V is evaluated, where Pp is the physical 
PE region of the virtual PE connected to V. A vector v = (r,θ) is 
built such that r = sqrt(dx2 + dy2) and θ = tan-1(dy/dx), where dx 
and dy are the differences in the x and y coordinates between P1 
and Pp. An average of all the connection vectors yields a target 

vector that identifies a physical PE region that would reduce the 
average wire length of the connections to the PE if the virtual PE 
were placed there. If the target physical PE region does not have a 
virtual PE mapped, than the virtual PE is moved onto the target 
physical PE region. If the target physical PE region does have a 
virtual PE mapped, than an evaluation of the target physical PE 
region and each of its neighbors in the grid takes place to 
determine the best candidate for a swap. The target physical PE 
region and its neighbors have their connections’ vectors averaged 
in turn. The region that has an average connection vector endpoint 
closest to P1 is selected to be swapped. If any of the neighbors do 
not contain mapped virtual PEs, than the empty neighbor is 
automatically selected to be swapped. Figure 8 shows how the 
neighbor function works. A random PE P1 is first selected. An 
average of the two connections of P1, e1 and e2, yields a target 
vector that denotes an area of the platform where P1 should be 
placed to minimize the wire lengths of e1 and e2. Each candidate 
physical PE region in the area has its connections averaged 
(Figure 8b). The candidate physical PE region that has an average 
connection vector closest to P1 is in the top left, thus a swap 
would occur with the top left PE (P2) and P1. 

Figure 9 shows the convergence of the design cost towards a final 
solution for 50K iterations of the simulated annealing algorithm 
while implementing a neuron model utilizing 256 PEs. Using our 
custom neighbor function, the resulting cost is 50% less than 
given by the random alternative. 

 

 

 

 

 

 

 

 

 

Figure 7: Simulated annealing cost function correlates with 
resulting circuit frequency. A variety of different physical 

models are represented. 

 

 

 

 

 

 

 

 

 

 

Figure 8: The neighbor function picks two PEs (P1,P2) by 
randomly selecting P1, (a) finding candidates for P2 by 

averaging P1’s connections (e1, e2), and (b) picking P2 based 
on the distance between P1 and a candidate's average 

connection vector endpoint. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Convergence of custom neighbor function compared 
to random swaps. 
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5.3.3 Annealing temperature schedule 
The cooling schedule used during simulated annealing can cause 
dramatic differences in the obtained solution [18]. To verify that 
we chose the correct schedule for this problem, we have 
experimented with linear, geometric, and exponential type cooling 
schedule functions. We found that both linear and geometric 
schedules produce a solution with a similar cost for a given 
physical model, while the exponential schedule (α = 0.99) yields a 
solution that is highly dependent on the initial random placement 
and does not generally produce a good result. This is due to the 
quickly decaying nature of the exponential function, which makes 
it difficult to escape local minima in the solution space. All 
experiments in this paper utilize a geometric cooling schedule. 

6. EXPERIMENTS 
To evaluate graph embedding as a technique for accelerating 
physical model simulations on FPGAs, we implemented a number 
of physical models of varying size on a Xilinx XC6VSX475T-
2ff1156 FPGA. The physical models include a Weibel lung that is 
structured as a binary tree, a one-dimensional neuron array, and a 
two-dimensional grid of neurons. Each physical model is 
implemented using both 256 and 500 PEs. We use Xilinx ISE 
13.4 software to synthesize and implement VHDL descriptions of 
the PE networks for all experiments, with flags ‘-ol high’ and ‘-xe 
normal’ to encourage the tool to work hard at achieving timing 
closure. Note that to implement the 11-generation Weibel model, 
we use 500 physical PEs. Recall that the target platform is 
constrained to 504 physical PEs. We fold the Weibel model to a 
structured virtual PE graph of 512 nodes, and then manually 
merge a few of the leafs until the size constraint is met. The 
alternative is to continue folding the structured virtual PE graph 
until the size constraint is met, which would result in 256 virtual 
PEs and almost 50% of the available resources unutilized. 

For each physical model, we implemented three methods of 
placement for the PE networks. The first method utilizes the 
compiler from previous work [11] to partition the physical model 
equations to PEs and generate a custom communication network. 
No constraints are used to map the PEs to specific physical PE 
regions; we rely on the Xilinx tools to place and route PEs onto 
the target platform. The second method first creates a structured 
graph of virtual PEs, folds it to fit FPGA platform constraints, and 
then utilizes the simulated annealing approach of section 5.3 to 
map virtual PEs to physical regions. For the simulated annealing 
algorithm in all cases we utilize a geometric cooling schedule, and 

let the algorithm run for 50K iterations to reach a steady state. The 
weighting constants (w1,w2,w3) are (0.08,10,1). The third method 
creates a structured virtual PE graph of the physical model, folds 
it to fit the FPGA target platform size constraint, and then uses a 
graph embedding algorithm specific to the selected physical 
model. The Weibel model uses a H-tree graph embedding as 
described previously. The one-dimensional neuron model is a 
linear array of 6400 neurons, thus the graph embedding that is 
used places PEs into rows and connects the rows at the edges to 
form a Hamiltonian path amongst all PEs. The two-dimensional 
neuron model consists of a two-dimensional 64x64 mesh of 
neurons, where each neuron is connected to at most 4 neighbors. 
The graph embedding for the two-dimensional neuron model is a 
direct mapping onto the two-dimensional grid of FPGA physical 
regions, after folding the original physical model. 

6.1 Results 
Figure 10 shows the resulting circuit frequencies of implementing 
PE networks on an FPGA with the above three techniques. The 
'NoPhys_XlnxPlcmt' columns do not use physical placement 
constraints. 'Phys_SimAnnlPlcmt' columns use simulated 
annealing to map virtual PEs to physical PE regions. 
'Phys_EmbedPlcmt' uses an embedding approach appropriate to 
the implemented model. For the same model, all three approaches 
use the same RTL description of the circuit. The graph embedding 
approach is almost always able to produce a circuit that tops 300 
MHz. The ceiling for the circuit frequency in a PE network is 
approximately 310 MHz for the selected platform. The ceiling can 
be determined by implementing a circuit with a single PE and 
evaluating the critical path of the internal datapath. It is not 
possible for a network of PEs to go faster than the ceiling, and any 
decrease in performance can be attributed to critical paths 
introduced by inter-PE connections. The graph embedding 
approach is typically able to minimize the critical path length and 
thus provide placements that allow the circuit to approach the 
frequency ceiling. The only embedding example that could not 
reach the ceiling of 310 MHz is the 11-generation Weibel lung 
model using 500 PEs. Because the two-dimensional grid of the 
physical PE regions is narrow, an optimal embedding of the tree 
cannot occur. Wire lengths between successive generations are 
much longer, resulting in longer critical path delays. 

Some data points of the method using no physical placement 
constraints are marked 'N/A'. This indicates that the Xilinx tools 
were not able to place and route the design due to high 

 

 

 

 

 

 

 

 

 

 

Figure 10: Frequencies of PE network implementations simulating a Weibel lung and 1D/2D neuron networks. Each PE network 
was placed with (i) no physical region constraints, (ii) physical regions selected by simulated annealing, and (iii) physical regions 

selected by embedding the model structure onto the FPGA grid. Points marked ‘N/A’ could not be routed because of high 
complexity. (i), (ii), and (iii) all use the same RTL description during synthesis, but (ii) and (iii) use region constraints. 
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congestion. The compiler that partitioned the equations and 
created the communication network could not adequately reduce 
the data dependencies between PEs for these large physical 
models, resulting in an overwhelming number of wires in the 
network. Note that the designs are routable if we use either a 
simulated annealing or graph embedding approach, which 
indicates that graph embedding or a simulating annealing 
approach enable implementation of physical models on an FPGA 
that previously could not be implemented on the FPGA. 

6.2 A look inside the FPGA 
Figure 11 shows a graphical depiction of the placement of the first 
few generations of a nine generation Weibel model on 256 PEs, as 
captured by the Xilinx PlanAhead tool. An overlay of nodes and 
connections shows where virtual PEs have been mapped onto the 
FPGA. Figure 11(a) shows how Xilinx ISE implements the PE 
network in the absence of additional constraints that map to 
specific physical regions. Due to the complexity of the circuit, the 
resources of a single PE can be spread over a wide area, thus we 
have marked only the approximate central location of the first four 
generations of the left subtree of the graph. Note that if we do not 
specify placement constraints, the tool places PEs at non-optimal 
locations such that the wire distances between PEs can be very 
long. For example, the wires between node two and its children 
five and six span more than halfway across the entire design. 

Figure 11(b) depicts a typical result of using the simulated 
annealing algorithm. Each black block indicates where a virtual 
PE was mapped to a physical PE location. An empty space in the 
grid means that no virtual PE was mapped to the grid at that 
physical region. The effect of the simulated annealing algorithm 
can be seen by evaluating the placement of the virtual PEs onto 
the grid. Nodes that share connections tend to be grouped 
together, while overall the tree tends to expand outward from the 
center of the grid. Leaf nodes are grouped towards the outside of 
the grid. Figure 11(c) shows an embedding of the tree onto the 
host grid using the graph embedding approach. Recall that the 
center of many common (Xilinx) FPGAs contains immutable 

logic, and thus minimization of the routing across the center is 
desired. The embedding requires only a single wire across the gap, 
at the second generation of the tree. 

We also measured the static and dynamic power of each case 
using the Xilinx XPower Analyzer. The unconstrained placement 
uses approximately 20% less power on average than both the 
simulated annealing and embedding constrained placement 
approaches. 

7. CONCLUSION 
We presented an approach for fast physical model simulation on 
FPGAs that makes use of the physical model's structure to 
improve performance. The approach's first phase maps physical 
model equations to a structured virtual PE graph and groups 
related equations. The approach's second phase maps the 
structured virtual PE graph to a two-dimensional grid of FPGA 
physical regions by using either a graph embedding or simulated 
annealing technique. The graph embedding and simulated 
annealing techniques provide 65% and 35% average increases in 
circuit frequencies, respectively, compared to placements that do 
not map to specific physical regions. 
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