
Frank Vahid
Dept. of Computer Science

and Engineering
University of California, Riverside

Also with CECS, UC Irvine

vahid@cs.ucr.edu

Tony Givargis
Center for Embedded Computer

Systems (CECS)
University of California, Irvine

givargis@uci.edu

Exploration with Upgradeable Models Using Statistical
Methods for Physical Model Emulation

ABSTRACT
Physical models capture environmental phenomena such as

biochemical reactions, a beating heart, or neuron synapses, using

mathematical equations. Previous work has shown that physical

models can execute orders of magnitude faster on FPGAs (Field-

Programmable Gate Arrays) compared to desktop PCs. Different

models of the same physical phenomenon may vary, with

“upgraded” models being more accurate but using more FPGA

area and having slower performance. We propose that design

space exploration considering upgradable models can dramatically

increase the useful design space. We present an analysis of the

solution space for utilizing networks of processing-elements (PEs)

on FPGAs to emulate physical models, implement a web-based

frontend to a compiler and cycle-accurate simulator of PE

networks to estimate solution metrics, and utilize design-of-

experiments (DOE) statistical methods to identify Pareto points.

By considering upgradeable models during the design space

exploration of a human lung physical model, the solution space of

possible speedup, area, and accuracy is increased by 6X, 7.3X,

and 1.5X, respectively, compared to evaluating a single model.

Categories and Subject Descriptors

B.7.0 [Integrated Circuits]: General

General Terms

Design, Performance

Keywords

Design space exploration, FPGA, cyber-physical systems

1. INTRODUCTION
Fast physical model emulation is important in various domains for

research and testing purposes. Iterative step-solvers can be used to

compute the state of the physical model at real-time or faster than

real-time speeds. Fast physical model emulation is especially

important in the cyber-physical domain for testing purposes, since

physical models can be used as a replacement for environments

that are dangerous, expensive, or difficult to recreate.

Previous work has shown that emulating physical models on

networks of processing-elements on FPGAs can provide orders of

magnitude speedup over desktop processors and graphical

processing units [2][3], due largely to parallel execution on

tens/hundreds of processing elements. Such parallel execution is

enabled by physical models consisting of independent and locally

communicating equations. Previous work applied traditional

design space exploration, partitioning equations among different

types and numbers of processing elements to achieve area and

performance tradeoffs.

However, physical systems provide a rather unique additional

solution option. The same physical system can be modeled with

different equations. Each model may have tradeoffs in terms of

the number of equations, ease of computation, and accuracy. We

denote sets of models that are functionally similar as upgradeable

models, since a designer may 'upgrade' to a more accurate model

at the expense of area and performance. For example, Figure 1(a)

shows three models that capture the behavior of the same physical

system of lung airway mechanics. A simple RC model can

coarsely capture the behavior using a single ordinary differential

equation (ODE). For higher accuracy, a binary-tree shaped Weibel

model [13] with variable levels of complexity can be used at the

expense of higher computational costs. Accuracy also depends on

the step size and type of equation solver. A smaller step size

yields higher accuracy but slower performance. Likewise, more

accurate solvers yield slower performance. Figure 1(b) illustrates

the accuracy of each model, where dashed lines represent some

deviations in accuracy due to different step solvers or step sizes.

Upgradeable models substantially increase the solution space that

must be explored, not only via expanding area and performance

ranges, but also by adding the design metric of accuracy. Figure 2

shows various tradeoffs in terms of speedup, area, and accuracy

for a set of upgradeable models.

Bailey Miller
Dept. of Computer Science

and Engineering
University of California, Riverside

bmiller@cs.ucr.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC ’13, May 29 – June 07 2013, Austin, TX, USA.

Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00

(a)

...

9 gen. Weibel:

1024 ODEs

RC lung:

1 ODE

4 gen. Weibel:

32 ODEs

(b)

Lung

pressure

Time

Figure 1: (a) A set of upgradeable models that implement

similar lung airway mechanics behavior. (b) Relative

accuracy of each model. Dashed lines show variations in

accuracy when different solvers or step sizes are used.

Upgradable models introduce numerous additional parameters that

influence and tremendously increase the design space. The

influence on design metrics of those parameters can be complex

and interdependent. To deal with these new parameters, we apply

the statistical method known as design-of-experiments (DOE),

which efficiently determines the impacts and dependencies of

parameters, to enable efficient search of the design space. We

introduce an approach that expands design space exploration to

consider upgradeable models. To search the large design space,

we utilize DOE statistical method to generate the Pareto points of

the design. By generating the Pareto points, the design space can

be pruned to enable a feasible exploration of solutions. We

present a web-based tool that uses a processing-element (PE)

network compiler and cycle-accurate simulator to automatically

generate a PE network from an MML-language [7] based input

model specification and evaluate the relevant size, performance,

and accuracy metrics of PE network implementations. The web-

based tool also supports automatic exploration of the design space

using DOE techniques to aid in finding and appropriate model to

use from an upgradeable set of models and an appropriate

underlying PE network implementation that meets given

constraints.

2. RELATED WORK
Previous research has demonstrated a compiler for translating

MML-language based input specifications of physical models to

VHDL descriptions of networks of PEs, which provides orders of

magnitude speedup over standard desktop PCs [2]. Model

equations are partitioned to PEs using various heuristics,

scheduled to exploit parallelism, and connected via custom point-

to-point networks. Various types of PE networks have been

investigated, including homogeneous networks of programmable

ALU-based general PEs, homogeneous networks of PEs with

custom datapaths to solve specific equations, and heterogeneous

networks consisting of both general and custom PEs [3].

Implementations of physical systems models on FPGAs exist

elsewhere in literature [9], however all of these solutions are ad-

hoc application specific solutions, whereas the PE network

approach is a general CAD flow for any physical system model.

Considering how to select the appropriate physical model to

emulate, to the best of our knowledge, has not been investigated

elsewhere in literature. The problem however has analogs to other

domains in the CAD literature. The work on algorithm selection is

a close corollary [10], in which a suitable algorithm from a set of

functionally equivalent algorithms must be selected in order to

optimize a given goal such as throughput, cost, or power.

Design space exploration is a well-known and often addressed

issue [1][11]. The generation of Pareto points or Pareto curves has

long been of interest as a method for reducing the amount of

system configurations that need to be considered. Givargis

introduced Platune [1], a tool for automatically exploring the

design space of System-on-Chip (SoC) architectures. Platune

implements an automated algorithm to explore the design space of

a given SoC, and provides estimations of the resulting solution.

Sheldon improved on the automated exploration by using

statistical methods to calculate platform independent parameter

interdependencies [12]. Our work is similar to Platune, except that

we specifically target PE network implementations.

3. UPGRADEABLE MODELS
Upgradeable models in the context of physical systems emulation

refers to having multiple underlying sets of equations that are each

able to emulate the same physical model, with tradeoffs among

accuracy versus area and performance. In this section, we define

how to determine if relative models are part of the same

upgradeable set, and discuss size-scalable upgradeable models.

3.1 Functional equivalence
We consider different models to be a part of the same upgradeable

set if they meet the following requirements:

1. The models contain the base input/output interface

required to support the physical system behavior.

2. The models are functionally similar, i.e. they produce

similar output for all possible inputs.

The first requirement ensures that all models can operate on the

same inputs and can provide the same outputs. Physical model

emulations are usually a part of a larger design, often for testing

purposes, thus ensuring that all models in an upgradeable set have

a similar interface ensures smooth transitions and reduces the

potential to introduce new errors. Some small differences in

interfaces may be acceptable, as long as a correct transformation

is available. For example, a lung model may require either an air

flow input or an air pressure input. Flow can be easily converted

into air pressure, and vice versa, thus we may still consider the

models to be functionally equivalent. Models may also provide a

supplemental input/output interface, in addition to the required

base interface. For example, the Weibel lung model of Figure 2(a)

provides output pressures at each of the leaf nodes, whereas the

RC lung model provides only a single output pressure node below

the capacitor. The supplemental interface is not required, but may

improve model accuracy or provide additional information about

the internal model state to the designer.

The second requirement demands that all models in an upgradable

set produce similar outputs for given inputs. This requirement

ensures that the physical model being emulated is similar in

functionality, despite any differences in the underlying equations

that are computed. Similarity can be determined by both

qualitative and quantitative methods. Figure 1(b) shows the output

of three various lung models; the models are considered

interchangeable because they all produce an output of the same

physical system, yet they have different quantitative and

qualitative measures of accuracy. A designer can either determine

that models are close enough to be functionally interchangeable,

or a distance measure could be automatically calculated.

...

10 gen. Weibel:

2048 ODEs

RC lung:

1 ODE

4 gen. Weibel:

32 ODEs

Less
accurate

More
accurate

Larger time steps
(less accurate)

Smaller time steps
(more accurate)

Area

Area

Speedup

Accuracy

Larger time steps
(more speedup)

Smaller time steps
(less speedup)

(a) (b)

Figure 2: Impacts of various physical models on metrics. (a)

Set of upgradeable models, and (b) comparisons of each

model’s speedup, area, and accuracy. The vertical scales

show how solver time step affects speedup or accuracy.

3.2 Scaling model size
Many physical models have a common, repeating pattern or

structure. The previously introduced Weibel model has a binary

tree structure, which resembles the 23 bifurcating branches of a

human lung. Neuron or cell models can consist of hundreds or

thousands of individual elements that are connected to

neighboring elements in mesh or grid structures. Previous work

has shown that physical model structure can even be utilized to

aid placement of PE networks on FPGA fabrics [6]. Physical

models with regular structures can be considered upgradeable if

the physical model can be scaled in size by adding new elements

into the structure.

Scaling a physical model may or may not affect the accuracy of

the model, but certainly impacts the resulting area and

performance of the implementation. The Weibel model can be

scaled in size to have more or less tree generations - having more

generations implies a higher level of accuracy because the number

of branches is closer to actual lung physiology. However,

doubling the number of cells in a cell tissue model does not

necessarily imply that the equations of each individual cell are

more accurate. Even so, a designer may want to know how many

cells can be included, given some area or performance constraints.

4. PE NETWORK PARAMETERS AND

METRICS
For a given physical model of sufficient size and complexity, the

solution space for a PE network that emulates the model is

extremely large. This is due mostly to the parameters available

during PE network synthesis, and partly to the non-deterministic

heuristics used during equation partitioning. The considered key

parameters are the model specification itself, PE network type,

equation partitioning neighbor function weightings, the given

resource constraints, step size, and solver type. The key solution

metrics are FPGA area (LUTs, memory, and DSP usage),

performance (speedup over real-time), and accuracy (closeness to

exact solution).

Figure 3 depicts a chart of possible PE network solutions for a

neuron model with 300 equations. Three sections are shown

which depict solutions yielded by using different area constraints.

For each area constraint, the PE network type, neighbor weight,

and step size parameters are varied. Area/speedup metric Pareto

points are circled; the accuracy metric is not measured explicitly

in the figure, though points towards the bottom typically use

smaller time steps and thus would be more accurate.

The model itself is an important parameter. The PE network

solutions that are generated depend highly on how many

equations are in the model, the complexity of each equation, and

the data dependencies between the equations. The user also must

specify a coefficient that quantitatively captures the quality of the

model compared to the others in the set. For example, the 9

generation Weibel lung model may be considered to be the most

accurate, and have a coefficient of 1. The RC model may be

considered to have a coefficient of 0.4, because it only coarsely

captures realistic behavior. The coefficients are used when

comparing relative accuracies of different models.

PE type is a critical parameter that determines the type of PE

network that is generated to emulate the model. There are three

options: homogeneous general PE network, homogeneous custom

PE network, and heterogeneous PE network. A general PE is a

flexible, programmable, ALU-based processor that can solve any

equation. A custom PE uses a pipelined datapath to solve a single

specific equation much faster than a general PE, but may use more

FPGA resources and incur higher routing congestion cost.

Heterogeneous PE networks combine general and custom PEs to

create a network with balanced performance and area metrics.

Neighbor weight refers to an option within the PE network

compiler that controls whether the equation partitioning favors

size or performance. This option is a sliding scale that can be set

from 1 (favor size) to 10 (favor performance).

Area constraints detail the available LUTs, DSPs, and BRAMs on

the target platform. The PE compiler will not allocate more than

the available resources. The area constraint may have a very large

area or performance impact on sufficiently complex models. An

area constraint which is too small for the given model will not

allow enough PEs to be allocated and reduce the possible

speedup. Small models are not affected by the area constraint.

Solver type selects the iterative step solver to use. The currently

supported solvers are Euler and Runge-Kutta4. Euler is the most

simple solver, but can be inaccurate or diverge with medium to

large time steps. The Runge-Kutta solver type is much more

accurate, but may require up to 4X more computation time than

the Euler solver.

Step size determines the amount of time between iterative

solutions of the model equations. Decreasing the step size requires

more computations per second, which reduces the performance of

the model, but allows the solvers to be more accurate.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160
Area (Equivalent KLUTs)

S
p

e
e

d
u

p

General PE Network Custom PE Network Heterogeneous PE Network

area constraint 1 area constraint 2 area constraint 3

Effect of neighbor
weight parameter large step (less accurate)

small step (more accurate)

Figure 3: Possible PE networks for lung model. The three vertical lines indicate area constraints. Each solution is shown with

a step size of 1e-2, 0.5e-2, and 0.25e-2 milliseconds. Arrows show the effect of the compiler neighbor weight parameter.

Dashed circles show possible area/performance metric Pareto points.

5. METHODOLOGY AND FRAMEWORK
To explore the space of PE network solutions for a set of

upgradeable physical models, we have developed a visual web-

based frontend coupled with a design-of-experiments statistical

approach to identifying Pareto points that span an upgradeable set

of physical models. In the following section we describe briefly

what DOE is, and how our tool utilizes DOE.

5.1 DOE-based exploration of PE networks
Design-of-experiments is a statistical technique that identifies a

minimal set of experiments that provide maximal cover of the

possible solution space. Originally, DOE was developed for use in

agriculture, but has since been developed into a powerful

statistical technique used in many fields. DOE automatically

identifies each parameter's magnitude of influence on the solution,

since the differences between physical models (complexity,

connectivity of equations, etc.) can impact how much a specific

parameter like PE network type or neighbor weight matters. For

example, a model with few equations will not be sensitive to area

constraints.

5.1.1 The DPG algorithm
The DOE-based Pareto-point Generation (DPG) algorithm [12]

can be used to apply DOE to and identify PE network solution

Pareto points. By applying DPG to the upgradeable models, such

that the models themselves are a parameter to the algorithm, the

Pareto points that span across the set can be easily located. A

basic flow chart of DPG is given in Figure 4. DPG consists of

three phases: running initial experiments to identify parameter

interdependencies, generating initial Pareto points, and filling in

gaps in the Pareto curve. DOE uses either two or three-level

parameters. Since PE networks have some continuous parameters,

such as step size, we always select the minimum and maximum

and midpoint values for continuous parameters to ensure we cover

the space well enough. Phase 3 fills of DPG fills in the gaps of the

solution space left by this discretization.

Phase 1 of DPG runs an initial Plackett-Burman [8] set of

experiments to automatically generate a weighted parameter
interdependency graph. This graph details the relationship

between parameters for each metric in a single description. DPG

generates the graph by first estimating the solution metrics for

every pair of parameters in the system, and then running the

experiment. The amount of error between the estimated and actual

value suggests the amount of interdependency between the

parameters. Figure 5 shows the interdependency graph for the

speedup metric for a RC lung, 6 gen. Weibel lung, and 9 gen.

Weibel set of upgradeable models. Each node represents a

parameter: A is the model from the set, B is the area constraint, C

is the step size, D is the PE network type, E is the solver, and F is

the neighbor weights. Higher edge weights represent higher levels

of interdependency; for example, the 0.99 weight between D and

F indicates that the effects of the PE type and neighbor weight

options on the solution depend on one another, which is

observable in by examining the changes in speedup due to

different neighbor weights.

Phase 2 of DPG generates initial Pareto points from the parameter

interdependency graph. The algorithm starts by evaluating the

edge with the highest error weighting, and exhaustively searching

the possible ranges of the two associated parameters. DOE uses

either two or three level parameter values, so there is a maximum

of nine possible configurations to run. The solutions of the search

are pruned to only the local Pareto points, and the two parameter

nodes of the graph are merged. This continues until only one node

remains which contains a set of Pareto points for the entire design.

Phase 3 of DPG identifies regions which were not explored, due

to the reduction of continuous parameters into a discrete three-

level parameter. Parameters which are constant around the region

are locked, and a local search within the region takes place. New

Pareto points are added to the set identified in phase two.

5.2 Tool
The tool to explore the PE network solution space consists of a

web page frontend and server DPG backend, implemented in

DOE initial experiments

Compute interdependencies

Generate initial Pareto

points

Generate fill-in Pareto

points

phase 1

phase 2

phase 3

...

DPG

Model A Pareto point

Model B Pareto point

Model C Pareto point

Upgradeable

set Pareto point

(a) (b)

A B C

Figure 4: (a) The DPG algorithm flow. (b) Finding the Pareto points for a set of upgradeable models by applying DPG.

Figure 5: (a) Weighted parameter interdependency graph

generated by DPG for a lung model.

ASP.NET 4.0. A PE network compiler and simulator are

implemented as .NET WCF web services. Figure 6 shows the

architecture of the tool. The set of upgradeable models and

parameter bounds are entered by the user. Parameter bounds

include minimum and maximum area constraints, step sizes, etc.

The DPG backend selects a set of experiments to run, and

iteratively runs the compiler and simulator to generate area,

speedup, and accuracy metrics. Pareto points are selected from the

results by DPG and plotted visually on the web page.

5.2.1 PE network compiler and simulator
The PE network compiler accepts arguments generated by the

DPG algorithm to partition the equations of a specific model

across PEs. Once the equations are partitioned, each PE is

scheduled. The partitioning and schedule information is enough to

generate the area and speedup metrics. Area is reported by the

compiler in terms of the number of LUTs, DSPs, and BRAM

components used. The compiler automatically calculates the

number of these components based on the type and frequency of

each PE type. General PEs use one DSP and one BRAM each,

while custom PEs may use arbitrary numbers of DSPs and

typically a single BRAM. The final area metric is equivalent
LUTs [5], which is a method for comparing resource usage for

designs with various usage of logic cells and hard macros like

DSPs. For a Xilinx Virtex6-240T, we use the following equation

to calculate equivalent LUTs, where LEQ is the equivalent LUTs, L

is the number of LUTs, KDSP is the equivalent LUTs per DSP

(250), D is the number of DSPs, KBRAM is the equivalent LUTs per

BRAM (360), and B is the number of BRAMs:

BKDKLL BRAMDSPEQ ++=

To calculate the speedup metric, the frequency of the resulting

circuit must be estimated. The maximum frequency for a single

PE is approximately 300 MHz when targeting a Virtex6, thus the

maximum frequency that a larger PE network could achieve is

also 300 MHz. As the number of PEs and connections between

PEs grows larger, the place-and-route tools (Xilinx ISE 14.2) can

not maintain the same timing due to congestion. We have created

a regression model to estimate the frequency based on FPGA

resource usage and the number of connections in the design:

LUTBRAMDSP RKRKRKWKKFreq 43210 −+−−=

Freq is the estimated frequency of the design, K0, K1, K2, and K3

are regression coefficients based on experimental data from PE

networks targeting a Virtex6. W is the number of wires in the

design (PE-to-PE connections), and RDSP, RBRAM, and RLUT are

resource usage ratios. This model is able to estimate frequencies

to within 5% of their actual values, as shown in Figure 7.

Once frequency has been estimated, total speedup is calculated:

SC
Freq

Speedup

**
1

1
=

C is the number of cycles required to compute a iteration of the

model. S is iterations per second, derived from the step size

parameter. The factor 1/Freq*C yields the amount of time to

compute one iteration; multiplying by S yields the time to

simulate 1 second. The inverse of the equation yields the speedup.

Accuracy is determined by simulating the PE network. A cycle-

accurate simulator executes an iteration worth of PE instructions.

The simulation is performed twice: once using the given solver

and step size parameters, and once using a 'golden' set of

parameters that consists of the most accurate configuration. For

the golden parameters, we use RK4 solver and 0.01 ms step size.

After the simulations are complete, the time-series traces of each

variable are compared. The simulator finds the variable in the

user-defined simulation that is of a maximal distance from the

golden standard simulation trace and returns the error. The error is

then multiplied by the coefficient describing the model's relative

accuracy in the upgradeable set, as described in section 4.

6. EXPERIMENT
We present an exploration of a set of upgradeable RC and Weibel

models. We target a Xilinx Virtex6-240T FPGA, which consists

of 150K LUTs, 716 DSPs, and 417 BRAMs. Table 1 enumerates

the parameters and bounds that are input into the DPG algorithm

for each set of models, since DOE uses 2 or 3-level parameters.

6.1 Lung models
The set of upgradeable lung models includes the RC, 6-generation

and 9-generation Weibel models previously described. We use

coefficients of 0.4, 0.9, and 1.0 to describe relative model

accuracy, respectively. Figure 8 shows three plots comparing the

area, speedup, and accuracy metrics of the 57 Pareto points found

by the DPG algorithm. We consider the total design space size to

be over 7,200 configurations, if the area constraint is discretized

into just ten levels. Thus, the DPG algorithm prunes more than

99% of the design space, making exploration of the solutions

more feasible. Filled circles indicate where groupings of Pareto

points originate from the same model. For example, the left-most

plot showing speedup vs. area has a group of Pareto points in the

top-left corner that all are related to the RC model. Since the RC

model is relatively simple, it has high speedup and low area

Web frontend

Parameter bounds

Arguments

PE network compiler

Simulator

Scheduling results

DPG backend

Accuracy

Area &
Speedup

Pareto
points

Figure 6: Architecture of the PE network exploration tool.

Figure 7: Regression model for estimating circuit frequency.

0

100

200

300

0 100 200 300

Actual Frequency (MHz)

E
s
ti

m
a
te

d

F
re

q
u

e
n

c
y

 (
M

H
z
)

0.1

1

10

100

1000

10000

100000

1 10 100 1000

 Area (Equivalent KLUTs)

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

 Area (Equivalent KLUTs)

A

cc
u
ra

cy

0

0.2

0.4

0.6

0.8

1

0.1 10 1000 100000

A

cc
u
ra

cy

RC

S
p

ee
d
u
p

6-gen

9-gen

requirements; however, the other plots that include accuracy

indicate the low fidelity of the solution.

The lighter points of Figure 8 illustrate Pareto points that

correspond to configurations using an RK4 solver, 0.01 ms step

size, and the 9-generation model. The points represent the

'normal' design space exploration of a PE network that has

configurable type, number of PEs, etc. Considering only the

middle case of the 6-generation Weibel model yields a solution

space with speedups between 8X and 9200X, area between

4KLUTs and 55 KLUTs, and accuracy between 0.33 and 0.89. By

considering the RC and 9-generation Weibel models during

exploration, the solution space expands to speedups between

0.86X and 55000X, area between 1.7KLUTs and 376KLUTs, and

accuracy between 0.15 and 0.99. Overall, the solution space that

can be considered has increased in size by 6X in terms of

speedup, 7.3X in terms of area, and 1.5X in terms of accuracy.

7. CONCLUSION
Physical models implemented on FPGAs provide large speedups

over other implementation methods. Physical models introduce

the feature of upgradeable models into design space exploration.

We demonstrated how to include upgradeable models into a

search approach and demonstrated improvements in the solution

space of 5X on average of the area, speedup, and accuracy

metrics. We utilized a design-of-experiments approach to enable

rapid finding of Pareto points. Upgradeable models are not limited

to physical models, but in fact may also apply to domains like

signal processing and video processing where different algorithms

can be considered that tradeoff quality with size and performance.

8. ACKNOWLEDGEMENTS
This work was supported in part by the National Science

Foundation (CNS1016792, CPS1136146), the Semiconductor

Research Corporation (GRC 2143.001), and a U.S. Department of

Education GAANN fellowship. Special thanks also to David

Sheldon for his help with the DPG algorithm and data analysis.

9. REFERENCES
[1] Givargis, T., and Vahid, F. 2002. Platune: a tuning

framework for system-on-a-chip platforms. Computer-Aided

Design of Integrated Circuits and Systems, IEEE

Transactions on, 21.11, 1317-1327.

[2] Huang, C., Vahid, F., and Givargis, T. A Custom FPGA

Processor for Physical Model Ordinary Differential Equation

Solving. IEEE Embed. Syst. Lett. 3, 4, Dec. 2011, 113-116.

[3] Huang, C., Miller, B., Vahid, F., and Givargis, T. 2012.

Synthesis of custom networks of heterogeneous processing

elements for complex physical system emulation.

In Proceedings of the eighth IEEE/ACM/IFIP international

conference on Hardware/software codesign and system

synthesis (CODES+ISSS '12). ACM, 215-224.

[4] Kahng, A.B., Li, B., Peh, L., Samadi, K. 2009. ORION 2.0: a

fast and accurate NoC power and area model for early-stage

design space exploration. Proceedings of the Conference on

Design, Automation and Test in Europe (DATE'09).423-428.

[5] Meyer, J., Kocan, F. 2007. Sharing of SRAM Tables Among

NPN-Equivalent LUTs in SRAM-Based FPGAs, Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on,

vol.15, no.2, pp.182-195, Feb. 2007.

[6] Miller, B., Vahid, F., and Givargis, T. 2013. Embedding-

based placement of processing element networks on FPGAs

for physical model simulation. In Proceedings of the

ACM/SIGDA international symposium on Field

programmable gate arrays (FPGA '13). ACM, 181-190.

[7] Miller, J. A., Nair, R. S., Zhang, Z., Zhao, H. 1997. JSIM: A

JAVA-based simulation and animation environment.

Simulation Symposium,Proceedings. 30th Annual, pp. 31-42.

[8] Petersen, R. 1985. Design and Analysis of Experiments.

Mercel Dekker Inc. New York, New York, 1985.

[9] de Pimentel, J. C. G., Y. G., Tirat-Gefen. "Hardware

Acceleration for Real Time Simulation of Physiological

Systems". Engineering in Medicine and Biology Society,

2006. EMBS'06. 28th Annual International Conference of the

IEEE (pp. 218-223). IEEE.

[10] Potkonjak, M., Rabaey, J. "Algorithm Selection: A

Quantitative Computation-intensive Optimization

Approach". Computer-Aided Design, 1994., IEEE/ACM

International Conference on , vol., no., pp.90-95, 6-10 1994.

[11] J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. 1991.

Fast Prototyping of Datapath-Intensive Architectures. IEEE
Des. Test 8, 2 (April 1991), 40-51.

[12] Sheldon, D., Vahid, F. "Making good points: application-

specific pareto-point generation for design space exploration

using statistical methods. International Symposium on Field

Programmable Gate Arrays, 2009, pp. 123-132. ACM.

[13] Weibel, E. R. "Morphometry of the human

lung". Anesthesiology vol. 26, no., pp., 1965.

Parameter Low Mid High

LUTs 10K 50K 150K

DSPs 20 200 716

BRAMs 20 200 417

PE Type General Custom Hybrid

Neighbor weight 1 5 10

Solver type Euler - RK4

Step size (ms) 0.01 0.1 1.0

Figure 8: 3-dimensional Pareto plots projected onto 2-dimensions. Yellow points show where accuracy parameters (model, step size,

and solver type) are constant, emphasizing design space exploration of area and speedup without the accuracy metric. Considering

upgradeable models during exploration tremendously expands the solution space.

