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ABSTRACT 
Physical models capture environmental phenomena such as 

biochemical reactions, a beating heart, or neuron synapses, using 

mathematical equations. Previous work has shown that physical 

models can execute orders of magnitude faster on FPGAs (Field-

Programmable Gate Arrays) compared to desktop PCs. Different 

models of the same physical phenomenon may vary, with 

“upgraded” models being more accurate but using more FPGA 

area and having slower performance. We propose that design 

space exploration considering upgradable models can dramatically 

increase the useful design space. We present an analysis of the 

solution space for utilizing networks of processing-elements (PEs) 

on FPGAs to emulate physical models, implement a web-based 

frontend to a compiler and cycle-accurate simulator of PE 

networks to estimate solution metrics, and utilize design-of-

experiments (DOE) statistical methods to identify Pareto points. 

By considering upgradeable models during the design space 

exploration of a human lung physical model, the solution space of 

possible speedup, area, and accuracy is increased by 6X, 7.3X, 

and 1.5X, respectively, compared to evaluating a single model. 
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1. INTRODUCTION 
Fast physical model emulation is important in various domains for 

research and testing purposes. Iterative step-solvers can be used to 

compute the state of the physical model at real-time or faster than 

real-time speeds. Fast physical model emulation is especially 

important in the cyber-physical domain for testing purposes, since 

physical models can be used as a replacement for environments 

that are dangerous, expensive, or difficult to recreate. 

Previous work has shown that emulating physical models on 

networks of processing-elements on FPGAs can provide orders of 

magnitude speedup over desktop processors and graphical 

processing units [2][3], due largely to parallel execution on 

tens/hundreds of processing elements. Such parallel execution is 

enabled by physical models consisting of independent and locally 

communicating equations. Previous work applied traditional 

design space exploration, partitioning equations among different 

types and numbers of processing elements to achieve area and 

performance tradeoffs.  

However, physical systems provide a rather unique additional 

solution option. The same physical system can be modeled with 

different equations. Each model may have tradeoffs in terms of 

the number of equations, ease of computation, and accuracy. We 

denote sets of models that are functionally similar as upgradeable 

models, since a designer may 'upgrade' to a more accurate model 

at the expense of area and performance. For example, Figure 1(a) 

shows three models that capture the behavior of the same physical 

system of lung airway mechanics. A simple RC model can 

coarsely capture the behavior using a single ordinary differential 

equation (ODE). For higher accuracy, a binary-tree shaped Weibel 

model [13] with variable levels of complexity can be used at the 

expense of higher computational costs. Accuracy also depends on 

the step size and type of equation solver. A smaller step size 

yields higher accuracy but slower performance. Likewise, more 

accurate solvers yield slower performance. Figure 1(b) illustrates 

the accuracy of each model, where dashed lines represent some 

deviations in accuracy due to different step solvers or step sizes. 

Upgradeable models substantially increase the solution space that 

must be explored, not only via expanding area and performance 

ranges, but also by adding the design metric of accuracy. Figure 2 

shows various tradeoffs in terms of speedup, area, and accuracy 

for a set of upgradeable models. 
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Figure 1:  (a) A set of upgradeable models that implement 

similar lung airway mechanics behavior. (b) Relative 

accuracy of each model. Dashed lines show variations in 

accuracy when different solvers or step sizes are used. 



Upgradable models introduce numerous additional parameters that 

influence and tremendously increase the design space. The 

influence on design metrics of those parameters can be complex 

and interdependent. To deal with these new parameters, we apply 

the statistical method known as design-of-experiments (DOE), 

which efficiently determines the impacts and dependencies of 

parameters, to enable efficient search of the design space. We 

introduce an approach that expands design space exploration to 

consider upgradeable models. To search the large design space, 

we utilize DOE statistical method to generate the Pareto points of 

the design. By generating the Pareto points, the design space can 

be pruned to enable a feasible exploration of solutions. We 

present a web-based tool that uses a processing-element (PE) 

network compiler and cycle-accurate simulator to automatically 

generate a PE network from an MML-language [7] based input 

model specification and evaluate the relevant size, performance, 

and accuracy metrics of PE network implementations. The web-

based tool also supports automatic exploration of the design space 

using DOE techniques to aid in finding and appropriate model to 

use from an upgradeable set of models and an appropriate 

underlying PE network implementation that meets given 

constraints. 

2. RELATED WORK 
Previous research has demonstrated a compiler for translating 

MML-language based input specifications of physical models to 

VHDL descriptions of networks of PEs, which provides orders of 

magnitude speedup over standard desktop PCs [2]. Model 

equations are partitioned to PEs using various heuristics, 

scheduled to exploit parallelism, and connected via custom point-

to-point networks. Various types of PE networks have been 

investigated, including homogeneous networks of programmable 

ALU-based general PEs, homogeneous networks of PEs with 

custom datapaths to solve specific equations, and heterogeneous 

networks consisting of both general and custom PEs [3]. 

Implementations of physical systems models on FPGAs exist 

elsewhere in literature [9], however all of these solutions are ad-

hoc application specific solutions, whereas the PE network 

approach is a general CAD flow for any physical system model. 

Considering how to select the appropriate physical model to 

emulate, to the best of our knowledge, has not been investigated 

elsewhere in literature. The problem however has analogs to other 

domains in the CAD literature. The work on algorithm selection is 

a close corollary [10], in which a suitable algorithm from a set of 

functionally equivalent algorithms must be selected in order to 

optimize a given goal such as throughput, cost, or power. 

Design space exploration is a well-known and often addressed 

issue [1][11]. The generation of Pareto points or Pareto curves has 

long been of interest as a method for reducing the amount of 

system configurations that need to be considered. Givargis 

introduced Platune [1], a tool for automatically exploring the 

design space of System-on-Chip (SoC) architectures. Platune 

implements an automated algorithm to explore the design space of 

a given SoC, and provides estimations of the resulting solution. 

Sheldon improved on the automated exploration by using 

statistical methods to calculate platform independent parameter 

interdependencies [12]. Our work is similar to Platune, except that 

we specifically target PE network implementations. 

3. UPGRADEABLE MODELS 
Upgradeable models in the context of physical systems emulation 

refers to having multiple underlying sets of equations that are each 

able to emulate the same physical model, with tradeoffs among 

accuracy versus area and performance. In this section, we define 

how to determine if relative models are part of the same 

upgradeable set, and discuss size-scalable upgradeable models. 

3.1 Functional equivalence 
We consider different models to be a part of the same upgradeable 

set if they meet the following requirements: 

1. The models contain the base input/output interface 

required to support the physical system behavior. 

2. The models are functionally similar, i.e. they produce 

similar output for all possible inputs. 

The first requirement ensures that all models can operate on the 

same inputs and can provide the same outputs. Physical model 

emulations are usually a part of a larger design, often for testing 

purposes, thus ensuring that all models in an upgradeable set have 

a similar interface ensures smooth transitions and reduces the 

potential to introduce new errors. Some small differences in 

interfaces may be acceptable, as long as a correct transformation 

is available. For example, a lung model may require either an air 

flow input or an air pressure input. Flow can be easily converted 

into air pressure, and vice versa, thus we may still consider the 

models to be functionally equivalent. Models may also provide a 

supplemental input/output interface, in addition to the required 

base interface. For example, the Weibel lung model of Figure 2(a) 

provides output pressures at each of the leaf nodes, whereas the 

RC lung model provides only a single output pressure node below 

the capacitor. The supplemental interface is not required, but may 

improve model accuracy or provide additional information about 

the internal model state to the designer. 

The second requirement demands that all models in an upgradable 

set produce similar outputs for given inputs. This requirement 

ensures that the physical model being emulated is similar in 

functionality, despite any differences in the underlying equations 

that are computed. Similarity can be determined by both 

qualitative and quantitative methods. Figure 1(b) shows the output 

of three various lung models; the models are considered 

interchangeable because they all produce an output of the same 

physical system, yet they have different quantitative and 

qualitative measures of accuracy. A designer can either determine 

that models are close enough to be functionally interchangeable, 

or a distance measure could be automatically calculated. 
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Figure 2:  Impacts of various physical models on metrics. (a) 

Set of upgradeable models, and (b) comparisons of each 

model’s speedup, area, and accuracy. The vertical scales 

show how solver time step affects speedup or accuracy. 



3.2 Scaling model size 
Many physical models have a common, repeating pattern or 

structure. The previously introduced Weibel model has a binary 

tree structure, which resembles the 23 bifurcating branches of a 

human lung. Neuron or cell models can consist of hundreds or 

thousands of individual elements that are connected to 

neighboring elements in mesh or grid structures. Previous work 

has shown that physical model structure can even be utilized to 

aid placement of PE networks on FPGA fabrics [6]. Physical 

models with regular structures can be considered upgradeable if 

the physical model can be scaled in size by adding new elements 

into the structure. 

Scaling a physical model may or may not affect the accuracy of 

the model, but certainly impacts the resulting area and 

performance of the implementation. The Weibel model can be 

scaled in size to have more or less tree generations - having more 

generations implies a higher level of accuracy because the number 

of branches is closer to actual lung physiology. However, 

doubling the number of cells in a cell tissue model does not 

necessarily imply that the equations of each individual cell are 

more accurate. Even so, a designer may want to know how many 

cells can be included, given some area or performance constraints.  

4. PE NETWORK PARAMETERS AND 

METRICS 
For a given physical model of sufficient size and complexity, the 

solution space for a PE network that emulates the model is 

extremely large. This is due mostly to the parameters available 

during PE network synthesis, and partly to the non-deterministic 

heuristics used during equation partitioning. The considered key 

parameters are the model specification itself, PE network type, 

equation partitioning neighbor function weightings, the given 

resource constraints, step size, and solver type. The key solution 

metrics are FPGA area (LUTs, memory, and DSP usage), 

performance (speedup over real-time), and accuracy (closeness to 

exact solution). 

Figure 3 depicts a chart of possible PE network solutions for a 

neuron model with 300 equations. Three sections are shown 

which depict solutions yielded by using different area constraints. 

For each area constraint, the PE network type, neighbor weight, 

and step size parameters are varied. Area/speedup metric Pareto 

points are circled; the accuracy metric is not measured explicitly 

in the figure, though points towards the bottom typically use 

smaller time steps and thus would be more accurate. 

The model itself is an important parameter. The PE network 

solutions that are generated depend highly on how many 

equations are in the model, the complexity of each equation, and 

the data dependencies between the equations. The user also must 

specify a coefficient that quantitatively captures the quality of the 

model compared to the others in the set. For example, the 9 

generation Weibel lung model may be considered to be the most 

accurate, and have a coefficient of 1. The RC model may be 

considered to have a coefficient of 0.4, because it only coarsely 

captures realistic behavior. The coefficients are used when 

comparing relative accuracies of different models. 

PE type is a critical parameter that determines the type of PE 

network that is generated to emulate the model. There are three 

options: homogeneous general PE network, homogeneous custom 

PE network, and heterogeneous PE network. A general PE is a 

flexible, programmable, ALU-based processor that can solve any 

equation. A custom PE uses a pipelined datapath to solve a single 

specific equation much faster than a general PE, but may use more 

FPGA resources and incur higher routing congestion cost. 

Heterogeneous PE networks combine general and custom PEs to 

create a network with balanced performance and area metrics. 

Neighbor weight refers to an option within the PE network 

compiler that controls whether the equation partitioning favors 

size or performance. This option is a sliding scale that can be set 

from 1 (favor size) to 10 (favor performance). 

Area constraints detail the available LUTs, DSPs, and BRAMs on 

the target platform. The PE compiler will not allocate more than 

the available resources. The area constraint may have a very large 

area or performance impact on sufficiently complex models. An 

area constraint which is too small for the given model will not 

allow enough PEs to be allocated and reduce the possible 

speedup. Small models are not affected by the area constraint. 

Solver type selects the iterative step solver to use. The currently 

supported solvers are Euler and Runge-Kutta4. Euler is the most 

simple solver, but can be inaccurate or diverge with medium to 

large time steps. The Runge-Kutta solver type is much more 

accurate, but may require up to 4X more computation time than 

the Euler solver. 

Step size determines the amount of time between iterative 

solutions of the model equations. Decreasing the step size requires 

more computations per second, which reduces the performance of 

the model, but allows the solvers to be more accurate. 
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5. METHODOLOGY AND FRAMEWORK 
To explore the space of PE network solutions for a set of 

upgradeable physical models, we have developed a visual web-

based frontend coupled with a design-of-experiments statistical 

approach to identifying Pareto points that span an upgradeable set 

of physical models. In the following section we describe briefly 

what DOE is, and how our tool utilizes DOE. 

5.1 DOE-based exploration of PE networks 
Design-of-experiments is a statistical technique that identifies a 

minimal set of experiments that provide maximal cover of the 

possible solution space. Originally, DOE was developed for use in 

agriculture, but has since been developed into a powerful 

statistical technique used in many fields. DOE automatically 

identifies each parameter's magnitude of influence on the solution, 

since the differences between physical models (complexity, 

connectivity of equations, etc.) can impact how much a specific 

parameter like PE network type or neighbor weight matters. For 

example, a model with few equations will not be sensitive to area 

constraints. 

5.1.1 The DPG algorithm 
The DOE-based Pareto-point Generation (DPG) algorithm [12] 

can be used to apply DOE to and identify PE network solution 

Pareto points. By applying DPG to the upgradeable models, such 

that the models themselves are a parameter to the algorithm, the 

Pareto points that span across the set can be easily located. A 

basic flow chart of DPG is given in Figure 4. DPG consists of 

three phases: running initial experiments to identify parameter 

interdependencies, generating initial Pareto points, and filling in 

gaps in the Pareto curve. DOE uses either two or three-level 

parameters. Since PE networks have some continuous parameters, 

such as step size, we always select the minimum and maximum 

and midpoint values for continuous parameters to ensure we cover 

the space well enough. Phase 3 fills of DPG fills in the gaps of the 

solution space left by this discretization. 

Phase 1 of DPG runs an initial Plackett-Burman [8] set of 

experiments to automatically generate a weighted parameter 
interdependency graph. This graph details the relationship 

between parameters for each metric in a single description. DPG 

generates the graph by first estimating the solution metrics for 

every pair of parameters in the system, and then running the 

experiment. The amount of error between the estimated and actual 

value suggests the amount of interdependency between the 

parameters. Figure 5 shows the interdependency graph for the 

speedup metric for a RC lung, 6 gen. Weibel lung, and 9 gen. 

Weibel set of upgradeable models. Each node represents a 

parameter: A is the model from the set, B is the area constraint, C 

is the step size, D is the PE network type, E is the solver, and F is 

the neighbor weights. Higher edge weights represent higher levels 

of interdependency; for example, the 0.99 weight between D and 

F indicates that the effects of the PE type and neighbor weight 

options on the solution depend on one another, which is 

observable in  by examining the changes in speedup due to 

different neighbor weights. 

Phase 2 of DPG generates initial Pareto points from the parameter 

interdependency graph. The algorithm starts by evaluating the 

edge with the highest error weighting, and exhaustively searching 

the possible ranges of the two associated parameters. DOE uses 

either two or three level parameter values, so there is a maximum 

of nine possible configurations to run. The solutions of the search 

are pruned to only the local Pareto points, and the two parameter 

nodes of the graph are merged. This continues until only one node 

remains which contains a set of Pareto points for the entire design. 

Phase 3 of DPG identifies regions which were not explored, due 

to the reduction of continuous parameters into a discrete three-

level parameter. Parameters which are constant around the region 

are locked, and a local search within the region takes place. New 

Pareto points are added to the set identified in phase two. 

5.2 Tool 
The tool to explore the PE network solution space consists of a 

web page frontend and server DPG backend, implemented in 
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Figure 5: (a) Weighted parameter interdependency graph 

generated by DPG for a lung model. 



ASP.NET 4.0. A PE network compiler and simulator are 

implemented as .NET WCF web services.  Figure 6 shows the 

architecture of the tool. The set of upgradeable models and 

parameter bounds are entered by the user. Parameter bounds 

include minimum and maximum area constraints, step sizes, etc. 

The DPG backend selects a set of experiments to run, and 

iteratively runs the compiler and simulator to generate area, 

speedup, and accuracy metrics. Pareto points are selected from the 

results by DPG and plotted visually on the web page. 

5.2.1 PE network compiler and simulator 
The PE network compiler accepts arguments generated by the 

DPG algorithm to partition the equations of a specific model 

across PEs. Once the equations are partitioned, each PE is 

scheduled. The partitioning and schedule information is enough to 

generate the area and speedup metrics. Area is reported by the 

compiler in terms of the number of LUTs, DSPs, and BRAM 

components used. The compiler automatically calculates the 

number of these components based on the type and frequency of 

each PE type. General PEs use one DSP and one BRAM each, 

while custom PEs may use arbitrary numbers of DSPs and 

typically a single BRAM. The final area metric is equivalent 
LUTs [5], which is a method for comparing resource usage for 

designs with various usage of logic cells and hard macros like 

DSPs. For a Xilinx Virtex6-240T, we use the following equation 

to calculate equivalent LUTs, where LEQ is the equivalent LUTs, L 

is the number of LUTs, KDSP is the equivalent LUTs per DSP 

(250), D is the number of DSPs, KBRAM is the equivalent LUTs per 

BRAM (360), and B is the number of BRAMs: 

BKDKLL BRAMDSPEQ ++=  

To calculate the speedup metric, the frequency of the resulting 

circuit must be estimated. The maximum frequency for a single 

PE is approximately 300 MHz when targeting a Virtex6, thus the 

maximum frequency that a larger PE network could achieve is 

also 300 MHz. As the number of PEs and connections between 

PEs grows larger, the place-and-route tools (Xilinx ISE 14.2) can 

not maintain the same timing due to congestion. We have created 

a regression model to estimate the frequency based on FPGA 

resource usage and the number of connections in the design: 

LUTBRAMDSP RKRKRKWKKFreq 43210 −+−−=  

Freq is the estimated frequency of the design, K0, K1, K2, and K3 

are regression coefficients based on experimental data from PE 

networks targeting a Virtex6. W is the number of wires in the 

design (PE-to-PE connections), and RDSP, RBRAM, and RLUT are 

resource usage ratios. This model is able to estimate frequencies 

to within 5% of their actual values, as shown in Figure 7. 

Once frequency has been estimated, total speedup is  calculated: 

SC
Freq

Speedup

**
1

1
=

 

C is the number of cycles required to compute a iteration of the 

model. S is iterations per second, derived from the step size 

parameter. The factor 1/Freq*C yields the amount of time to 

compute one iteration; multiplying by S yields the time to 

simulate 1 second. The inverse of the equation yields the speedup. 

Accuracy is determined by simulating the PE network. A cycle-

accurate simulator executes an iteration worth of PE instructions. 

The simulation is performed twice: once using the given solver 

and step size parameters, and once using a 'golden' set of 

parameters that consists of the most accurate configuration. For 

the golden parameters, we use RK4 solver and 0.01 ms step size. 

After the simulations are complete, the time-series traces of each 

variable are compared. The simulator finds the variable in the 

user-defined simulation that is of a maximal distance from the 

golden standard simulation trace and returns the error. The error is 

then multiplied by the coefficient describing the model's relative 

accuracy in the upgradeable set, as described in section 4. 

6. EXPERIMENT 
We present an exploration of a set of upgradeable RC and Weibel 

models. We target a Xilinx Virtex6-240T FPGA, which consists 

of 150K LUTs, 716 DSPs, and 417 BRAMs. Table 1 enumerates 

the parameters and bounds that are input into the DPG algorithm 

for each set of models, since DOE uses 2 or 3-level parameters. 

6.1 Lung models 
The set of upgradeable lung models includes the RC, 6-generation 

and 9-generation Weibel models previously described. We use 

coefficients of 0.4, 0.9, and 1.0 to describe relative model 

accuracy, respectively. Figure 8 shows three plots comparing the 

area, speedup, and accuracy metrics of the 57 Pareto points found 

by the DPG algorithm. We consider the total design space size to 

be over 7,200 configurations, if the area constraint is discretized 

into just ten levels. Thus, the DPG algorithm prunes more than 

99% of the design space, making exploration of the solutions 

more feasible. Filled circles indicate where groupings of Pareto 

points originate from the same model. For example, the left-most 

plot showing speedup vs. area has a group of Pareto points in the 

top-left corner that all are related to the RC model. Since the RC 

model is relatively simple, it has high speedup and low area 
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Figure 7: Regression model for estimating circuit frequency. 
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requirements; however, the other plots that include accuracy 

indicate the low fidelity of the solution. 

The lighter points of Figure 8 illustrate Pareto points that 

correspond to configurations using an RK4 solver, 0.01 ms step 

size, and the 9-generation  model. The points represent the 

'normal' design space exploration of a PE network that has 

configurable type, number of PEs, etc. Considering only the 

middle case of the 6-generation Weibel model yields a solution 

space with speedups between 8X and 9200X, area between 

4KLUTs and 55 KLUTs, and accuracy between 0.33 and 0.89. By 

considering the RC and 9-generation Weibel models during 

exploration, the solution space expands to speedups between 

0.86X and 55000X, area between 1.7KLUTs and 376KLUTs, and 

accuracy between 0.15 and 0.99. Overall, the solution space that 

can be considered has increased in size by 6X in terms of 

speedup, 7.3X in terms of area, and 1.5X in terms of accuracy. 

7. CONCLUSION 
Physical models implemented on FPGAs provide large speedups 

over other implementation methods. Physical models introduce 

the feature of upgradeable models into design space exploration. 

We demonstrated how to include upgradeable models into a 

search approach and demonstrated improvements in the solution 

space of 5X on average of the area, speedup, and accuracy 

metrics. We utilized a design-of-experiments approach to enable 

rapid finding of Pareto points. Upgradeable models are not limited 

to physical models, but in fact may also apply to domains like 

signal processing and video processing where different algorithms 

can be considered that tradeoff quality with size and performance.  
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Parameter Low Mid High 

LUTs 10K 50K 150K 

DSPs 20 200 716 

BRAMs 20 200 417 

PE Type General Custom Hybrid 

Neighbor weight 1 5 10 

Solver type Euler - RK4 

Step size (ms) 0.01 0.1 1.0 

 

Figure 8: 3-dimensional Pareto plots projected onto 2-dimensions. Yellow points show where accuracy parameters (model, step size, 

and solver type) are constant, emphasizing design space exploration of area and speedup without the accuracy metric. Considering 

upgradeable models during exploration tremendously expands the solution space. 


