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Abstract—Within the design of Cyber Physical Systems,
model-based approaches are powerful means to describe and test
the behavior of the system. Still, a good methodology is needed
to go from the idealized model environment to an implementable
system architecture that is capable of dealing with uncertainties
in both the physical and the cyber subsystem. This paper presents
a concept that explicitly utilizes intervals to express uncertainties
in the physical system, the control process and the cyber system to
improve the robustness and stability of the design. This interval
concept has been integrated in a component-based framework
that allows one to describe properties of the components out of
which the CPS is composed. With a prototype implementation
of the component framework, this paper shows the usefulness of
this approach for an exemplary CPS. The results indicate the
practical benefits of value intervals for property assessment of
composed CPSs which can be exploited at design time as well as
run time.

Keywords–Cyber Physical Systems, design, intervals, compo-
nents, models

I. INTRODUCTION

The design of Cyber Physical System (CPS) is a complex
task. CPSs are systems in which an integrated cyber subsystem
(CS) interacts with a physical subsystem (PS). This interaction
adds to the already existing challenges in the design of the
embedded computation systems, on one side, and the physical
system, on the other side. As an example, the PS may be as
complex as the mechanical drive train in a car or the hydraulic
system in a water distribution network.

The model-integrated and model-based design (MBD) ap-
proach [8, 9] is the most promising design paradigm for
CPSs and has become the de-facto standard approach in many
industries with capable tools like Simulink [1]. In these tools,
models of the PS and the CS are simulated, interact side-by-
side and allow the designer to develop and test algorithms
for the CPSs. The models of the subsystems, naturally, are
abstract approximations and simplifications of the real systems
in order to understand and simulate them with reasonable
effort. MBD-flows successively refine the CS from a high
behavioral abstraction level, ideally, to a level that allows
direct implementation. An important element of this refinement
process is (de)composition. Already, the definition of CPS
states that there is a cyber system and a physical system which
are composed to work as one logical unit. Beyond that, the
cyber part of the CPS can be decomposed into sub components
such as sensors, actuators and the computation processes. This
decomposition approach has a range of benefits. Smaller sub
systems are better understood and can be verified against
their specifications, previously implemented components can
be reused, and parallel development of components is fostered.
In this paper, we pursue the notion of composition of reusable

components to define the architecture of a CPS and to analyze
its properties on a high abstraction level.

Component frameworks for CPSs are not new and, for in-
stance, have been applied to automotive [4] and space applica-
tions [14]. While existing component frameworks are capable
in composing software, they mostly ignore the variability of
the physical subsystem and the interfaces between CS and
PS. Furthermore, the semantics of the composition in existing
frameworks is limited mostly to interface- and compatibility
checking. Reasoning about non-functional properties such as
timing, security and dependability is very limited and usually
only worst case properties are considered. For many CPSs
worst case timing analysis is not sufficient because too late
or too early could result in errors. For instance, the heart
pacemaker presented in [12] runs one operation per millisec-
ond, for which the authors state that a higher frequency would
compromise the quality of the implemented control algorithm.
Intervals provide mechanisms to cope with such upper and
lower boundaries in the requirements. Specifically, intervals
may be integrated as part of the system design methodology
to explicitly take into account uncertainties in the models and
carry this information throughout the design processes, from
the ideal abstract models to an implementable architecture.

Applying such explicit value intervals, in this paper, we
address the question whether a given system architecture,
whose properties to a certain degree are expressed with un-
certainty, still satisfies the requirements of the CPS. The main
contributions of our work are:

1) We thoroughly discuss the concept of value intervals
in the context of CPS and show their importance in
the definition and design of the physical and the cyber
subsystems.

2) We show how the interval concept can be applied
within a component framework that enables the com-
position of a CPS system architecture out of func-
tional building blocks, covering hardware, software
and environmental properties.

We present a prototype tool that for a given system, whose
component properties can be expressed with uncertainties,
determines whether the system satisfies the requirements im-
posed by the control algorithm, or whether the system contains
conflicts. We motivate the contributions and discuss their
effectiveness by a novel example use case –the Falling Ball–
that combines many design challenges of CPSs.

The rest of this paper is structured as follows. Section
II introduces the running example and outlines its design
challenges. Section III provides a brief overview of related
work, Section IV discusses the role of intervals in the CPS
design. The CPS component framework that processes these
intervals is introduced in Section V. Results for our prototype
tool and a set of design examples are presented in Section VI.
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Fig. 1. Setup of the Falling Ball example: (A) as schematics, (B) in practice.

II. EXAMPLE AND DESIGN CHALLENGES

In this section we introduce the running example that we
will use throughout this paper. Further we show a typical
model-based design process and discuss the challenges in
designing such a system.
A. The Falling Ball example

The Falling Ball example, illustrated in Figure 1, is a CPS
with the objective to take a picture exactly at the moment a
falling ball passes a camera. The approaching time is predicted
based on information from motion sensors mounted above the
camera. This simple example has some interesting properties of
CPSs. A proper implementation requires exact timing of vari-
ous events. This is one example where faster is not necessarily
better. Second, the mathematical model of the general physical
process is well understood, and still, due to small variations
in physical parameters (e.g. gravity, air resistance), we will
not achieve perfect precision. Third, sensors and actuators are
part of the process for which we can study the impact of
alternatives to these components. Additionally, the example
can be implemented with little manual effort so that we can
observe and compare effects in the models as well as in the
real world using an actual implementation.

In the following we describe a typical model-based design
flow for CPSs. In each step additional details of the example
will be discussed.
B. Model-based design

The underlying principle of model-based design (MBD) is
to create models for the system and simulate these models to
evaluate properties of the system. We illustrate the four steps
to establishing the executable simulation for the Falling Ball
example. A more detailed model-driven design flow for CPSs
is described in [8].

Definition of the top-level architecture of the system:
The first step in the MBD is the definition of the main entities
of the system and the interfaces and data paths between the
entities. For the Falling Ball example these information are
shown as block diagram in Figure 2. The diagram defines the
Ball entity (the PS) the Control entity (the CS), and the two
sensors and the camera components.

The description of the PS: The physical system is most
conveniently expressed as differential equations. In case of

Fig. 2. System entities and high level data flow.

the Falling Ball, the height of the ball is determined by the
differential equation of velocity over time, while velocity is
determined by the differential equation of acceleration over
time. This small system of equations is initialized with a
constant acceleration (gravity=9.81m/s2) and a selected initial
height, i.e. the drop height of the ball.

The control program: Since the control program, usually,
cannot be expressed with differential equations, it is necessary
to express the control logic as a sequential program. In the
case of the Falling Ball example, this step can be resolved
by creating a program based on Newton’s free fall equations.
These equations dictate the logic of the control program that
first, waits for sensor reading, then computes the expected time
for the ball to reach the camera, and then sends the trigger
signal. As part of modern design and simulation tools, this
control program can be represented as a state machine or as a
sequential program captured using some imperative language.

Simulation and test of the control algorithm (CA):
When all components are specified, the system can be sim-
ulated. This allows the designer to validate a system before
implementation for a given set of properties of the components.
The simulation results express whether or not the system is
stable, while typically additional properties such as consumed
time or energy can be evaluated as well.

C. Problem Formulation

After the definition and test of the control algorithm (CA),
suitable hardware and software components can be selected or
implemented, which can be assembled to a system that satisfies
the requirements of the control algorithm. The problem is that
any variation of properties from the simulated system may void
the results of the simulation. This is crucial as many conditions
of the system are not know at design time. For instance, the
computing platform or the applied sensors or actuators may be
unknown before the actual installment of the system. Properties
of the PS often can never be expressed with full precision due
to the limitations of the underlying model.

In practice this leads to an iterative process in which the
knowledge from the integration phase contributes to refine
specifications of the models. The refined models then can
be applied to adapt the control algorithm if necessary. Such
development practice does work, but is time consuming, limits
the reusablity of designed algorithms and imposes severe
challenges when organizational or temporal constraints forbid
a close cooperation between the designer of the algorithm
and integrator of the system. Preferable, instead, is the de-
coupling of control design and integration in a way that the
control algorithm provides the specification to the lower layers,
in which the system can be designed and implemented. In
order to be actually implementable, this specification has to
provide space for variation of system properties. As result
any higher level abstract component can be replaced by an
actual component or subsystem in practice, as long as the
properties of the actual system are in range of the assumed
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values of the simulated component. This, at first, needs a good
understanding of sources and characteristics of uncertainties in
CPS design, and second, a technical framework to work with
these uncertainties. We address these issues in section IV and
V, respectively, after a review on related work.

III. RELATED WORK

Model based design approaches have been proposed in
a range of related work addressing the challenges of CPS
design [8, 9]. As example Wang [19] presents an integrated
modeling and simulation environment for CPS and shows how
integrated simulations can be used to improve the control per-
formance. Sztipanovits [17] proposed model-driven approaches
with domain-specific models and general composability across
the domain barriers. These works provide valuable contribu-
tions to improve the results from modeling and simulation
early in the development, but do not address the translation
to a system architecture.

With the motivation to bridge the work domains of control
engineers and computer engineers, Sangiovanni-Vincentelli
[16] and Damm [4] proposed explicit design contracts for
vertical and horizontal composition. Recently, Derler et al
[5] discussed a generalization of design contracts for timing
properties in CPSs. The work also considered explicit delay
compensation as part of the control algorithms. While delay
compensation can improve the control performance of real
systems with delays, the experiments also showed that the
amount of compensation has to be chosen carefully, since both
too pessimistic as well as too optimistic compensation can
result in control violations.

A formal approach facilitating state machines and concur-
rency analysis tools is discussed by Lee in [11]. The approach
advocates for simulations with deterministic timing and is
valuable for verification of systems, while it has limitations
with respect to uncertain properties of the system. Even though
not further evaluated in our paper, formal methods to check
interoperability and correctness of interface compositions are
important for system composition, and we see interval analysis
of component properties as extension to those approaches.

A variety of component frameworks for CPSs have been
proposed, while we highlight REMORA [18] and REMES [3].
REMORA proposed reconfigurable components that can be
parameterized at run time, provided by high-level and event-
driven programming in CPSs through a component-based
abstraction. While runtime adaptation of CPSs exemplary mo-
tivates decoupling of control algorithms and implementation,
REMORA does not address selection of proper components.
REMES [3] is an approach to reasoning about service behav-
iors and their compositions, using annotated state machines
that can be applied sequentially and hierarchically to assess
properties of the composed systems. A formal verification
tool, as part of REMES, centers around data flows and their
pre- and post-conditions to evaluate system attributes such as
consumption of time or memory. The approach was extended
[2] to add support for the assessment of composed worst case
execution time. So far REMES does not address physical
properties of CPSs and does not support the definition or
validation of properties expressed as intervals.

Interval analysis in CPS has been proposed to detect faults
during runtime by Sainz [15]. Based on measurements at run
time and a system model they determine intervals of future

sensor readings in the system. In case the values are out of
the predicted intervals, a fault will be reported. This approach
only focuses on measured values processed during runtime and
does not cover design decisions.

The application of interval arithmetic for constraint rea-
soning has been discussed by Hyvonen [6]. While his work
only partly overlaps with the challenges of CPS design, the
arithmetic definitions and rules find direct application in our
work.

IV. INTERVALS IN CPS

An interval, in general, is a subset of a totally ordered set
of elements, and is denoted by [a, b] while a and b are the end
points of the interval, so we can write:

[a, b] = {x ∈ R|a ≤ x ≤ b}.

The end points belong to the interval. In most cases R
represents the set of real numbers, while in general it can be
any ordered set. In CPSs we find the following intervals:

Definition Intervals of the Physical System (IV P) are
intervals imposed by the natural boundaries of the PS and
the physical laws that govern its behavior. Most processes in
the real world are bound in some way, which is not reflected
by simple simulation models. For instance, the ball in our
example can only be dropped from a certain range of heights,
which affects the speed the ball has at and between the
interface elements. This determines the minimal and maximal
response time for a system, directly influencing the choice of
hardware (sensors, actuators) and software components in a
final implementation.

Uncertainties of the Physical System (IV U) are caused
by the deviations between the real physical system and its
model, which applies simplifications and approximations. As
we cannot express these deviations exactly, such uncertainties
extend the range of values the system has to cover. In the
case of the Falling Ball example the gravimetric acceleration is
influenced by these uncertainties. As we will see in Section VI,
uncertainty in the gravity constant may extend the properties
of the design to such a degree that the eventual system no
longer may satisfy the original design requirements.

Uncertainties of the Cyber System (IV C) reflect the
fact that the models of the CS and its components are approx-
imations. The timing behavior of many hardware components,
such as sensors and actuators, is explicitly specified by inter-
vals. In the Falling Ball example, this uncertainty may reflect
system runtime variation due to memory delay, cache misses,
other system processes, or system interrupts. Extended to the
interface components, depending on the quality of the sensors,
we have uncertainties in the detection and propagation time of
the sensor.

Definition space of the Control Algorithm (IV D) reflect
the fact that the control algorithms of CPSs usually are
developed with a certain environment and system in mind.
Hence, the resulting algorithm is only specified for this range
of values. If the PS or the CS is out of this verified range,
proper functioning of the algorithm is no longer guarantied.

To summarize, each subsystem of a CPS is subject to
a range of uncertainties at design time. Figure 3 illustrates
the top level components of a CPS with their sources of
uncertainties. The PS, which describes the properties of the
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Fig. 3. Top-level CPS design problem: The abstract Control Algorithm
component logically connects PS and CS which are physically connected by
interfaces. Initially the CPS and the PS are defined by the developer, while
the CS and Interfaces may be assembled from a set of technical components.
Each subsystem is exposed to uncertainties that have to be addressed with
intervals [IV *].

environment, is exposed to its definition intervals (IV P) and
model uncertainties (IV U). The cyber subsystem and the
interfaces, which are physically connecting the PS and the
CS, are assembled from a set of components. For the individual
components as well as for the composed system the uncertainty
IV C applies. The CPS component, which is an abstract
component that logically connects PS and CS and represents
the requirements and characteristics of the underlying control
algorithm, is exposed to IV D.

Between the entities of the system exist a range of de-
pendencies and connections. For instance, the CA has been
developed with a certain physical environment in mind. Hence,
we have to validate that the properties of the PS with its
uncertainties (expressed with IF P and IV U), are within
the range of the supported values of the CPS. Similarly, the
properties of the CS and the Interfaces have to be in line with
the assumptions of the CA. Beside vertical interdependencies,
which in our example range from the algorithm layer to the
architecture layer in Figure 3, we also have to respect hori-
zontal connections within the architecture layer. For instance,
the properties of the applied interfaces influence the properties
of CS and PS. As example, the delay of the interfaces may
change timing attributes in the CS, which eventually have to
be validated against assumptions imposed by the CA.

The result of this view on the system is a network of
properties, which cannot be expressed as fixed values. For this
network and under consideration of individual uncertainties,
a developer is interested in whether or not this network
contains any potential conflicts. To answer this question, in
the following section we introduce a framework that enables
the developer to compose a system out of components and
to evaluate the correctness of this composed system applying
intervals.

V. COMPONENTS IN THE CPS DESIGN

As already introduced in Section I, using components to
assemble the system is a reasonable and promising concept
in coping with the design challenges of CPSs. Related work
has addressed a variety of component models [3, 4, 18].
The work in our paper is mostly related to the concept
of rich components as proposed by Damm [4] and further
refined by Sangiovanni-Vincentelli et al [16]. Rich components
extend classic component models (e.g. from UML) by meta
information that express functional and non-functional aspects
of the components in clear semantics. As result any component

C can be represented by the triple:

C = (B, I,M),

while B represents the behavior, I the interfaces, and M the
meta information of C. We discuss the role of the behavior
and the interfaces in the following, and the meta information
in subsection V-B.

A. Component Model

Components are the building blocks of the system. Each
component represents a certain characteristic behavior, which
may be the behavior of a software module, a hardware mod-
ules, or a physical subsystem. As an example, the high-level
system architecture in the Falling Ball, discussed in Section II
and shown in Figure 2, contains building blocks (ball, control,
sensors, camera), which we consider as components.

Components provide their functions to other components
via interfaces. Reciprocally, interfaces are used to connect to
other interface in order to use their functions, so that we can
express the interfaces as

I = (IP , IU ),

while IP is the set of interfaces provided by the component,
and IU . During the validation of composition, which is out-
lined in subsection V-C, it is assured that each needed interface
IU of the components in the systems is provided by one
interface IP .

An integral part of our component model are abstract
functions, such as algorithms or protocols, which are expressed
as components. Having components of different abstractions in
the framework enables vertical decomposition and validation
of the behavior across layers. The Control Algorithm block,
depicted in Figure 3, is such an abstract component. Another
example for the need for vertical composition is the CS block
(in Figure 3), which can be further decomposed and refined
according to the well-studied practices of embedded system
design. Figure 4 shows a process state machine as exemplary
decomposition of the CS for the Falling Ball. The components
in this diagram are processes that can be implemented as
software running on a microcontroller. Properties of each of the
processes contributes to the aggregated behavioral properties
of the system. The semantics of the properties and an approach
for their aggregation is discussed in the following.
B. Properties and Assumptions

In addition to the structural information, each component
C contains meta-information M , expressing the properties P

Fig. 4. Decomposition of the Falling Ball CS. The Falling Ball program can
be decomposed as sensing, prediction and actuation. The sensing and actuation
blocks need control drivers for the interfaces.
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Fig. 5. Example for vertical contracts between Control Algorithm and PS
and CS. In this case A1 ⊆ P1, but A2 ̸⊆ P2.

of the component, and the assumptions A about properties of
other components in the system. This concept is related to
design contracts [4, 16, 5], in which it is assumed that two
components C1 and C2 with their contract data as part of the
information Mi = (Pi, Ai) can be assembled if A1 ⊆ P2

and A2 ⊆ P1, meaning that all assumptions of a component
are delivered by promised properties by the peer. A system
S of components is free of conflicts if the aggregated set
of assumptions is satisfied by the aggregated set of proposed
properties, i.e.

⋃

component c∈S

Ac ⊆
⋃

component c∈S

Pc.

An example for contracts applying intervals in the Falling
Ball example is illustrated in Figure 5. In this example the CA
has the assumptions, first, to have a (A1) dropping ball system
that supports dropping height from 1.0 to 2.5m, and second,
to have (A2) a two-sensor ball control algorithm with a delay
from 10 to 20msec. The PS promises to (P1) provide the ball
system and supports a dropping height from 1.5m to 2.5m.
The CS promises (P2) the two-sensor ball control algorithm
with a delay from 7 to 10ms. We can see that A1 ⊆ P1, but
A2 ̸⊆ P2, because the delay promised by the CS partly lies
outside the assumed interval. In this case A2 is not satisfied,
and therefore the composed system has conflicts that have to
be resolved.

In the previous section we already discussed the example
of the delay of the CS, which is composed of the delay of
the computation blocks (see Figure 4) and the delay of the
interfaces. Static contracts cover such composed properties
only partly. As option, one can decompose the timing budget
from the top to the bottom, so that the CS expresses clear
timing assumptions to the interfaces, as well as to each of the
computation blocks. The top-down budget decomposition ap-
proach needs significant in-detail knowledge about the applied
components, and indicates conflicts already for small violations
which could be compensated by budgets from neighbored
components in the system.

To cope with this issue in our framework, we extend the
concept of static contracts by allowing symbolic definitions
of properties. Properties then can be defined in context of the
composition as functional mapping of other properties in the
system. We call this functional mapping between properties as
Relation. The relations then extend the meta-information for a
component to the triple

M = (P,R,A),

with the properties P , the relations R and the assumptions A.
A Property p ∈ P is a characteristic or quality that

describes an attribute of the system. Properties comprise all

aspects of a system that can be expressed by a value, including
all sorts of attributes to describe the system, its components,
its requirements, or its environment.

Properties influence and depend on other system attributes.
In the Falling Ball example, the selection of the camera, having
some viewing angle characteristics, affects properties in the
PS. To express these dependencies, we use Relations R. A
Relation r ∈ R is a triple r = (fr, p∗in, pout), while fr is a
function over a set of input properties (p∗in ⊆ P ) that assigns
the result to a property (pout ∈ P ), so that we can write

fr(p
∗
in) ⇒ pout

Figure 6 (A) illustrates an exam-
ple relation, representing the equation
system_delay:=sensor_Delay+computation_delay,
which defines the property system_delay as summation
of sensor_delay and computation_delay. In this
example fr = add, pout =system_delay, and
p∗in =(sensor_delay, computation_delay).

Assumptions A are similar to relations as they compute a
function over a set of input properties. However, the result of
the assumption is a boolean which is not assigned to a property,
so that an assumption a ∈ A is a tuple a = (fa, p∗in) and

fa(p
∗
in) ⇒ {true|false}

Assumptions in our model are treated like assumptions in
design contracts in the way that all assumptions of components
that are part of the system under evaluation have to be satisfied,
i.e. must be true.

∀a ∈ A : fa(p
∗
ina) = true,

The Assumption in the example of Figure 6(B) is a boolean
functions that is true if system_delay is within (⊆) the
allowed_system_delay. The ⊆ operation is resolved
dynamically based on the type of the properties. Assumed, the
allowed_system_delay is a fixed number (e.g. 20 msec)
the assumption is satisfied if system_delay is smaller or
equal 20 msec. If allowed_system_delay is expressed
as interval (e.g. [10..20]ms) the assumption is satisfied if
system_delay is within that range [10..20]ms.

Applying the concepts of interval arithmetic [6], relations
and assumptions can process intervals (e.g. [a1, a2]+[b1, b2] =
[a1 + b1, a2 + b2]). In the example of Figure 6, assumed
the sensor_delay is specified as the range between 3
and 5 msec and the actuator_delay is between 15 and
18 msec, the resulting interface_delay is [18..23]msec,
and the constraint of 20 msec is not satisfied.

Fig. 6. Graphical representation for a Relation (A), a Assumption on
Properties (B), and a composition of both (C).
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Fig. 7. On the left, a possible composition of the Falling Ball CPS is shown.
On the right, the behavioral model of this composition is illustrated. Each
dot in this graph represents a variable, condition, or constraint of the system.
The system on the left is valid if the representation on the right contains no
constraint violation.

The set of relations and assumptions of a component can
be intuitively represented as finite directed graph in which
properties, defined by a relation are element of the input
properties (p∗in) of other relations or assumptions. Figure 6(C)
illustrates the composed graph for our running example. In
the system composition process, which is outlined in the
following, these individual relations can be merged to the
system-wide description of properties.

C. Composition of Components and Properties
During the composition and binding of the system out of

individual components we have to address two major concerns.
First, the structure of the composed system, and second, the
properties of the system. These two aspects are addressed
by two graph structures we maintain during the composition
phase: the Component Composition Graph (CCG) and the
Property Relation Graph (PRG).

The CCG represents the components of the system and
expresses how they connected via the interfaces. The CCG is
the blueprint for the actual system integration.

The PRG combines the property description of the compo-
nents in the CCG to a complete behavioral system description.
Considered, for instance, one component provides the Relation
of Property C as shown in Figure 6, and a connected compo-
nent requires the constraint (C<=D), then the resulting PRG
combines both partial graphs, so that the Assumption is always
evaluated whenever one of the properties (A, B, C, or D) is
changed.

As such, the PRG is the merged graph of the properties
PS , relations RS , and assumptions AS of the individual
components of the system (S): PRG = (PS , RS , AS)

PS =
⋃

c∈S

Pc, RS =
⋃

c∈S

Rc, AS =
⋃

c∈S

Ac.

This is a straightforward merge operation of properties,
relations and assumptions that results in one holistic graph,
which is structurally equivalent to the meta information M of
the individual components. Therefore, the composed assump-
tions of the systems can be evaluated just as the assumptions of
the components. A system is free of conflicts if all assumptions
are satisfied, i.e.

∀a ∈ AS : fa(p
∗
ina) = true,

while all relations RS of the PRG have been resolved. As-
sumptions that remain false are conflicts in the system, equal
to contract violations in static design contracts, and have to be

resolved by changing the components of the system. Tracing
back the initial inputs of the violated assumption helps in
identifying knobs to change in order to resolve the conflicts.

The PRG can grow quickly, as properties may influence all
neighbored (connected) components. This complexity reflects
the non-trivial system inter-dependencies, we already discussed
in Section IV. In fact, this complex network of system prop-
erties illustrates the difficulty of making design decisions in
CPSs in which changing the value, or the uncertainty, of one
property affects many other system attributes. System proper-
ties that can be evaluated on this level of abstraction include
timing [10], robustness and safety [7] memory consumption,
energy consumption and qualitative security [13]. Figure 7
illustrates the CCG and the PRG for one possible composition
of the Falling Ball example. Each dot in Figure 7(B) represents
one property or function of the relations and assumptions.
The arrows show the direction of the relations. Details of this
example will be discussed in the evaluation in the next section.

VI. EVALUATION

To evaluate the suitability of intervals as part of the
component-based design process for CPSs, we implemented
a tool to process and analyze compositions as described in
the previous section. The purpose of the evaluation tool is
to establish the PRG for a given CCG, and to evaluate the
properties, relations, and assumptions of the generated PRG.
The output of this tool is a graphical representation of the PRG
and a report on violated assumptions. A system is considered
as implementable if the CCG is complete (i.e., is a single
graph without unconnected interfaces), and the PRG is free
of conflicts.

The primary data structure of the tool is a repository
containing the component descriptions stored as XML files. As
discussed in the previous section, components can represent
abstract algorithms (e.g. the control algorithm), the physical
subsystem, interfaces (e.g. sensors and camera) and compo-
nents of the CS (computation processes). The data record for
each component contain

• Key information about the component (name, id, file
association),

• Used and provided interfaces (IU and IP ),
• Meta information M = (P,R,A), expressing proper-

ties, relations, and assumptions of the component.
Properties may represent text (e.g. sensor.type=XT100),

numbers (sensor.height=1.5m), or intervals (sen-
sor.delay=[5..7]ms). The tool enables the CPS system
developer to analyze any given component composition. The
three main steps for this CPS analysis are a) chose the top
level CA component, b) select and parametrize the physical
system, and c) select components of the CS.

The choice of the top level CA component expresses the
functional requirements via the used interfaces (Ip) and its
assumptions. In the Falling Ball example, the CA system needs
a PS that provides the Ball physics, and a CS that implements
the control algorithm to trigger the camera and to access the
sensors. In our example the CA component has only one rule:
the expected timing of the CS must be within the acceptable
timing deviation required by the PS.

The selection and parametrization of the physical system,
which, as discussed above is considered as one component,
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Fig. 8. Screenshot of our configuration tool. On the left, the user can edit the CCG (editing and binding of the components). On the right is the PRG with its
satisfied or unsatisfied assumptions. Highlighted in red are violated assumptions.

are derived from the inputs set by the designer. These prop-
erties are forwarded to the top CPS component for which
these variables define the requirements for the CS. The PS
component of the Falling Ball example is parametrized by the
dropping height of the ball, and the height of the sensors and
the camera. The distances between these heights are processed
in the property equations of the PS component to compute the
timing requirements that are imposed as a requirement to the
CPS system. With the CA and the PS set, components from
the component repository can be selected that can be attached
to the CCG to define the CS and interfaces.

We applied this design methodology for the Falling Ball
example. For illustration purpose, Figure 8 shows a screen shot
of the tool, with the CCG on the left and the resolved PRG on
the right. A condensed version has already shown in Figure 7,
where Figure 7 (A) shows the architecture of the system. In
the following we discuss four use cases for this system. The
results for these cases are summarized in Table I.

Case 1: In this first case we assume a perfect Newton
acceleration. The ball will be dropped from a height of
1.0 meters above the camera, the second sensor will be placed
0.5 m above the camera. For this case, the PS computes an
ideal time for the ball to travel from sensor 2 to the camera
of 0.133 sec. In this case we chose a camera with an image
width of 0.05 meters, this results in a precision requirement of
[-5.7..5.6]msec. For the CS we assume all components to be
perfectly specified and working according to this specification.
This indeed leads to a perfect timing.

Case 2: In this case, we specify the components of the
CS as well as the interfaces with more realistic values. The
sensors have an assumed delay of [1..2]msec, while the camera
is assumed to have a delay of [20..22]msec. The aggregated
time for the computation is assumed to be 2 msec. The ’wait’
component of the CS takes into account the average delays for
the interfaces (22.5 msec), which results in a derivation of the
CS from the ideal timing of [0.5..3.0]msec. This is well in line

TABLE I. SUMMARY OF RESULTS FOR THE FOUR TEST CASES.

ca drop allowed allowed CS con-
se [m] delay[ms] dev.[ms] delay[ms] flict
1 1 113 [-5.7..5.6] 113 no
2 1 113 [-5.7..5.6] [113.5..116.0] no
3 5 52 [-2.5..2.5] [52.5..55.5] yes
4 1 [157..171] [-7.3..7.2] [164.5..167.0] yes

with the requirements.
In Case 3: In this case, we increase the dropping height

of the all to 5m. This results in an allowed delay for the
processing of 52 msec. With the components, selected so far,
this delay requirement can not be satisfied, because in worst
case the picture is taken 1 msec too late. To reduce this delay,
a designer could select interface components with less jitter,
or refine the specification of the processing tasks to obtain a
better estimation of the timing.

Case 4: So far the physical system has been considered
as ideal. Air resistance, however, limits the acceleration. This
deviation depends on the density of the ball. If we add a
simple model to the PS and assume 30 to 40% reduction of
acceleration, the resulting approaching time of the ball will
vary between 157 and 171 msec, while the allowed deviation
increases due to the lower speed. The uncertainty of the PS in
this scenario is too big to be covered by the CS. We would
need more knowledge about the PS to have the confidence that
the system works as intended.

This small example can be easily extended with additional
rules. For instance, we can add the diameter of the ball as
part of the PS. If the complete ball should be depicted, the
size of the ball reduces the deviation the ball may have from
the center of the picture to be taken. With these examples, we
could demonstrate how small variations of properties, which
we can easily describe for individual components, sum up to
a complex network of properties. We could also learn that
in this network, small uncertainties may aggregate to severe
variations of system properties that cannot be controlled by
any CS. Using our prototype tool, we can effectively set up and
evaluate system configurations and their property networks. As
an application of the tool, it can automatically iterate through
a design space of CS compositions to identify setups that have
a CCGs and PRGs that are free of conflicts.

VII. CONCLUSIONS

In this paper we have shown that integrating uncertainties,
expressed as value intervals, in the design of Cyber Physical
Systems (CPS) is essential in order to meet design constraints,
robustness requirements, and performance objectives. We use
intervals to capture three kinds of uncertainties in the design
of CPS: (1) implementation uncertainties, (2) the physical
system uncertainties, and (3) control algorithm uncertainties.
Unlike an over engineered system, modeling of uncertainties
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in the form of intervals allows the designer to customize a
control algorithm to operate correctly within its environment
and reduce overall system cost.

Therefore, we advocate for the explicit support of intervals
in the design phase of CPSs and within tools that support
design of CPSs. To demonstrate the feasibility of tool support
for intervals we show how intervals can be applied as part
of a component-based design process. As an integral part of
the component framework, we can aggregate and evaluate the
uncertainties in the system to assess the suitability of a system
in accomplishing its mission. We apply a homogenous data
structure that processes properties, relations and assumptions
of the algorithm, the physical system and the computation
system in one graph, which automatically discovers design
violations in the composed system.

Our experiments demonstrate the suitability of our ap-
proach to assess the system properties. In an example, we
have shown how small changes in system properties have
significant ramifications in the overall system assessment. The
presented approach has the potential to bridge, at least part
of the way, from the behavioral description of a CPS to an
implementable system architecture, and to prove valuable in
the early assessment of design alternatives to support automatic
design space exploration of CPSs.

As future work we intend to extend the tool to synthesize
implementable systems from a component database. In case
of conflicts, properties should be identified and synthesized to
make the system implementable. In the current version of our
tool, we can identify and highlight violated constraints in the
system and trace back to the properties directly responsible for
the violations, however, the elimination of conflicts requires
manual effort. We plan to support runtime adaptability of
components and composition, as well as probabilistic intervals
in the future.
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