
Resource Synchronization in Hierarchically
Scheduled Real-Time Systems using Preemptive

Critical Sections
Tom Springer, Steffen Peter, and Tony Givargis

Center for Embedded Computer Systems
University of California, Irvine, USA
{tspringe, st.peter, givargis}@uci.edu

Abstract— In this paper we outline a novel approach for

accessing mutually exclusive resources in hierarchically
scheduled real-time systems. Our method known as the Resource
Access Control Protocol with Preemption (RACPwP) is an
improved resource allocation protocol which utilizes preemptive
critical sections to provide guaranteed determinism for hard
real-time tasks and comparable response times for soft real-time
tasks. Our experiments demonstrated that RACPwP
outperforms other state-of-the-art resource access control
protocols used in hierarchically scheduled systems. RACPwP was
implemented as part of VxWorks and evaluated in an actual
embedded application used in the aerospace industry. As a result,
the response times for hard real-time tasks were improved over a
traditional resource synchronization protocol.

Keywords—real-time systems, hierarchical level scheduling,
resource access control, resource preemption and rollback.

I. INTRODUCTION
Real-time systems that can more effectively adapt to their

changing environment are getting increased attention by
embedded system researchers [1]. As embedded computing
devices become more prevalent they are increasingly being
introduced into environments where their requirements are
unstable and difficult to predict. This uncertainty is due in part,
to the fact that modern embedded systems are being composed
with a more open source architectural approach then the
tightly-coupled systems of the past. However, these general-
purpose architectures are typically designed to optimize
average performance and, as a result introduce large
fluctuations to the task execution times. Furthermore, specific
applications can also contribute to these variable execution
times. Consider a digital processing application, such as a
software defined radio. Specific waveforms have different
processing requirements which could introduce various task
execution times. As a result, the overall workload of the
computing system could vary significantly which may create
an overload condition and degrade the performance of the
overall system.

One effect that could occur in an overloaded system is that
tasks can start missing deadlines. Researchers [2] have shown
that a system which is overloaded while being managed by the
Earliest Deadline First (EDF) scheduling algorithm [3] could
effectively cause all the other tasks in the system to miss their
deadlines. This is known as the “domino effect” and is depicted
in Figure 1 where the execution of task !"# generates an

overload condition causing all the tasks to miss their deadlines.
Similarly, systems that are overloaded and scheduled by the
Rate Monotonic (RM) scheduling algorithm [3] may cause all
lower priority tasks to miss their deadlines. Consequently, it is
much more likely with today’s embedded systems, which are
typically resource constrained, that an overload condition of a
single application could adversely affect the whole system. The
traditional solution has been to “over-engineer” for worst case
scenarios. The problem with this approach is the system
becomes under-utilized and a valuable resource sits idle for
most of the time.

Figure 1: Domino Effect of a Transient Overload

Therefore, it is particularly critical for embedded systems to
more effectively adapt to overload conditions. The real-time
system needs to be able to react to load variations without it
adversely affecting the other tasks in the system. There needs
to be a type of temporal isolation where a temporarily
overloaded task will not cause the domino effect.

Hierarchical scheduling is a framework that has been
introduced to provide this temporal protection. The
Hierarchical Scheduling Framework (HSF) has shown to be
particularly useful in the area of open systems [4] where
applications can be developed, integrated and validated
independently. A primary goal of hierarchical scheduling is to
bind the temporal behavior of those applications whose
execution times deviate considerably, allowing for the
predictable operation of the various subsystems.

In order to provide this temporal isolation the basic HSF
model must assume that each subsystem is independent,
however most systems are not entirely independent and
resource sharing may be needed locally (within the same
subsystem) or globally (across subsystems) for correct
behavior. While traditional resource access protocols can be
used to synchronize resources locally global resource access
presents added challenges such as the unpredictable holding
times between globally shared resources.

2014 IEEE 17th International Symposium on Object/Component-Oriented Real-Time Distributed Computing

Unrecognized Copyright Information

DOI 10.1109/ISORC.2014.50

293

2014 IEEE 17th International Symposium on Object/Component-Oriented Real-Time Distributed Computing

1555-0885/14 $31.00 © 2014 IEEE

DOI 10.1109/ISORC.2014.50

293

In this paper we present the Resource Access Control
Protocol with Preemption (RACPwP) which is compatible with
a HSF but provides better temporal isolation between globally
shared resources as compared to other resource
synchronization algorithms. Our approach utilizes software
transactional memory to support preemption inside critical
sections. The result being improved response times for higher-
priority tasks and comparable average case response times for
soft real-time tasks. Therefore the contributions of this paper
are as follows:

• A novel resource allocation protocol which allows for
the preemption of mutually exclusive resources via
software based transaction mechanisms.

• Extension of the HSF model for support of hard real-
time system requirements.

• Schedulability analysis of RACPwP as compared to
other state-of-the-art synchronization protocols.

• An implementation of the RACPwP protocol as part of
the VxWorks real-time operating system.

• Demonstrated practicability of the RACPwP protocol in
an actual ground-based command/control embedded
system used in the aerospace industry.

A. Organization of the paper
The sections of the paper are organized as follows: Section

II provides an overview of the hierarchical scheduling
framework along with its current limitations. Section III
summarizes some of the related work in hierarchical
scheduling along with the current approaches employed for
resource access control. Section IV discusses our approach to
resource synchronization in hierarchically scheduled systems
along with the preemptable critical section mechanism used by
RACPwP. Section V provides schedulability analysis between
RACPwP and other state-of-the-art resource access controls
used in hierarchical scheduled systems. A brief architectural
overview of the command/control embedded system is
presented in Section VI along with a comparison between
RACPwP and the more traditional resource access control
protocol. Section VII provides a brief summary and discussion
for potential future work.

II. PRELIMINARIES

A. Hierarchical Scheduling
The basic architecture of a HSF is generally represented as

a two-level tree of nodes [6]. The root node represents the
overall system while the leaf nodes represent the various
subsystems. Therefore, a hierarchical scheduled system
consists of one or more subsystems.

A hierarchically scheduled system provides temporal
isolation [5] for each individual subsystem executed on a single
processor. Each subsystem is composed of an application and
each application could be composed of multiple tasks (see
Figure 2). As a result, this scheme allows for different
subsystems to use different scheduling algorithms (e.g., one
subsystem could use RM scheduling while another subsystem
could use EDF scheduling). In this way, each subsystem can

employ a scheduling mechanism that is most appropriate for
the application. The added benefit of this approach is that
applications can be developed and validated independently
which makes this framework applicable to the emerging trend
of open systems development [5]. For example, the use of a
hierarchical scheduling framework allows for a subsystem to
be developed with its own scheduling algorithm and then later
integrated along with other subsystems using different local
and global schedulers.

B. System Model
The HSF model consists of a single global system S and up

to n local systems $% such that $& ' $. The global system S
contains the global scheduler which controls which subsystem $& can use the processor while the local scheduler determines
which application’s task should actually execute.

Figure 2: Hierarchical Scheduling Framework

Every application is allocated a separate service manager,
known as server. Each server is allocated a CPU capacity
reserve, which is assigned as a pair (Qi, Pi) where Qi is defined
as the time quantum and Pi is defined as the period. Each task
gets to execute for the assigned time quantum Qi, when the
server’s time quantum Qi is exhausted the task is blocked until
its next period (see Figure 3). Each server has its own priority
which is used by the global scheduler to determine which
server is allocated to the processor. However, execution of a
subsystem server could be delayed or pre-empted as a result of
a higher priority subsystem server. The local scheduler, as part
of each server, determines which task should execute when the
server is re-activated. In effect, the server functions as an
independent processor virtually limiting the bandwidth of each
application.

Figure 3: Periodic Server Example

294294

C. Resource Sharing
Resource sharing in a HSF can also be classified as either

local or global allocation. Tasks that share resources within the
same application or subsystem are considered local resource
sharing. Tasks that share resource across applications are
classified as global resource sharing.

Local resource sharing can be managed by traditional
resource access protocols such as Priority Inheritance Protocol
(PIP) [8], the Priority Ceiling Protocol (PCP) [8] or the Stack
Resource Policy (SRP) [9]. Global resource sharing, on the
other hand, requires that a resource be protected at the local as
well as global level. Which means a task that locks a global
resource will also cause its server to lock the resource.
However, there is an added complication with sharing a global
resource across applications.

When a task locks a global resource (which can be locked
by tasks in the same subsystem or by tasks in other
subsystems) then there is a requirement that the mutual
exclusion is honored across subsystems. What this means is the
protocol needs to control the execution of the server for each
subsystem. Therefore, each subsystem will have to manage
local as well as global resource access. Additionally, global
resource access will need to block a subsystem server in the
case of global resources. However, care must be taken when a
task has a global resource locked but the server budget is
depleted. Consider the following scenario, illustrated in Figure
4, a high priority task Task1 shares a mutex with a lower
priority task Task2 which is managed by a simple periodic
server. Given a server budget of Qi = 4 and a period of Ti = 10,
at time t3, task Task1 preempts Task2 then is blocked on the
critical resource. However, when Task2 resumes execution its
server budget is not enough to finish the task requiring Task2 to
wait until its budget is replenished, thereby creating an
additional delay for task Task1.

Figure 4: Budget exhaustion inside a critical region with a fixed
priority periodic server

Researchers have proposed several solutions to the problem
of added delay in critical sections due to server budget
exhaustion. One such approach called budget check checks to
see if there is sufficient server budget before allowing a task to
enter a critical section. If the budget is insufficient the task is
not granted access to the resource until the next budget
replenishment.

The other approach allows the task to enter a critical
section without checking for a sufficient budget. As a result, if
the budget is exhausted while still inside the critical section the
task is just allowed to continue and consume extra budget until

the end of the critical section. There are two slight variations to
the protocol on how they handle budget overruns. One
variation consumes the extra budget at the expense of other
tasks. The result being that other tasks in the subsystem may
not receive their full budget allotment. The other method does
“payback” to other tasks in the subsystem by taking away a
portion of the full budget allotment, of the task that overran,
during subsequent replenishment periods.

D. Server Budget Exhauston
The problem of budget exhaustion can be amplified during

periods of overload as it could further increase the time a
critical task would have to wait for the resource. Overload
conditions can result because tasks execute longer than
expected. Hierarchical scheduling is a general technique that
can be used to limit the effects of overruns in tasks with these
variable execution times. However, in the interest of timing
guarantees there are distinctions between hard and soft tasks in
a hierarchical scheduled system. A hard reservation allows a
task to execute at most Qi (budget) units of time for every Pi
(period), whereas a soft reservation allows the task to execute
for at least Qi time units for every Pi. This way a soft real-time
task can execute more if there is some idle time available. The
issue with this is when a hard and soft real-time task share a
global resource budget overrun allows the soft real-time task to
continue affecting the budget for the hard real-time task. This
is one reason hierarchical scheduled systems are generally
considered only for soft real-time systems, such as video
processing. As an example, consider the same task model
mentioned in the previous section and the budget overrun
depicted in Figure 5.

Figure 5: Budget overrun inside a critical section (no payback)

During an overload condition if a served task is allowed to
continue while still inside its critical section it can violate the
temporal isolation between subsystems. Therefore, our
proposal is that current resource sharing algorithms (in
hierarchical scheduled systems) are insufficient for hard real-
time tasks when a resource is shared across subsystems,
specifically during periods of overload.

III. RELATED WORK
The schedulability of HSF has been analyzed using fixed-

priority global scheduling [6] and EDF bound global
scheduling [7]. Initially, HSF designed systems were meant to
be independent but researchers realized this approach was not
practical as many embedded systems are semi-independent via
the sharing of global resources. Research on the HSF was
extended to perform schedulability analysis of semi-

295295

independent real-time components [8] [9]. The main focus of
this work was to reduce the resource holding times that were
being incurred during budget expiration.

The SIRAP [14] protocol was developed for fixed-priority
preemptive scheduling while the BROE [15] protocol was
developed for dynamic-priority scheduling. Their work used a
form of budget check to determine if there was enough budget
left to enter the critical section. If the remaining budget was
deficient to complete the critical section the task was blocked
from locking the resource until the next budget replenishment.
The limitation with this approach is that the critical section
execution time is based upon worst-case analysis. This could
lead to resource under utilization due to conservative WCET
estimations. Additionally, a priori knowledge of the WCET for
a critical section is required which is often difficult to evaluate
in applications with variable execution times.

Hierarchical scheduling with resource sharing HSRP [4]
and later extended to OPEN-HSRP [12] utilized the budget
overrun approach to reduce the resource holding times during
budget expiration. Two variations to budget overrun were
compared, budget overrun with and without payback. While
this approach does provide better flexibility for applications
with variable execution times there are some drawbacks. Even
though a task is allowed to overrun its budget there still has to
be a limit placed upon the maximum overrun time. In order to
prevent unbounded blocking a task is forcefully preempted if it
is still holding the resource during the next budget
replenishment. This leads to limitations being placed upon the
types of shared resources used to those that can safely be
aborted to relatively short critical section execution times.
Another consideration is because a task can overrun its budget
the strict temporal isolation between subsystems could be
violated. It is for these reasons that HSRP based systems are
generally used for soft real-time systems.

Other recently published work, known as RRP [16], took a
different approach to the problem, of resource sharing in
hierarchical scheduled systems. Instead of performing a budget
check the task was allowed to enter the critical section and
unlike HSRP if the budget had expired the task was simply
preempted and rolled back. The RRP protocol improved the
average case response times and task schedulability as
compared to SIRAP and the OPEN-HSRP protocols. However,
the limitation with RRP it that can only be used with shared
resources that can be safely rolled back (i.e. databases).

RACPwP does not rely on WCET analysis of critical
section executions times so the protocol is allowed to be more
aggressive during task admission which provides improved
task schedulability over SIRAP. Given that RACPwP does not
use overrun mechanisms higher priority task response time is
improved and temporal isolation is strictly enforced as
compared to the OPEN-HSRP. Finally, because RACPwP
utilizes preemptable critical sections the type of shared
resources that can be used is expanded to include other shared
resources and not just databases as in RRP.

IV. RESOURCE ACCESS CONTROL PROTOCOL WITH
PREEMPTION

This section provides a description of the RACPwP
resource access policy. For the purpose of providing a resource
access policy in hierarchical scheduled systems there is a need
to maintain a global and local perspective. In order to manage
global resources as well as local resources in a HSF RACPwP
uses HSRP, this is an extended version of the SRP protocol. A
brief overview is provided below for a complete description of
SRP and HSRP readers are encouraged to read the references
[9] [4].

A. Hierarchical Stack Resource Policy
In order to provide support for global resource management

the SRP protocol has been expanded [6]. Each task !& has a
preemption level (&) # *+, and each subsystem $& has an

associated preemption level -) *./0 , where 1& is the relative
deadline of the task and 20 is the subsystem deadline. Each
globally shared resource 34 is associated with two types of
resource ceilings; one for local resource scheduling and one for
global resource scheduling.

 564) 789:(&;<͢=>>=>#34? (1)

The global and local systems system ceilings dynamic and
could change during execution. The global resource ceiling is
defined as the following:

 @0) #ABC4 DEFGH (2)

Where !s is the system ceiling for the global resource IJ. If
a task has a global resource locked the priority of the server is
raised to the system ceiling !s associated with that resource. If
a task has a global resource locked then the priority of the task
is raised to the highest level priority within the application. If
the server capacity is exhausted while a task has a global
resource locked the server will overrun until the task has
released the resource. If the task does not release the resource
before the server’s budget is depleted then the server will abort
the task regardless of the state of the resource. The reason for
taking such a drastic measure as forceful pre-emption and
risking leaving a resource in an inconsistent state is a non-
preemptable global resource could result in increasing blocking
times.

Consider just one long global resource access by a low
priority task. The long critical section execution time of the
global resource could result in a large blocking factor for all
the higher applications. This large blocking factor would apply
regardless of whether the resource is shared by the higher
priority applications.

B. Protocol Definition
Similar to other hierarchical scheduling frameworks

(SIRAP and OPEN-HSRP) the RACPwP protocol is based
upon a hierarchical scheduling framework. Unlike SIRAP
which performs a budget check before entering a critical
section RACPwP always grants access to a global resource. If
the task’s subsystem budget is depleted while still holding a
lock the task is not allowed to continue, as it is in budget

296296

overrun mechanisms (e.g. OPEN-HSRP),
preempted.

Comparable to RRP our method utilizes ch
rollback to recover from a forced preemptio
incorporates a new technique known as Pree
Sections (PCS). The benefit of this approac
restriction RRP has by only being able to hand
can be aborted or aborted and rolled bac
applications). The protocol is defined as follow

• Tasks are scheduled based upon their
Tasks with the same priority are execute
first served basis.

• When a task KL requests a local resource
is available the task’s priority is raised to
priority of the resource EFG .

• If task KL requests a local resource that is
blocked for the duration of the longest
among the tasks that access resource IJ.

• If the subsystem Si capacity is exhausted
resource IJ locked then the server suspend

• If a task KL requests a global resource an
available then the subsystem server’s Si pr
the global ceiling priority of the resource.

• If task KL requests a global resource that is
blocked for Bi which is defined as the lon
in the same application can execute.

• If server $& capacity is exhausted while
resource locked then the task is preempted
duration of its replenishment period.

C. Preemptable Critical Sections
In order to provide a safe mechanis

preemption we introduce a new programmi
resource synchronization known as pree
sections (PCS). PCS utilizes a form of softw
memory (STM) to restart a transaction that has
by a higher priority task. After the higher
released the resource the lower-priority task is
restarted.

The main benefit of this approach is that
task gets to execute quickly. In fact, the wor
time is equal to the remaining budget of the lo
that is sharing the global resource. Another
approach includes the elimination of the inc
times incurred when a lower-priority task is al
its budget as used in the OPEN-HSRP proto
RACPwP provides improved response times
tasks while relaxing the restriction placed upo
execution times by hierarchical scheduled syst

In order to illustrate the RACPwP, consi
presented previously and depicted in Figure 5
Task2 requests and is granted access to the cr
time t = 3 the hard real-time task Task1 pre
executes. At time t = 4, Task1 requests the

but instead is

heck pointing and
on but RACPwP
emptable Critical
ch is it lifts the
dle resources that
k (e.g. database

ws:

active priorities.
ed in a first come

and the resource
o the local ceiling

locked then ML is
t critical section

while task KL has
ds KL.

nd the resource is
riority is raised to

s locked then KL is
ngest time a task

e KL still has the
d for a maximum

sm for forceful
ing construct for
emptable critical
ware transactional
s been preempted
priority task has
s rolled back and

a higher-priority
rst case blocking
ower priority task
r benefit of this
creased blocking
llowed to overrun
ocol. As a result,
of hard real-time

on critical section
tems.
ider the scenario
5. At time t = 2,
ritical section. At
eempts Task2 and
 shared resource

locked by Task2 and is blocked. At
Task2 has expired. Task2 is pre-empt
lock the resource and continue. Fin
completes and Task2 is allowed to o
and enter its critical section.

Figure 6: Example Resource Acc
Preemption

Figure 7 provides an example
bank balance transfer function imp
locking mechanisms (i.e. semaphor
same function implemented usin
section.

int transfer () {
1. sem_wait ();
2. value = source.ba
3. value = value – am
4. source.balance =
5. value = destinatio
6. value = value + a
7. destination.balanc
8. sem_give()
}

Figure 7: Traditional locking me

int transfer () {
1. PCS_START ();
2. value = PCS_LOAD(s
3. value = value – amoun
4. PCS_STORE(source.b
5. value = PCS_LOAD(d
6. value = value + amou
7. PCS_STORE(destinati
8. PCS_COMMIT
}

Figure 8: Preemptable C

In Figure 7 the semaphore is ac
remaining 6 instructions cannot be
the priority the task cannot be preem
released in line 8. In Figure 8 the
PCS mechanism which is implem
macros. The PCS_START macro at
checkpoint required if the function
restarting. The other macros PCS
perform the memory access
PCS_COMMIT macro at line 8 co
memory. The benefit of these m

t time t = 5, the budget for
ted and Task1 is allowed to
nally at time t = 11, Task1

once again lock the resource

ess Control Protocol with

function that simulates a
plemented using traditional
res). Figure 8 provides the
ng a preemptable critical

alance
mount
value;

on.balance
amount
ce = value

echanism (semaphores)

source.balance)
nt
balance)
destination.balance)
unt
ion.balance)

Critical Section

cquired at line 1 and for the
e preempted. Regardless of
mpted until the semaphore is

code snippet illustrates the
mented as a collection of
t line 1 performs the initial

is preempted and requires
S_STORE and PCS_LOAD

transactions and the
ommits the transactions to
acros is unlike traditional

297297

synchronization mechanisms the transfer function can be
preempted at any point of its execution (except during an
atomic PCS operation). Therefore if a task has exceeded its
budget but still inside the critical section (i.e. a PCS_COMMIT
has not been performed) then RACPwP can safely preempt the
task. The task is then blocked until the next budget
replenishment and allowed to restart again.

It is important to note that there are some limitations
associated with using PCS. One is the added computational
overhead that software transactional memory imposes of the
system. The other limitation is traditional I/O should not be
executed within a transaction.

V. PERFORMANCE ANALYSIS
This section provides the performance analysis of

RACPwP as part of a hierarchical scheduled system. The
performance is evaluated using worst-case response time
analysis. Using the method provided by authors in [17] the
worst-case response time of a task <& served by a subsystem $&#occurs during one of the following scenarios:

• The subsystem’s budget is exhausted as soon as the
lower priority tasks begin to run and if the task is inside
a critical section it is preempted.

• The task <& and all other higher priority tasks in the
application arrive right after the subsystem’s budget is
exhausted.

• The subsystem’s budget is replenished but the execution
is delayed for as long as possible due to the interference
from other higher priority subsystems.

Based upon the scenarios provided above the worst-case
response time of a task can be computed by identifying the
interval of time where tasks at priority level i or higher can
execute. This interval of time or execution window w is
determined by three components:

1. The execution of task <& along with all higher priority
tasks at the ith priority level.

2. The replenishment periods of any complete servers.
3. Interference from higher priority servers (tasks

running in higher priority subsystems).
Therefore, the worst-case response time of a task <0& can be
calculated using the equation:

 N65O) #N0&% P# Q0 (3)

where N0&% can be determined by a recurrence function and Q0 is
the release jitter of task <0& .
 N0&%R*) STN0&%U P #VTN0&%U P #WTN0&%U (4)
The worst-case response time analysis was extended by authors
in [4] to include resource sharing across subsystems. The load STN0%U# at the ith priority level is expanded by one term to
including the affects of local and global blocking factors and is
defined as:

 STN0&%U) #X0& P#E0& P #Y Z[/\R],^, _ E04`4'abT&U (5)

where X0& is the blocking factor due to local and global
resource access. The replenishment period VTN0&%U extended to
include global blocking factors is defined as:

 VTN0&%U) # cZdT[/\Ue/ _ f #gh T<0 f E0U P#X0 (6)

where X0 represents the longest time that a server $& could be
blocked from executing by a lower priority server. The
interference WTN0&%U from any higher priority servers is defined
as:

WTN0&%U) #Y ijklm"nopqr s#mtuvwpqr xyp zs#*{|p{|} ~ TE� P X��U`�'abT�U (7)

where X0� represents the server overrun time which is the
longest time a server $& may execute. Additionally equation
(10) represents a server overrun with no payback.. In order to
analyze budget overrun with payback WTN0&%U is defined as
follows:

WTN0&%U) Y X��`�'abT�U P Y ijkl#T"n[/,\smt�v�/,\ x�/ zs*{^/U�̂ ~`��& E� (8)

(Note that for RACPwP the server overrun term X0 in equation
(6) is zero since the task would be preempted if the server
budget expired while holding a lock on a global resource).

A. Results
In the following subsection, we provide a simple example

for evaluation purposes between RACPwP and other protocols
that use budget overrun mechanisms. For our example, we
compare the server and task worst-case response times for
RACPwP, OPEN-HSRP with budget payback and OPEN-
HSRP without budget payback. The server response time for
OPEN-HSRP with budget payback is calculated based upon
the following: N0%R*) #E0 P X0 P#Y X��`�'abT�U P #Y Z[/,\�̂ _ E�`�'abT�U (9)

The server response time for OPEN-HSRP without budget
payback is calculated based upon the following: N0%R*) #E0 P X0� P Y Z[/\�̂ _`�'abT�U TE� P X��U (10)

The recurrence functions for equations (9) and (10) begin with N0#") � and terminate when N0%R*) #N0% which is the worst-
case response time of the server. If N0%R* #� #<0 then the server
is not schedulable and therefore not considered. The simulated
systems is composed of three separate subsystems each
scheduled by the global preemptive periodic server. A global
resource is shared between each subsystem $& and the critical
section execution time is represented as CSETi. The Q& term
represents the subsystem server jitter.
In order to evaluate the worst case server response times we
used 100 simulation runs that used a uniform random number
generator to vary the server capacity, server budget and the
critical section execution times. The server parameters ranges

298298

that were used to generate the server parameters are provided
in the Table 1.

Table 1: Server parameters

Si Ci Ti Ji CSETi

S1 [50,500] [200, 2000] [150, 1500] [35,200]
S2 [1250,2500] [5000,10000] [3750,7500] [35,200]
S3 [3000,5000] [12000,20000] [9000,15000] [35,200]

Table 2 provides the worst-case response times for
RACPwP, OPEN-HSRP without budget payback (HSRPnP)
and OPEN-HSRP with budget payback (HSRPwP).

Table 2: Server average worst-case response times

Si RACPwP HSRPnP HSRPwP

S1 390 390 390
S2 2360 3400 2900
S3 5550 12150 10012

As shown by the schedulability analysis given in Table 2

server response times are improved with RACPwP since does
not perform any budget overrun. Server response times are
practical identical for subsystem $* since the highest priority
server is not subject to overruns. However, notice that
RACPwP does significantly improve server response times for
subsystems $� and $� which is not affected by the overrun
mechanism.

The next step is to evaluate the worst-case task response
times of RACPwP as compared to OPEN-HSRP with and
without budget payback. The recurrence function for worst-
case task response times begins with N&")#0 and ends when N&%R*) #N&% where the worst-case response time is#N&% P Q&.

The task is not schedulable if N&%R* � #1& f# Q& in which
case it is not considered for analysis. Subsystem $� was chosen
to execute the tasks as it is the mid-level priority subsystem.
For this example, a global shared resource CSETi is shared
among tasks as well as a local resource. The local resource
critical section execution time is represented by CSETsi.
Similar to the server parameters a random number generator
was used to vary the task worst case execution time, the task
period and deadline. The local resource execution was also
varied. The task parameter ranges that were used to vary the
task parameters are defined in Table 3.

Table 3: Task parameters

!i Ci Ti Di CSETsi

T1 [1180,2375] [12500,25000] [12500,25000] [150,350]
T2 [3150,4500] [35000,50000] [35000,50000] [150,350]

 Table 4 represents the worst-case response times for all
tasks in subsystem $�. The subsystem $� was chosen since it’s
the mid-level priority subsystem and would best illustrate the
effects of our protocol on the overall system. The task worst-

case response times are calculated according to the recurrence
function (4).

Table 4: Task average worst-case response times

!i RACPwP HSRPnP HSRPwP

T1 7665 8860 9388
T2 28900 23800 26200

As shown in Table 4 it is evident that shared resource

access can have a significant impact on the overall task load.
The result being that lower priority tasks may get preempted
and have to be restarted. The result is illustrated in the
increased response times. The lower priority tasks pays the
steepest price as it may suffer from multiple preemptions
incurred by the higher priority tasks. Notice how RACPwP
provides improved response times over HSRPnP and HSRPwP
for higher priority tasks but lower priority tasks may
experience degraded response times. This is the inherent
tradeoff with RACPwP. Higher priority tasks which are
generally hard real-time benefit from the lower response times,
which provides improved determinism. However lower priority
tasks which are typically soft real-time are more tolerant of the
increased response times.

VI. PRACTICAL APPLICATION
For the purpose of evaluation we implemented RACPwP as

part of a hard real-time embedded application. We used a
ground-based satellite command and control embedded system
as our use case. A hardware-in-the-loop simulation was used to
provide the workload generator for our system. This particular
use case was chosen because the satellite telemetry can vary
significantly. Bit rates can range from 4 Kbps to 1 Mbps and
the amount of processing required to process a telemetry frame
can vary significantly depending upon how densely a telemetry
frame is populated.

The hierarchical scheduler was implemented as part of
WindRiver’s VxWorks 6.5 real-time operation system. The
hardware for the embedded system consisted of a PowerPC
MPC7455/MPC7457 single board computer. A separate
special-purpose telemetry processor which is used for bit
synchronization and decommutation of the pulse code
modulated telemetry stream. The serial communication is
provided by a FPGA-based RS422 PMC module. All devices
were connected via a VME32 backplane. The PCS construct
was implemented using TinySTM[18] which is a lightweight
and portable software transactional memory library. The
TinySTM library was ported to VxWorks and included as part
of the kernel.

The three main software components of the system include
a hard real-time periodic task that performs the bit
synchronization, frame decommutation and frame processing
of a telemetry stream. The second component is a soft real-time
task that provides health and status monitoring for the vehicle.
The third component is an aperiodic task that transmits serial
uplink commands to the vehicle. The hard real-time telemetry
processing task and the soft real-time monitoring task share a
global resource which is the decomutated telemetry buffer.

299299

Figure 9: Hard real-time task response times

Figure 10: Soft real-time task response times

The data illustrated in Figures 9 and 10 represents the
recorded task response times for the telemetry processing and
health/status monitoring tasks. The response times were
recorded at the completion of each periodic task.

As the figures confirm RACPwP provides improved task
response times for hard real-time tasks and comparable
response times for soft real-time tasks. Notice that for the
during the periods of increased processing in Figure 9 with the
hard real-time task using RACPwP outperformed PIP in terms
of response times. (Note: the PIP protocol was chosen as a
comparison because priority inheritance is the traditional
resource allocation protocol used in real-time systems). This
reduced response time leads to better determinism for hard
real-time tasks because some of the issues like unbounded
blocking that plague PIP are eliminated with RACPwP. Also
notice in Figure 10 that on occasion RACPwP recorded
comparable or even slightly better response times than PIP.
This indicates that acceptable soft real-time response times do
not have to be sacrificed at the expense of hard real-time
determinism.

VII. SUMMARY AND FUTURE WORK
In this paper we considered the problem of sharing global

resources in a hierarchical scheduled system. Traditionally,
HSF was designed for soft real-time applications, in part due to
problem of unbounded resource holding times between global
resources. Our approach which combined software
transactional memory provided better response times, than
other state-of-the-art synchronization protocols, for higher
priority tasks without drastically sacrificing soft real-time
performance. Our motivation for this work stems for the
aerospace industry where systems are routinely over
engineered in the interest of real-time determinism. It is a

common perception that an embedded system is considered
“safe” at only 50% total utilization and considered unsafe
above 75%. We propose that we can build more efficient
embedded systems by more effectively managing the tasks
within that system and in doing so reducing the total number of
processing elements required. Some of the future work could
include a more robust synthetic workload generator where
large subsystem and task parameters could be quickly analyzed
for schedulability and response times. The other main area
would be to examine the possibilities of PCS to include other
traditional non-preemptable resources such as standard I/O.

ACKNOWLEDGMENT
This work was supported in part by the National Science

Foundation under NSF grant number 1136146.

REFERENCES
[1] ARTIST Advanced Real-Time Systems, “Selected topics in Embedded

Systems Design: Roadmaps for Research,” Project IST-2001-34820
(2004).

[2] G. C. Buttazzo, Hard Real-Time Computing Systems, Predictable
Scheduling Algorithms and Applications. Springer, Real-Time System
Series, 2011.

[3] J.W. S. Liu, Real-Time Systems, Prentice-Hall, USA, 2000.
[4] R.I. Davis and A. Burns, “Resource Sharing in Hierarchical Fixed

Priority Pre-emptive Systems,” in Proc. of the 27th IEEE International
Real-Time Systems Symposium (RTSS’06)

[5] C.W. Mercer, S. Savage, H. Tokuda, “Temporal protection in real-time
operating systems,” in proceedings of the 11th IEEE workshop on Real-
Time Operating System and Software, 1997, pp. 79-83.

[6] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications in an open
environment,” in Proc. of IEEE Real-Time Systems Symp, 1997, pp.
308 319.

[7] G. Lipari and S.K. Baraugh, “Efficient scheduling of real-time multi-
task applications in dynamic systems,” in Proc. 6th IEEE Real-Time
Technol. Appl. Symp. (RTAS’00), pp166-175.

[8] L. Sha, R. Rajkumar and J.P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE trans. Comput. Vol
39, 1990, pp. 1175-1185.

[9] T.P. Baker, “Slack-Based Scheduling of Real-Time Processes,” Real-
Time Systems, vol. 3, 1991, pp. 67-99.

[10] G. C. Buttazzo and J. Stankovic, “Adding robustness in dynamic
preemptive scheduling. Responsive Computer Systems: Steps Toward
Fault-Tolerant Real-Time Systems,” 1995.

[11] M. Behnam, I. Shin, T. Nolte and M. Nolin, “Scheduling of semi-
independent real-time compontnes: Overrun methods and resource
holding times,” (ETFA 2008).

[12] M. Behnam, T. Nolte, M Sjodin and I Shin, “Overrun Methods and
Resource Holding Times for Semi-Independent Real-Time Systems,”
IEEE trans. on Indus. Informatics. 2010.

[13] T-W. Kuo, C-H. Li, “A Fixed Priority Driven Open Environment for
Real-Time Applications,” in Proc. of IEEE Real-Time Systems
Symposium, 1999, pp. 256-267.

[14] M. Behnam, T. Nolte, M Sjodin and I Shin, “SIRAP: A synchronization
protocol for hierarchical resource sharing real-time open systems,” in
Proc. 7th ACM and IEEE Int. Conf. Embedded Software (EM-SOFT 07).

[15] N. Fisher, M. Bertogna and S. Baraugh, “The Design of an EDF-
Scheduled Resource-Sharing Open Environment,” in RTSS ’07.

[16] M. Asberg, T. Nolte and M. Behnam 2013, “Resource Sharing Using the
Rollback Mechanism in Hierarchically Scheduled Real-Time Open
Systems,”. in RTSA ’13.

[17] R.I. Davis and A. Burns, “Hierarchical Fixed Priority Pre-emptive
Scheduling,” Dept. Comp. Sci.Univ of York, 05.

[18] http://www.tmware.org.

300300

