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Abstract— In this paper we outline a novel approach for 

accessing mutually exclusive resources in hierarchically 
scheduled real-time systems. Our method known as the Resource 
Access Control Protocol with Preemption (RACPwP) is an 
improved resource allocation protocol which utilizes preemptive 
critical sections to provide guaranteed determinism for hard 
real-time tasks and comparable response times for soft real-time 
tasks. Our experiments demonstrated that RACPwP 
outperforms other state-of-the-art resource access control 
protocols used in hierarchically scheduled systems. RACPwP was 
implemented as part of VxWorks and evaluated in an actual 
embedded application used in the aerospace industry. As a result, 
the response times for hard real-time tasks were improved over a 
traditional resource synchronization protocol. 

Keywords—real-time systems, hierarchical level scheduling, 
resource access control, resource preemption and rollback. 

I. INTRODUCTION  
Real-time systems that can more effectively adapt to their 

changing environment are getting increased attention by 
embedded system researchers [1]. As embedded computing 
devices become more prevalent they are increasingly being 
introduced into environments where their requirements are 
unstable and difficult to predict. This uncertainty is due in part, 
to the fact that modern embedded systems are being composed 
with a more open source architectural approach then the 
tightly-coupled systems of the past. However, these general-
purpose architectures are typically designed to optimize 
average performance and, as a result introduce large 
fluctuations to the task execution times. Furthermore, specific 
applications can also contribute to these variable execution 
times. Consider a digital processing application, such as a 
software defined radio. Specific waveforms have different 
processing requirements which could introduce various task 
execution times. As a result, the overall workload of the 
computing system could vary significantly which may create 
an overload condition and degrade the performance of the 
overall system.  

One effect that could occur in an overloaded system is that 
tasks can start missing deadlines. Researchers [2] have shown 
that a system which is overloaded while being managed by the 
Earliest Deadline First (EDF) scheduling algorithm [3] could 
effectively cause all the other tasks in the system to miss their 
deadlines. This is known as the “domino effect” and is depicted 
in Figure 1 where the execution of task !"# generates an 

overload condition causing all the tasks to miss their deadlines. 
Similarly, systems that are overloaded and scheduled by the 
Rate Monotonic (RM) scheduling algorithm [3] may cause all 
lower priority tasks to miss their deadlines. Consequently, it is 
much more likely with today’s embedded systems, which are 
typically resource constrained, that an overload condition of a 
single application could adversely affect the whole system. The 
traditional solution has been to “over-engineer” for worst case 
scenarios. The problem with this approach is the system 
becomes under-utilized and a valuable resource sits idle for 
most of the time. 

 
Figure 1: Domino Effect of a Transient Overload 

Therefore, it is particularly critical for embedded systems to 
more effectively adapt to overload conditions. The real-time 
system needs to be able to react to load variations without it 
adversely affecting the other tasks in the system. There needs 
to be a type of temporal isolation where a temporarily 
overloaded task will not cause the domino effect. 

Hierarchical scheduling is a framework that has been 
introduced to provide this temporal protection. The 
Hierarchical Scheduling Framework (HSF) has shown to be 
particularly useful in the area of open systems [4] where 
applications can be developed, integrated and validated 
independently. A primary goal of hierarchical scheduling is to 
bind the temporal behavior of those applications whose 
execution times deviate considerably, allowing for the 
predictable operation of the various subsystems. 

In order to provide this temporal isolation the basic HSF 
model must assume that each subsystem is independent, 
however most systems are not entirely independent and 
resource sharing may be needed locally (within the same 
subsystem) or globally (across subsystems) for correct 
behavior. While traditional resource access protocols can be 
used to synchronize resources locally global resource access 
presents added challenges such as the unpredictable holding 
times between globally shared resources. 

2014 IEEE 17th International Symposium on Object/Component-Oriented Real-Time Distributed Computing

Unrecognized Copyright Information

DOI 10.1109/ISORC.2014.50

293

2014 IEEE 17th International Symposium on Object/Component-Oriented Real-Time Distributed Computing

1555-0885/14 $31.00 © 2014 IEEE

DOI 10.1109/ISORC.2014.50

293



In this paper we present the Resource Access Control 
Protocol with Preemption (RACPwP) which is compatible with 
a HSF but provides better temporal isolation between globally 
shared resources as compared to other resource 
synchronization algorithms. Our approach utilizes software 
transactional memory to support preemption inside critical 
sections. The result being improved response times for higher-
priority tasks and comparable average case response times for 
soft real-time tasks. Therefore the contributions of this paper 
are as follows: 

• A novel resource allocation protocol which allows for 
the preemption of mutually exclusive resources via 
software based transaction mechanisms. 

• Extension of the HSF model for support of hard real-
time system requirements. 

• Schedulability analysis of RACPwP as compared to 
other state-of-the-art synchronization protocols. 

• An implementation of the RACPwP protocol as part of 
the VxWorks real-time operating system. 

• Demonstrated practicability of the RACPwP protocol in 
an actual ground-based command/control embedded 
system used in the aerospace industry.   

A. Organization of the paper 
The sections of the paper are organized as follows: Section 

II provides an overview of the hierarchical scheduling 
framework along with its current limitations. Section III 
summarizes some of the related work in hierarchical 
scheduling along with the current approaches employed for 
resource access control.  Section IV discusses our approach to 
resource synchronization in hierarchically scheduled systems 
along with the preemptable critical section mechanism used by 
RACPwP. Section V provides schedulability analysis between 
RACPwP and other state-of-the-art resource access controls 
used in hierarchical scheduled systems. A brief architectural 
overview of the command/control embedded system is 
presented in Section VI along with a comparison between 
RACPwP and the more traditional resource access control 
protocol.  Section VII provides a brief summary and discussion 
for potential future work. 

II. PRELIMINARIES 

A. Hierarchical Scheduling 
The basic architecture of a HSF is generally represented as 

a two-level tree of nodes [6]. The root node represents the 
overall system while the leaf nodes represent the various 
subsystems. Therefore, a hierarchical scheduled system 
consists of one or more subsystems.  

A hierarchically scheduled system provides temporal 
isolation [5] for each individual subsystem executed on a single 
processor. Each subsystem is composed of an application and 
each application could be composed of multiple tasks (see 
Figure 2). As a result, this scheme allows for different 
subsystems to use different scheduling algorithms (e.g., one 
subsystem could use RM scheduling while another subsystem 
could use EDF scheduling). In this way, each subsystem can 

employ a scheduling mechanism that is most appropriate for 
the application. The added benefit of this approach is that 
applications can be developed and validated independently 
which makes this framework applicable to the emerging trend 
of open systems development [5]. For example, the use of a 
hierarchical scheduling framework allows for a subsystem to 
be developed with its own scheduling algorithm and then later 
integrated along with other subsystems using different local 
and global schedulers.   

B. System Model 
The HSF model consists of a single global system S and up 

to n local systems $% such that $& ' $ . The global system S 
contains the global scheduler which controls which subsystem $& can use the processor while the local scheduler determines 
which application’s task should actually execute.  

 
Figure 2: Hierarchical Scheduling Framework 

Every application is allocated a separate service manager, 
known as server. Each server is allocated a CPU capacity 
reserve, which is assigned as a pair (Qi, Pi) where Qi is defined 
as the time quantum and Pi is defined as the period. Each task 
gets to execute for the assigned time quantum Qi, when the 
server’s time quantum Qi is exhausted the task is blocked until 
its next period (see Figure 3). Each server has its own priority 
which is used by the global scheduler to determine which 
server is allocated to the processor. However, execution of a 
subsystem server could be delayed or pre-empted as a result of 
a higher priority subsystem server. The local scheduler, as part 
of each server, determines which task should execute when the 
server is re-activated. In effect, the server functions as an 
independent processor virtually limiting the bandwidth of each 
application. 

 
Figure 3: Periodic Server Example 
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C. Resource Sharing 
Resource sharing in a HSF can also be classified as either 

local or global allocation. Tasks that share resources within the 
same application or subsystem are considered local resource 
sharing. Tasks that share resource across applications are 
classified as global resource sharing. 

Local resource sharing can be managed by traditional 
resource access protocols such as Priority Inheritance Protocol 
(PIP) [8], the Priority Ceiling Protocol (PCP) [8] or the Stack 
Resource Policy (SRP) [9]. Global resource sharing, on the 
other hand, requires that a resource be protected at the local as 
well as global level. Which means a task that locks a global 
resource will also cause its server to lock the resource. 
However, there is an added complication with sharing a global 
resource across applications. 

When a task locks a global resource (which can be locked 
by tasks in the same subsystem or by tasks in other 
subsystems) then there is a requirement that the mutual 
exclusion is honored across subsystems. What this means is the 
protocol needs to control the execution of the server for each 
subsystem. Therefore, each subsystem will have to manage 
local as well as global resource access. Additionally, global 
resource access will need to block a subsystem server in the 
case of global resources. However, care must be taken when a 
task has a global resource locked but the server budget is 
depleted. Consider the following scenario, illustrated in Figure 
4, a high priority task Task1 shares a mutex with a lower 
priority task Task2 which is managed by a simple periodic 
server. Given a server budget of Qi = 4 and a period of Ti = 10, 
at time t3, task Task1 preempts Task2 then is blocked on the 
critical resource. However, when Task2 resumes execution its 
server budget is not enough to finish the task requiring Task2 to 
wait until its budget is replenished, thereby creating an 
additional delay for task Task1. 

 
Figure 4: Budget exhaustion inside a critical region with a fixed 
priority periodic server 

Researchers have proposed several solutions to the problem 
of added delay in critical sections due to server budget 
exhaustion. One such approach called budget check checks to 
see if there is sufficient server budget before allowing a task to 
enter a critical section. If the budget is insufficient the task is 
not granted access to the resource until the next budget 
replenishment.  

The other approach allows the task to enter a critical 
section without checking for a sufficient budget. As a result, if 
the budget is exhausted while still inside the critical section the 
task is just allowed to continue and consume extra budget until 

the end of the critical section. There are two slight variations to 
the protocol on how they handle budget overruns. One 
variation consumes the extra budget at the expense of other 
tasks. The result being that other tasks in the subsystem may 
not receive their full budget allotment. The other method does 
“payback” to other tasks in the subsystem by taking away a 
portion of the full budget allotment, of the task that overran, 
during subsequent replenishment periods.  

D. Server Budget Exhauston 
The problem of budget exhaustion can be amplified during 

periods of overload as it could further increase the time a 
critical task would have to wait for the resource. Overload 
conditions can result because tasks execute longer than 
expected. Hierarchical scheduling is a general technique that 
can be used to limit the effects of overruns in tasks with these 
variable execution times. However, in the interest of timing 
guarantees there are distinctions between hard and soft tasks in 
a hierarchical scheduled system. A hard reservation allows a 
task to execute at most Qi (budget) units of time for every Pi 
(period), whereas a soft reservation allows the task to execute 
for at least Qi time units for every Pi. This way a soft real-time 
task can execute more if there is some idle time available. The 
issue with this is when a hard and soft real-time task share a 
global resource budget overrun allows the soft real-time task to 
continue affecting the budget for the hard real-time task. This 
is one reason hierarchical scheduled systems are generally 
considered only for soft real-time systems, such as video 
processing. As an example, consider the same task model 
mentioned in the previous section and the budget overrun 
depicted in Figure 5. 

 
Figure 5: Budget overrun inside a critical section (no payback) 

During an overload condition if a served task is allowed to 
continue while still inside its critical section it can violate the 
temporal isolation between subsystems. Therefore, our 
proposal is that current resource sharing algorithms (in 
hierarchical scheduled systems) are insufficient for hard real-
time tasks when a resource is shared across subsystems, 
specifically during periods of overload.    

III. RELATED WORK 
The schedulability of HSF has been analyzed using fixed-

priority global scheduling [6] and EDF bound global 
scheduling [7].  Initially, HSF designed systems were meant to 
be independent but researchers realized this approach was not 
practical as many embedded systems are semi-independent via 
the sharing of global resources. Research on the HSF was 
extended to perform schedulability analysis of semi-
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independent real-time components [8] [9].  The main focus of 
this work was to reduce the resource holding times that were 
being incurred during budget expiration.  

The SIRAP [14] protocol was developed for fixed-priority 
preemptive scheduling while the BROE [15] protocol was 
developed for dynamic-priority scheduling. Their work used a 
form of budget check to determine if there was enough budget 
left to enter the critical section. If the remaining budget was 
deficient to complete the critical section the task was blocked 
from locking the resource until the next budget replenishment. 
The limitation with this approach is that the critical section 
execution time is based upon worst-case analysis. This could 
lead to resource under utilization due to conservative WCET 
estimations. Additionally, a priori knowledge of the WCET for 
a critical section is required which is often difficult to evaluate 
in applications with variable execution times. 

Hierarchical scheduling with resource sharing HSRP [4] 
and later extended to OPEN-HSRP [12] utilized the budget 
overrun approach to reduce the resource holding times during 
budget expiration. Two variations to budget overrun were 
compared, budget overrun with and without payback. While 
this approach does provide better flexibility for applications 
with variable execution times there are some drawbacks. Even 
though a task is allowed to overrun its budget there still has to 
be a limit placed upon the maximum overrun time. In order to 
prevent unbounded blocking a task is forcefully preempted if it 
is still holding the resource during the next budget 
replenishment. This leads to limitations being placed upon the 
types of shared resources used to those that can safely be 
aborted to relatively short critical section execution times. 
Another consideration is because a task can overrun its budget 
the strict temporal isolation between subsystems could be 
violated. It is for these reasons that HSRP based systems are 
generally used for soft real-time systems.  

Other recently published work, known as RRP [16], took a 
different approach to the problem, of resource sharing in 
hierarchical scheduled systems. Instead of performing a budget 
check the task was allowed to enter the critical section and 
unlike HSRP if the budget had expired the task was simply 
preempted and rolled back. The RRP protocol improved the 
average case response times and task schedulability as 
compared to SIRAP and the OPEN-HSRP protocols. However, 
the limitation with RRP it that can only be used with shared 
resources that can be safely rolled back (i.e. databases). 

RACPwP does not rely on WCET analysis of critical 
section executions times so the protocol is allowed to be more 
aggressive during task admission which provides improved 
task schedulability over SIRAP. Given that RACPwP does not 
use overrun mechanisms higher priority task response time is 
improved and temporal isolation is strictly enforced as 
compared to the OPEN-HSRP. Finally, because RACPwP 
utilizes preemptable critical sections the type of shared 
resources that can be used is expanded to include other shared 
resources and not just databases as in RRP. 

IV. RESOURCE ACCESS CONTROL PROTOCOL WITH 
PREEMPTION 

This section provides a description of the RACPwP 
resource access policy. For the purpose of providing a resource 
access policy in hierarchical scheduled systems there is a need 
to maintain a global and local perspective. In order to manage 
global resources as well as local resources in a HSF RACPwP 
uses HSRP, this is an extended version of the SRP protocol. A 
brief overview is provided below for a complete description of 
SRP and HSRP readers are encouraged to read the references 
[9] [4]. 

A. Hierarchical Stack Resource Policy 
In order to provide support for global resource management 

the SRP protocol has been expanded [6]. Each task !&  has a 
preemption level (& ) # *+, and each subsystem $&  has an 

associated preemption level  - ) *./0  , where 1&  is the relative 
deadline of the task and 20  is the subsystem deadline. Each 
globally shared resource 34  is associated with two types of 
resource ceilings; one for local resource scheduling and one for 
global resource scheduling. 

 564 ) 789:(&;<&#866=>>=>#34?  (1) 

The global and local systems system ceilings dynamic and 
could change during execution. The global resource ceiling is 
defined as the following:  

 @0 ) #ABC4 DEFGH (2) 

Where !s is the system ceiling for the global resource IJ. If 
a task has a global resource locked the priority of the server is 
raised to the system ceiling !s associated with that resource. If 
a task has a global resource locked then the priority of the task 
is raised to the highest level priority within the application. If 
the server capacity is exhausted while a task has a global 
resource locked the server will overrun until the task has 
released the resource. If the task does not release the resource 
before the server’s budget is depleted then the server will abort 
the task regardless of the state of the resource. The reason for 
taking such a drastic measure as forceful pre-emption and 
risking leaving a resource in an inconsistent state is a non-
preemptable global resource could result in increasing blocking 
times.  

Consider just one long global resource access by a low 
priority task. The long critical section execution time of the 
global resource could result in a large blocking factor for all 
the higher applications. This large blocking factor would apply 
regardless of whether the resource is shared by the higher 
priority applications.  

B. Protocol Definition 
Similar to other hierarchical scheduling frameworks 

(SIRAP and OPEN-HSRP) the RACPwP protocol is based 
upon a hierarchical scheduling framework. Unlike SIRAP 
which performs a budget check before entering a critical 
section RACPwP always grants access to a global resource. If 
the task’s subsystem budget is depleted while still holding a 
lock the task is not allowed to continue, as it is in budget 
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overrun mechanisms (e.g. OPEN-HSRP), 
preempted.  

Comparable to RRP our method utilizes ch
rollback to recover from a forced preemptio
incorporates a new technique known as Pree
Sections (PCS). The benefit of this approac
restriction RRP has by only being able to hand
can be aborted or aborted and rolled bac
applications). The protocol is defined as follow

• Tasks are scheduled based upon their 
Tasks with the same priority are execute
first served basis. 

• When a task KL requests a local resource 
is available the task’s priority is raised to
priority of the resource EFG .  

• If task KL requests a local resource that is 
blocked for the duration of the longest
among the tasks that access resource IJ. 

• If the subsystem Si capacity is exhausted 
resource IJ locked then the server suspend

• If a task KL requests a global resource an
available then the subsystem server’s Si pr
the global ceiling priority of the resource. 

• If task KL requests a global resource that is
blocked for Bi which is defined as the lon
in the same application can execute. 

• If server $&  capacity is exhausted while
resource locked then the task is preempted
duration of its replenishment period.  

C. Preemptable Critical Sections 
In order to provide a safe mechanis

preemption we introduce a new programmi
resource synchronization known as pree
sections (PCS).  PCS utilizes a form of softw
memory (STM) to restart a transaction that has
by a higher priority task. After the higher 
released the resource the lower-priority task is
restarted.   

The main benefit of this approach is that 
task gets to execute quickly. In fact, the wor
time is equal to the remaining budget of the lo
that is sharing the global resource. Another
approach includes the elimination of the inc
times incurred when a lower-priority task is al
its budget as used in the OPEN-HSRP proto
RACPwP provides improved response times 
tasks while relaxing the restriction placed upo
execution times by hierarchical scheduled syst

In order to illustrate the RACPwP, consi
presented previously and depicted in Figure 5
Task2 requests and is granted access to the cr
time t = 3 the hard real-time task Task1 pre
executes. At time t = 4, Task1 requests the

but instead is 

heck pointing and 
on but RACPwP 
emptable Critical 
ch is it lifts the 
dle resources that 
k (e.g. database 

ws: 

active priorities. 
ed in a first come 

and the resource 
o the local ceiling 

locked then ML is 
t critical section 

while task KL has 
ds KL. 

nd the resource is 
riority is raised to 

s locked then KL is 
ngest time a task 

e KL  still has the 
d for a maximum 

sm for forceful 
ing construct for 
emptable critical 
ware transactional 
s been preempted 
priority task has 
s rolled back and 

a higher-priority 
rst case blocking 
ower priority task 
r benefit of this 
creased blocking 
llowed to overrun 
ocol. As a result, 
of hard real-time 

on critical section 
tems. 
ider the scenario 
5. At time t = 2, 
ritical section. At 
eempts Task2 and 
 shared resource 

locked by Task2 and is blocked. At
Task2 has expired. Task2 is pre-empt
lock the resource and continue. Fin
completes and Task2 is allowed to o
and enter its critical section. 

Figure 6: Example Resource Acc
Preemption 

Figure 7 provides an example 
bank balance transfer function imp
locking mechanisms (i.e. semaphor
same function implemented usin
section.  

int transfer ( ) { 
1.  sem_wait ( ); 
2.  value = source.ba
3.  value = value – am
4.  source.balance = 
5.  value = destinatio
6.  value = value + a
7.  destination.balanc
8.  sem_give( ) 
} 

Figure 7: Traditional locking me

int transfer ( ) { 
1.    PCS_START ( ); 
2.    value = PCS_LOAD(s
3.    value = value – amoun
4.    PCS_STORE(source.b
5.    value = PCS_LOAD(d
6.    value = value + amou
7.    PCS_STORE(destinati
8.    PCS_COMMIT 
} 

Figure 8:  Preemptable C

In Figure 7 the semaphore is ac
remaining 6 instructions cannot be
the priority the task cannot be preem
released in line 8. In Figure 8 the 
PCS mechanism which is implem
macros. The PCS_START macro at
checkpoint required if the function 
restarting. The other macros PCS
perform the memory access 
PCS_COMMIT macro at line 8 co
memory. The benefit of these m

t time t = 5, the budget for 
ted and Task1 is allowed to 
nally at time t = 11, Task1 

once again lock the resource 

 
ess Control Protocol with 

function that simulates a 
plemented using traditional 
res). Figure 8 provides the 
ng a preemptable critical 

alance 
mount 
value; 

on.balance 
amount 
ce = value 

 
echanism (semaphores) 

source.balance) 
nt 
balance) 
destination.balance) 
unt 
ion.balance) 

 
Critical Section 

cquired at line 1 and for the 
e preempted. Regardless of 
mpted until the semaphore is 

code snippet illustrates the 
mented as a collection of 
t line 1 performs the initial 

is preempted and requires 
S_STORE and PCS_LOAD 

transactions and the 
ommits the transactions to 
acros is unlike traditional 

297297



synchronization mechanisms the transfer function can be 
preempted at any point of its execution (except during an 
atomic PCS operation). Therefore if a task has exceeded its 
budget but still inside the critical section (i.e. a PCS_COMMIT 
has not been performed) then RACPwP can safely preempt the 
task. The task is then blocked until the next budget 
replenishment and allowed to restart again.  

It is important to note that there are some limitations 
associated with using PCS. One is the added computational 
overhead that software transactional memory imposes of the 
system. The other limitation is traditional I/O should not be 
executed within a transaction.  

V. PERFORMANCE ANALYSIS 
This section provides the performance analysis of 

RACPwP as part of a hierarchical scheduled system. The 
performance is evaluated using worst-case response time 
analysis. Using the method provided by authors in [17] the 
worst-case response time of a task <&  served by a subsystem $&#occurs during one of the following scenarios: 

• The subsystem’s budget is exhausted as soon as the 
lower priority tasks begin to run and if the task is inside 
a critical section it is preempted. 

• The task <&  and all other higher priority tasks in the 
application arrive right after the subsystem’s budget is 
exhausted. 

• The subsystem’s budget is replenished but the execution 
is delayed for as long as possible due to the interference 
from other higher priority subsystems. 

Based upon the scenarios provided above the worst-case 
response time of a task can be computed by identifying the 
interval of time where tasks at priority level i or higher can 
execute. This interval of time or execution window w is 
determined by three components: 

1. The execution of task <&  along with all higher priority 
tasks at the ith priority level. 

2. The replenishment periods of any complete servers. 
3. Interference from higher priority servers (tasks 

running in higher priority subsystems). 
Therefore, the worst-case response time of a task <0&  can be 
calculated using the equation: 

  N65O ) #N0&% P# Q0  (3) 

where N0&%  can be determined by a recurrence function and Q0 is 
the release jitter of task <0& .  
  N0&%R* ) STN0&%U P #VTN0&%U P #WTN0&%U (4) 
The worst-case response time analysis was extended by authors 
in [4] to include resource sharing across subsystems. The load STN0%U#  at the ith priority level is expanded by one term to 
including the affects of local and global blocking factors and is 
defined as: 

  STN0&%U ) #X0& P#E0& P #Y Z[/\R],^, _ E04`4'abT&U   (5) 

where X0&  is the blocking factor due to local and global 
resource access. The replenishment period  VTN0&%U extended to 
include global blocking factors is defined as: 

  VTN0&%U ) # cZdT[/\Ue/ _ f #gh T<0 f E0U P#X0  (6) 

where X0 represents the longest time that a server $& could be 
blocked from executing by a lower priority server. The 
interference WTN0&%U  from any higher priority servers is defined 
as: 

WTN0&%U ) #Y ijklm"nopqr s#mtuvwpqr xyp zs#*{|p{|} ~ TE� P X��U`�'abT�U  (7)

   
where X0�  represents the server overrun time which is the 
longest time a server $&  may execute. Additionally equation 
(10) represents a server overrun with no payback.. In order to 
analyze budget overrun with payback WTN0&%U  is defined as 
follows:  

WTN0&%U ) Y X��`�'abT�U P Y ijkl#T"n[/,\smt�v�/,\ x�/ zs*{^/U�̂ ~`��& E� (8) 

(Note that for RACPwP the server overrun term X0 in equation 
(6) is zero since the task would be preempted if the server 
budget expired while holding a lock on a global resource). 

A. Results 
In the following subsection, we provide a simple example 

for evaluation purposes between RACPwP and other protocols 
that use budget overrun mechanisms. For our example, we 
compare the server and task worst-case response times for 
RACPwP, OPEN-HSRP with budget payback and OPEN-
HSRP without budget payback. The server response time for 
OPEN-HSRP with budget payback is calculated based upon 
the following: N0%R* ) #E0 P X0 P#Y X��`�'abT�U P #Y Z[/,\�̂ _ E�`�'abT�U   (9)  

The server response time for OPEN-HSRP without budget 
payback is calculated based upon the following: N0%R* ) #E0 P X0� P Y Z[/\�̂ _`�'abT�U TE� P X��U  (10) 

The recurrence functions for equations (9) and (10) begin with N0#" ) � and terminate when N0%R* ) #N0%  which is the worst-
case response time of the server. If N0%R* #� #<0 then the server 
is not schedulable and therefore not considered. The simulated 
systems is composed of three separate subsystems each 
scheduled by the global preemptive periodic server. A global 
resource is shared between each subsystem $& and the critical 
section execution time is represented as CSETi. The Q&  term 
represents the subsystem server jitter.  
In order to evaluate the worst case server response times we 
used 100 simulation runs that used a uniform random number 
generator to vary the server capacity, server budget and the 
critical section execution times. The server parameters ranges 
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that were used to generate the server parameters are provided 
in the Table 1.  

Table 1: Server parameters 

Si Ci Ti Ji CSETi

S1 [50,500] [200, 2000] [150, 1500] [35,200] 
S2 [1250,2500] [5000,10000] [3750,7500] [35,200] 
S3 [3000,5000] [12000,20000] [9000,15000] [35,200] 
 

Table 2 provides the worst-case response times for 
RACPwP, OPEN-HSRP without budget payback (HSRPnP) 
and OPEN-HSRP with budget payback (HSRPwP).  

Table 2: Server average worst-case response times 

Si RACPwP HSRPnP HSRPwP 

S1 390 390 390 
S2 2360 3400 2900 
S3 5550 12150 10012 

 
As shown by the schedulability analysis given in Table 2 

server response times are improved with RACPwP since does 
not perform any budget overrun. Server response times are 
practical identical for subsystem  $* since the highest priority 
server is not subject to overruns. However, notice that 
RACPwP does significantly improve server response times for 
subsystems $�  and $�  which is not affected by the overrun 
mechanism. 

The next step is to evaluate the worst-case task response 
times of RACPwP as compared to OPEN-HSRP with and 
without budget payback. The recurrence function for worst-
case task response times begins with N&" )#0 and ends when N&%R* ) #N&% where the worst-case response time is#N&% P Q&.  

The task is not schedulable if N&%R* � #1& f# Q&  in which 
case it is not considered for analysis. Subsystem $� was chosen 
to execute the tasks as it is the mid-level priority subsystem. 
For this example, a global shared resource CSETi is shared 
among tasks as well as a local resource. The local resource 
critical section execution time is represented by CSETsi. 
Similar to the server parameters a random number generator 
was used to vary the task worst case execution time, the task 
period and deadline. The local resource execution was also 
varied. The task parameter ranges that were used to vary the 
task parameters are defined in Table 3. 

Table 3: Task parameters 

!i Ci Ti Di CSETsi 

T1 [1180,2375] [12500,25000] [12500,25000] [150,350] 
T2 [3150,4500] [35000,50000] [35000,50000] [150,350] 

 Table 4 represents the worst-case response times for all 
tasks in subsystem $�. The subsystem $� was chosen since it’s 
the mid-level priority subsystem and would best illustrate the 
effects of our protocol on the overall system. The task worst-

case response times are calculated according to the recurrence 
function (4).  

Table 4: Task average worst-case response times 

!i RACPwP HSRPnP HSRPwP

T1 7665 8860 9388
T2 28900 23800 26200

 
As shown in Table 4 it is evident that shared resource 

access can have a significant impact on the overall task load. 
The result being that lower priority tasks may get preempted 
and have to be restarted. The result is illustrated in the 
increased response times. The lower priority tasks pays the 
steepest price as it may suffer from multiple preemptions 
incurred by the higher priority tasks. Notice how RACPwP 
provides improved response times over HSRPnP and HSRPwP 
for higher priority tasks but lower priority tasks may 
experience degraded response times. This is the inherent 
tradeoff with RACPwP. Higher priority tasks which are 
generally hard real-time benefit from the lower response times, 
which provides improved determinism. However lower priority 
tasks which are typically soft real-time are more tolerant of the 
increased response times.   

VI. PRACTICAL APPLICATION 
For the purpose of evaluation we implemented RACPwP as 

part of a hard real-time embedded application. We used a 
ground-based satellite command and control embedded system 
as our use case. A hardware-in-the-loop simulation was used to 
provide the workload generator for our system. This particular 
use case was chosen because the satellite telemetry can vary 
significantly. Bit rates can range from 4 Kbps to 1 Mbps and 
the amount of processing required to process a telemetry frame 
can vary significantly depending upon how densely a telemetry 
frame is populated.  

The hierarchical scheduler was implemented as part of 
WindRiver’s VxWorks 6.5 real-time operation system. The 
hardware for the embedded system consisted of a PowerPC 
MPC7455/MPC7457 single board computer. A separate 
special-purpose telemetry processor which is used for bit 
synchronization and decommutation of the pulse code 
modulated telemetry stream. The serial communication is 
provided by a FPGA-based RS422 PMC module. All devices 
were connected via a VME32 backplane. The PCS construct 
was implemented using TinySTM[18] which is a lightweight 
and portable software transactional memory library. The 
TinySTM  library was ported to VxWorks and included as part 
of the kernel.  

The three main software components of the system include 
a hard real-time periodic task that performs the bit 
synchronization, frame decommutation and frame processing 
of a telemetry stream. The second component is a soft real-time 
task that provides health and status monitoring for the vehicle. 
The third component is an aperiodic task that transmits serial 
uplink commands to the vehicle.  The hard real-time telemetry 
processing task and the soft real-time monitoring task share a 
global resource which is the decomutated telemetry buffer.  
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Figure 9: Hard real-time task response times 

 
Figure 10: Soft real-time task response times 

The data illustrated in Figures 9 and 10 represents the 
recorded task response times for the telemetry processing and 
health/status monitoring tasks. The response times were 
recorded at the completion of each periodic task. 

As the figures confirm RACPwP provides improved task 
response times for hard real-time tasks and comparable 
response times for soft real-time tasks. Notice that for the 
during the periods of increased processing in Figure 9 with the 
hard real-time task using RACPwP outperformed PIP in terms 
of response times. (Note: the PIP protocol was chosen as a 
comparison because priority inheritance is the traditional 
resource allocation protocol used in real-time systems). This 
reduced response time leads to better determinism for hard 
real-time tasks because some of the issues like unbounded 
blocking that plague PIP are eliminated with RACPwP. Also 
notice in Figure 10 that on occasion RACPwP recorded 
comparable or even slightly better response times than PIP. 
This indicates that acceptable soft real-time response times do 
not have to be sacrificed at the expense of hard real-time 
determinism. 

VII. SUMMARY AND FUTURE WORK 
In this paper we considered the problem of sharing global 

resources in a hierarchical scheduled system. Traditionally, 
HSF was designed for soft real-time applications, in part due to 
problem of unbounded resource holding times between global 
resources. Our approach which combined software 
transactional memory provided better response times, than 
other state-of-the-art synchronization protocols, for higher 
priority tasks without drastically sacrificing soft real-time 
performance. Our motivation for this work stems for the 
aerospace industry where systems are routinely over 
engineered in the interest of real-time determinism. It is a 

common perception that an embedded system is considered 
“safe” at only 50% total utilization and considered unsafe 
above 75%. We propose that we can build more efficient 
embedded systems by more effectively managing the tasks 
within that system and in doing so reducing the total number of 
processing elements required. Some of the future work could 
include a more robust synthetic workload generator where 
large subsystem and task parameters could be quickly analyzed 
for schedulability and response times. The other main area 
would be to examine the possibilities of PCS to include other 
traditional non-preemptable resources such as standard I/O.  
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