Including Variability of Physical Models into the
Design Automation of Cyber-Physical Systems

Hamid Mirzaei Buini, Steffen Peter, Tony Givargis
Center for Embedded and Cyber-physical Systems (CECS), University of California, Irvine, USA
Email: {mirzaeib, st.peter, givargis} @uci.edu

Abstract—A good cyber-physical-systems (CPS) design
methodology must conduct trade-off analysis of both the physical
characteristics of the CPS as well as its cyber sub-system in a
holistic manner. This paper presents a design space exploration
(DSE) approach for CPSs that emphasizes the variabilities of
the physical subsystem and control aspects of the system. We
propose the application of parameterizable physical models and
automatic recalculation of control algorithm parameters for the
explored systems. The resulting parameterizable models can be
applied in a systematic simulation-based DSE framework that
facilitates the identification of superior system configurations. We
applied the proposed design flow to a real non-linear inverted
pendulum system with a range of physical and cyber settings.
The results show the feasibility and effectiveness of our approach
in the design of physical and control parts of CPSs. Our work
supplements existing work on cyber system modeling and plays
an integral part in the design automation of such systems.

I. INTRODUCTION

Generally, a cyber-physical-system (CPS) is one that com-
bines computational and physical entities in a unified design
effort. The design of CPSs needs good understanding of both
subsystems, as small changes in the physical subsystem (PS) or
the cyber subsystem (CS) may have significant consequences
with respect to the overall system performance. For example, it
is well known that the weight and size of physical objects like
pendulums [16] directly influence the performance require-
ments for the CS — but also that scheduling decisions on the
CS may affect the timing jitter of an otherwise correct control
application so that the control process fails [3]. Therefore,
a good CPS design methodology must carefully model and
account for physical attributes of a system.

Traditional design tools are well suited in addressing design
constraints and optimization objectives of the CS, but often
fall short adequately to consider physical and control aspects
of a CPS. Recent research has made tremendous advances
in the development of frameworks for CPS that support the
allocation and automatic evaluation of physical components
in their CPS context [5], [14]. However, those frameworks
operate on a high level of granularity by selecting pre-

This work was supported in part by the National Science Foundation under
NSF grant number 1136146.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA

Copyright 2015 ACM 978-1-4503-3520-1/15/06...$15.00
http://dx.doi.org/10.1145/2744769.2744857

0 Parametric Simulation[. Design Space Implement,
c PS Exploration Validate
- " |_Model A
o T
| . & N~ System
o CA L L. Config
9] " |__Model P
O\ LEegE 1o
7] - Pe
E cs
© . (&)
—_
& Model Parallel
T = execution
T - -

Fig. 1: Proposed CPS design framework: Parametric models
are instantiated in a parameterizable simulation. The DSE tool
invokes simulations parameterized with properties of the PS
and the CS. Aim is to identify superior design points which
can be validated and implemented.

configured components but do not support parameterization of
the physical components. Parameters of physical components
include, for instance, setting the diameter of a pipe, the strength
of a spring, or the size of mechanical parts. Another important
aspect that has not been addressed in current CPS design
automation frameworks is the consideration of the impact of
the changes in the control subsystem. The control algorithm
(CA) specifies how measurements from the PS are processed
and how actuation commands are generated so that the CPS
can achieve its objectives. As such, the CA is the logical
bridging element between the CS and the PS, and needs to
be designed and adapted when subsystems, including physical
aspects, undergo changes.

The goal of this work is the development of a design space
exploration (DSE) framework that considers the variabilities of
the PS and the required adaptations of the CA. Our proposed
design flow is shown in Fig. 1. The basic idea is to derive
parameterizable models of the PS, the CA and the CS. The
parameterizable models then can be instantiated by the DSE
tool that, for each design point, invokes an executable simula-
tion model to evaluate the quality of the CPS design. After an
evaluation of the designs, a system configuration is proposed
for implementation, containing parameters for the physical and
the cyber subsystems. Our design flow is facilitated by the
following main contributions of this paper:

1) We ensure rigorous parametric description following the
equation derivation approach of the physical subsystem,

2) Settings of the CA are determined as a function of the
parameters of the PS and the CS for every iteration
of the design space exploration, which eliminates time
consuming search for suitable configurations,

3) The DSE tool instantiates pre-compiled parameterized
executable models of the CPS, which can be parallelized
for the search of superior system configurations.

The encapsulated control knowledge and the efficient sim-
ulation enable CPS design analysis, available for system en-
gineers even without strong control background. We show the
steps, necessary to prepare the models, and the application of
the models in a design space exploration including a non-trivial
trade-off between control quality and energy consumption.
We evaluate our approach for a rotary inverted pendulum
system, for which we explored the design space that included
a selectable length of the pendulum and a flexible sampling
time in the CS. The results, which we validated in a real-
life setup, show that our approach can automatically identify
superior cyber-physical configurations which would have been
ignored using existing design space exploration techniques.

II. MODEL-BASED DESIGN OF CPS

In this section we describe todays’ model-based design
(MBD) flows for CPSs. Specifically, we outline the state-
of-the-art in automation of key steps of the design. The
input to a CPS design flow is the CPS problem definition,
which conventionally consists of the specification of the PS,
design objectives like the actual CPS task, and nonfunctional
requirements like control quality metrics and power efficiency.
In MBD flows [10], generally, first the physical system is
modeled, a CA is designed, and a CS is architected. The system
can finally be implemented after successful validation. The
following steps outline the design flow in greater detail.

1) Physical Modeling: Physical modeling concerns the
expression of the physical system consisting of plant and
actuators in mathematical or logical terms. The physical model
can be used for two main purposes: first to build a simulation
model of the CPS, and second to design a control algorithm
based on this model. The wide selection of applicable models
for this purpose spans from conventional models like transfer
function or state space models to complex probabilistic models
for large-scale systems. Besides system identification methods,
equation derivation has been applied to obtain the model
parameter values of the PS. In particular, the derivation of
equations that govern the system using laws of physics has
been applied in CPS development frameworks in practice [17].
Modeling of PSs even using those frameworks still requires
experienced domain experts and, to date, automation tools are
unavailable or provide limited benefits. However, blueprints of
physical models can be reused from a repository as applied in
[5] and [14], but without parameterization.

2) Control Algorithm Design: With the aim to find a
correct CA for the CPS, the complex physical model needs to
be simplified so that control design methods can be applied.
Similar to the physical models, CAs can be selected from a
repository to match the system properties and design objectives
[5]. CAs have a range of parameters that influence the overall
control quality. For example, PID controllers have three gain
parameters. While for some specific use cases such as building
control, an automatic control selection and parameterization
was proposed [12], in general the selection and parameteri-
zation of the CA still have to be performed manually, which
limits the use for automated design.

3) Cyber System Design: The design of a suitable computa-
tion system that implements the designed control algorithm is a
non-trivial task, since many CS design decision may affect the
quality of the CA. For example, the CA has to be discretized,
a sampling time has to be selected, and the delay and jitter

of the processing have to be considered. To cope with the
gap between control and CS, control engineers might specify
the acceptable ranges for some parameters such as delay and
jitter in a contract-based approach [7]. Alternatively, the CS
and the CA can be co-designed with certain jitter and delay
in mind [6], [9]. These approaches are valuable for a good
CS/CA co-design but neglect possible variability of the PS.
While verification and calculus methods [15] exist to validate
the correctness of specific systems, typically, designers rely on
the simulation to validate the cyber system design.

4) Simulation: Applying the models of the PS, the CS,
and the CA, simulation-based analysis can be executed to
evaluate the system under development. The main objective
of the simulations, which can be performed by capable off-
the-shelf tools such as Simulink [2] and Modelica [1], is to
evaluate and validate the performance of the CPS design. If
all the requirements are met, the design can advance to the
next step, namely implementation. Otherwise, reiteration of
earlier steps in the design flow are required, which makes faults
identified during simulation very expensive to fix, in particular
if domain experts are required to manually refine the CA or
the PS. Simulations are integral part of several approaches [5],
[13], [14] to systematically analyze CPS design spaces. For
instance Miihleis et al. [13] proposed a DSE solution based on
co-simulation of control and CS, assessing design objectives
such as cost or energy consumption for the whole CPS.

III. PARAMETRIC CPS DESIGN FLOW

In this section we introduce our parametric design flow,
which is based on the standard MBD flow discussed in the
previous section. As shown in Figure 1, our flow relies on
parameterizable models for the PS, the CA, and the CS, which
have to be crafted first, before they can be instantiated in
simulation and for the DSE.

1) Parametric Physical Modeling: To craft the parameteriz-
able model of the PS we propose the Equation-Based Modeling
(EBM) [4] method. In contrast to system identification or
learning techniques, EBM is not focused on finding a fixed
set of parameters for a single instance of PS, but facilitates
the derivation of the equations symbolically. The result is
a parameterized model that describes the physical system
behavior as a set of differential equations (F,,), and their
parameters P, so that the model can be expressed as:

Mps = (Ppsa Eps) (D
The representation of the PS as M, is rewarding for two
reasons: First, it allows composition of smaller physical sub-
system to larger PSs [17], and second, M), is reusable and can
be directly instantiated during the simulation step. However, it
should be noted that no general guidelines are available how to
craft M), and the result becomes complex already for small
systems like the example we discuss in Section IV.

2) Parametric Control Algorithm Design: As mentioned in
Section II, generally CAs are already designed in parametric
form, so that the CA models M., can be expressed as:

Mca - (Pcay Eca) (2)
where E., is the set of equations describing the CA, and P, is
the set of CA parameters. Like the physical models, M., can
be directly applied as parametrizable model in the simulations.
A major issue is that the parameters P,, depend on the PS as
well as the CS and therefore must reflect changes in those

subsystems. A complex search for fitting parameters is not
feasible for complex DSEs, because the search is required for
each design point. Therefore, we propose to follow a derivation
technique similar to the EBM approach discussed for the PS.
The idea is to express p., as a mapping from properties of the
models from PS and CS, and the design objective parameters
(Pob;)- This mapping fc, is expressed as:

Pca = fca(ppS7 Pcs; pobj)~ (3)
Since f., computes the actual controller parameters, f., does
not need to be symbolic, or in a closed form, but can also
be represented numerically, as demonstrated in the example in
Section IV. Crafting of f., requires the application of control
theory methods for each type of controllers manually. The
result is a transformation of the general model (4) to

M., = (fca(ppsa Pcs; pobj)a Eca)> 4)

which can be instantiated in simulations, with all parameters
directly based on existing knowledge in the system.

3) Simulation and Design Space Exploration: The simu-
lation tool we introduce next, instantiates the building blocks
that were described in the previous steps. Since the idea is
to run the simulation for each parameter setting in the design
space, we are interested in a short simulation time. A standard
approach is to obtain the performance values of interest (Q))
by instantiating the parametrized models in a interpreted
simulation environment such as Simulink. This approach is
technically possible, but requires significant amount of time
for each simulation. To accelerate the process we considered
compiled simulation models, which is supported by Simulink
and Modelica. However, compiling parameterized models still
required to recompile the simulation model for each setting.
To avoid unnecessary recompilations, we instead expose the
parameters from the parametrizable models of the PS (1) and
the CA (4), and only compile the unparametrized models, so
that the simulation is expressed as:

Q = SIMpsp g Mo s, Mca (Ppss Pess Pea) (5)
Hence, the simulation model is compiled only once for each
model allocation, but recompiling is not required for changing
model parameters in this tool. In Modelica, for instance, we
only need to set the parameter values in an XML file and
execute the same binary file for all the parameter settings. The
result is a native executable simulation code which can be
invoked by design exploration tools which only have to provide
the parameters of the PS, the CS and the design objectives.

Algorithm 1 DSE for parametrized physical models

Input:
Simulate() > The simulation code called as a procedure
fea > The parametric CA design function
D cCR™ > Design Space
Output:
J:D+— R" > Evaluated Variables-of-interest

1: procedure EVALVOI(pps, Pcs; Pobj)

2 Pca < fca(pp57 Pcs, pobj)

3 Q — Simlﬂate(ppsa Pcs; pca)

4: Put @ in the queue U

s: for all (pps, Pes, Pobj) € D do in parallel
6 ‘ EV&]VOI(ppS, Pcs; pobj)

7: Sort U to find the mapping J

Fig. 2: One degree of freedom inverted pendulum

To study the design space, the pre-compiled simulations
can be invoked in generic design space exploration (DSE)
algorithms. As one example, Algorithm 1 demonstrates the
feasibility of DSE that supports physical parameters, by sys-
tematical evaluation of all physical and cyber configurations in
the search space (line 5, 6). Subfunction EVALVOI computes
pca, invokes the simulation, and stores (). The result is a
set of evaluated variables-of-interest for each design point in
the design space. From this space, the system configuration is
selected evaluating the stored results. A benefit of the proposed
algorithm is that procedure EVALVOT is “embarrassingly par-
allel”, so that it can easily utilize parallel multi- and many-core
platforms to accelerate the search process. Notably, Algorithm
1 does not utilize design space pruning techniques like they
are required for larger design spaces. However, the proposed
algorithm can be applied for smaller CPSs, such as the rotary
inverted pendulum case study presented next.

IV. CASE STUDY: ROTARY INVERTED PENDULUM

In this section we use the rotary inverted pendulum exam-
ple [16] as a case study to demonstrate the steps of framework
described in the previous sections. The goal of the system,
shown in Figure 2, is to produce appropriate actuator angle
a to keep the pendulum in upright position, i.e, 6 ~ 0. In
following subsections we discuss of the design flow including
the crafting of the models (A-C) and the execution of the DSE,
including a trade-off analysis and practical validation (D-E).

A. Parametric Physical Modeling

As explained in previous section, a parametric model of
the PS is fundamental for the subsequent design steps. The
block diagram of the complete CPS is shown in Figure 3. The
controller should output the motor voltage in order to balance
the pendulum. At the same time, the controller must track the
reference command for the angle «. Here, we assume that the
main output of the system is o and we want to move the weight
to the commanded angle «,.. For this purpose, we assume that
all the state variables, x, are measured and provided to the
controller.

The PS is shown using a dashed box in Figure 3. The
PS consists of the actuator and the pendulum dynamics
subsystems. First, the model of each subsystem is obtained
and next they are combined to build the PS model. In
the following paragraphs the EBM of these two subsys-
tems is explained. We use the following symbols through-

Reference

Command : |
T 1 [} 1
Uml v A T

xp ! S T G

«

Controller, m o |
' Actuator Pendulum X
h Dynamics |
1 1
1 1

___________ oo

Fig. 3: Block diagram of the inverted pendulum example: A
closed loop control system consisting of Controller, Actuator,
and Pendulum Dynamics.

out this paper for the physical parameters and variables:

Motor angle (before gearbox)

Motor viscous friction coefficient

la Motor winding current

J Motor, Gearbox and actuator arm moment of inertia
Motor back-emf constant

K; Motor torque constant

l Actuator arm length

L Pendulum length

L, Motor winding self inductance

m Mass of the pendulum weight

Actuator viscous friction coefficient

tp Pendulum joint friction coefficient

n Gearbox ratio

R, Motor winding resistance

T Torque applied by the actuator

Tm Torque applied by the motor (before gearbox)
vy, Voltage applied to the motor terminal

a) Pendulum Dynamic Equations: Dynamics modeling
is required because we want to know how the pendulum angle
changes when a torque is applied by the actuator. Assuming the
mass of pendulum rod is negligible, we write the Newton-Euler
equations for the rigid body consisting of pendulum weight and
rod in the {zyz} coordinate frame as follows [8]:

> F =mag (6)

ZMA:rg/Axmag—i—dHA/dt, (@)
Expanding these equations we obtain following equation that
relates the angular variables and their time derivatives:
—pp +mgLsin = mL2?0 — mL*&?sin 6 cos @ — mLlé cos
(®)
To involve the torque applied by the actuator in a new equation,
torque equation around the motor axis can be used. The torque
equation results in:
Jo =1 —1F,cos0 + [F,sin0 — .)
where F, = (—1&® + Lsinfé) and F, = (Icosfd — LA +
Lsin 6 cos 0&2). If we solve equations (8) and (9) for & and
0 we will get:
& = fola,a,6,0,7) (10)
0= fola,,0,0,7) (11)
These equations are used to define a nonlinear state space
(SS) model for the pendulum as with the state variables

x,=(a & 6 6)7 and input variable u, = 7 as

X, = f(xp, up). (12)
This SS model is used inside the bigger simulation model of
the whole system in the next step of our design flow.

The next step concerns the linearization of (12) with the
aim to design the LQR Control method. For this purpose,
we find the Jacobean of vector function f with respect to x,,
and u, and evaluate it in a reference solution of the (12),
(xp0, Upo). One reference solution is xpo(t) = 0, upo(t) =0,
which means the system is at rest with all the variables set to
zero. So, the linearized system can be written as:

%, = Ayx, + Byuy, (13)
0 1 0 0
0 Hm glm _lpp
H=1o 9 0 {* (14)
0 _lum g(miP+J) pp(ml®+J)
J JL JL?m
T
By=(0 5 0 57 (1s)

These matrices are the first part of the linearized PS model of
our example. The model will be concluded with the actuator
SS matrices which are explained next.

b) Actuator Modeling: The actuator in our case study
is assumed to be a geared DC motor. The linear equation based
model is:

Lyiq + Raig = vy — KpGp,
Tm = Ktia, - Bmam

(16)
17
Defining the actuator state and input as x, = i, and u, =
(Um G)T, the resulting SS model of the actuator is:

1 K,

R,
&y = Ay + Boug = —L—xa—l-(T —1%)u. (18)
Tm = Cog + Douy = Kizg +(0 —By,)u, (19)

Also, assuming the gearbox attached to the DC motor is ideal
we will have 7 = 7,,n and o = ayy, /1.

B. Parametric Control Algorithm Design

In LQR, the design objective is expressed by a quadratic
cost function. In our case study this cost function is:

J:/n(ﬂQx+&%ﬁﬁ:/ (gl = a2 + 02,)dt
0 0

(20)

wherex=(a—a, & 6 6 i,)T and we have chosen
Q=qvvl wherev=(1 0 0 0 0)and R=1.

The above cost function tries to balance the energy con-
sumption and control performance. The first component in
(20) , 5 llov— ep||*dt, defines control performance metric as
the mean-squared error (MSE) of angular command tracking.
The parameter ¢ in (20) is the relative weight of control
performance to power consumption which is described by the

second component fooo v dt.
In LQR, the control law is the state feedback which can
be described using the following equation:
VU = —KX. 21

The State vector x is the combination of the pendulum dynam-
ics and actuator SS model state vectors, with one modification,
to subtract the reference command «, from «.

By solving the algebraic Ricatti equation [11], the optimal

Algorithm 2 The Control Algorithm

Input: K, o, > LQR gain and angular command
1: for all sampling time do

| Measure «, ¢, 0,0 and i, _

| vm+——K(a—a, & 6 0 i,)

| Apply voltage v,, to Motor

T

El o

gain K in (21) is calculated. This gain optimizes the cost
function (20) guaranteeing that the closed loop system will
be stable. Solving Ricatti equation to obtain optimal gain, K,
corresponds to (3) in the proposed design flow. Therefore, the
concrete form of (3) is:

K = fige(L,q) (22)

For the control we only have to choose a sampling time, A,
compute and apply the control signal in successive sampling
periods. The CA is shown in Algorithm 2.

C. Simulation

We built the executable specification model of Figure 3 in
Modelica, instantiating the pendulum equation (12), actuator
equations (18) and (19) and the discrete-time state feedback
(21). By compiling the Modelica model we have the simulation
executable code. The inputs to this code are pendulum length
L, sampling time h and controller gain K. The output is the
objective variable which is MSE of tracking error ||ac—a||. At
the end of this step, the general form of simulation procedure
explained in Section III is:

MSE = SIMInv_Pendulum(La h7 K)7 (23)

while K is the result of (21) and can be computed externally
using the “control” Python package.

D. Design Space Exploration

1) Setup and Execution: The DSE in our case is an
implementation of Algorithm 1 in Python, instantiating the
simulation executable code of (23). The design objective
parameter ¢ is fixed to 10 (1/rad?) in this case study. We
studied pendulum lengths from 0.01 (cm) to 60 (cm) and
sampling times from 0.01 (s) to 0.14 (s). The parallelism of
the DSE and the pre-compiled simulation allowed us to finish
the exploration within is 87(sec) on a 48-core Intel Xeon @
2.7GHz platform. The naive approach without parallelization
and using Simulink in normal mode results in 2360 (sec).
Using existing DSE flows with no parametric CA design, the
running time would be approx. 86 days if we want to try only
5 values for each element of gain parameter K.

2) Control Quality: Figure 4 shows the stability region of
the DSE. This plot is generated by comparing the computed
MSE with a fixed threshold of 0.035 (rad?). A system with
MSE below the threshold is considered stable. Figure 4 also
compares our parametric control approach to static reusable
controllers. The stability regions for fixed-controllers designed
for 6 (cm) and 34 (cm) pendulums are shown on top of the
region for our approach. Evidently, the static controllers only
cover small range of the design space, while our approach
provides good design points for all physical settings.

3) Power Consumption: The second important metric is
power consumption. The total power of the system is the sum
of the power for the PS and the CS: Pops = Pps+ Pcs. Pps
is the required power of the actuator (Pps = ¥y, %y,), Which is

[Variable Length Gain
[] Gain for Length = 6 cm
I Gain for Length = 34 cm

01 02 03 04 05 06
Length (m)

Fig. 4: Stability region for different CA gains.

part of the actuator model (16). Pog can be computed from
the processing time (%,,.) and the average power consumption
of the microcontroller for sleep (Ps,) and run (FPryp):

_ t t
PCS:;:':Prun‘i‘(l_;:C) Pslp (24)

The power consumption for a fixed pendulum length is shown
in Figure 7. It is visible that smaller i reduces energy due to
better control performance, but for very small h the required
processing power outweighs the savings. The result is an in-
teresting trade-off between the control and power performance
of the whole system, which we study next.

4) Control-to-Energy Trade-Off: Figure 5 (a) shows the
scatter graph for power consumption and control quality for the
discussed design space. An ideal system would be located in
the bottom left. The Pareto front (in blue) shows all potentially
beneficial design points. For each system, that is not part
of the Pareto front, at least one system exists with better
power consumption and better control quality. Figure 5 (b)
shows the highlighted points in the design space of sampling
rate and length. The results deliver a set of superior design
points, and confirm that the design space does not contain a
superior pendulum length, sampling rate, or controller setting
that would dominate the entire design space, which confirms
the importance of the holistic DSE in order to identify superior
design points.

E. Practical Evaluation

To validate the results for the modeling and the controller
design, we implemented a pendulum system that supports
a range of physical configurations. As examples, Figure 6
shows two pendulums with a length of 6(cm) and 34(cm). For
each experiment, we could use different pendulum lengths,
LQR gains, and sampling rates. The control program was

. design ||

« pareto

length (m)

| | | | |
20 25 30 20 40 60
Energy (ml) sampling (ms)

(a) (b)

Fig. 5: Simulation results for energy and control quality (a),
and the highlighted Pareto set in the design space (b).

Fig. 6: Pendulum setup using 6¢cm (left), and 34cm length.

implemented on an Cortex-M3 ARM development board. Like
the DSE in the previous subsection, all the experiments could
be performed by a system engineer without manually revisiting
the control algorithm. We used our framework to return
the energy-optimal system and parametrization for a given
set of invariant system parameters (either size or sampling
rate). After applying the computed configuration values to the
experiment, we expected that each pendulum length has the
expected stability. The experiments confirmed the assumption
to be correct, since each system ran stable for at least one
minute. As cross-validation we applied the controller setting
of the small pendulum (6cm) for the long pendulum (34cm)
and vice versa. As a result the short and long pendulums tilted
after four and one seconds, respectively, which confirmed the
simulations results shown in Figure 4.

A comparison of the measured energy values and the sim-
ulation results is shown in Figure 7. Notably, the actual power
consumption is about 10(mW) above the values obtained in
the simulation. We suspect the higher power consumption is
caused higher friction in reality than considered in our PS
model. However, more important is that the practical mea-
surements validate our assumption of a cyber-physical power
consumption minimum. The measurements can identify this
minimum as 27(ms), which is well in range of the estimated
optimum point of 30(ms) for the system.

V. CONCLUSIONS

The results of the experiments presented in the previous
section underline the importance of tailored control design in
a holistic design process of CPSs. Variabilities of the physical
subsystem have to be reflected in the control algorithm in order
to find superior design points. We presented a DSE framework
that instantiates parameterized models of the physical system,
the control algorithm and the cyber system to find those design
points. The applied EBM approach for the physical models
opened the design space for the physical subsystems, and
the derived configuration of the control algorithm parameters
helped to reduce the design space to superior designs only.
The actual DSE then is based on parameterized executable
simulations, generated in Modelica, which facilitate a highly
parallel DSE. The DSE in the pendulum use case enabled tool-
supported managemant of the trade-off between control quality
and energy consumption - even for non control experts.

Evidently, the modeling steps in our design flow are
still complex and require knowledgeable control engineers
and physical domain experts. However, following our design
methodology, resulting models can be packaged as reusable

401 min=27ms —|—— Simulation
=z ‘ —s— Measured
é W
5 20 N
£ min=30ms

| |
% 20 40

Sampling Rate (ms)

Fig. 7: Measured and simulated energy consumption for the
34cm pendulum.

parameterizable components which in turn enable systematic
DSE of CPSs as part of design automation tools.

REFERENCES

[11 OPENMODELICA, 2014. http://www.openmodelica.org.

[2] Simulink - Simulation and Model-Based Design, 2014.
http://www.mathworks.com/products/simulink/.

[3] A. Aminifar, P. Eles, Z. Peng, and A. Cervin. Control-quality driven
design of cyber-physical systems with robustness guarantees. In Design,
Automation and Test in Europe (DATE), 2013.

[4] D. Broman. Meta-Languages and Semantics for Equation-Based
Modeling and Simulation. PhD thesis, Department of Computer and
Information Science, Linkoping University, Sweden, 2010.

[5] A. Canedo, E. Schwarzenbach, and M. A. Al Faruque. Context-sensitive
synthesis of executable functional models of cyber-physical systems. In
ACM/IEEE International Conference on Cyber-Physical Systems, 2013.

[6] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzén. How
does control timing affect performance? Analysis and simulation of
timing using Jitterbug and TrueTime. IEEE Control Systems Magazine,
23(3):16-30, June 2003.

[7]1 P. Derler, E. Lee, M. Torngren, and S. Tripakis. Cyber-physical system
design contracts. In ACM/IEEE International Conference on Cyber-
Physical Systems (ICCPS), 2013.

[8] J. Ginsberg. Engineering Dynamics. Cambridge University Press, 2007.

[91 D. Goswami, R. Schneider, and S. Chakraborty. Co-design of cyber-
physical systems via controllers with flexible delay constraints. In
Proceedings of the 16th Asia and South Pacific Design Automation
Conference (ASPDAC), 2011.

[10] J. Jensen, D. Chang, and E. Lee. A model-based design methodology

for cyber-physical systems. In Wireless Communications and Mobile
Computing Conference (IWCMC), 2011.

[11] D. Kirk. Optimal Control Theory: An Introduction. Dover Books on
Electrical Engineering Series. Dover Publications, 2004.

[12] M. Maasoumy, Q. Zhu, C. Li, F. Meggers, and A. S. Vincentelli.
Co-design of control algorithm and embedded platform for building
hvac systems. In Cyber-Physical Systems (ICCPS), 2013 ACM/IEEE
International Conference on, 2013.

[13] N. Miihleis, M. GlaB, L. Zhang, and J. Teich. A co-simulation approach
for control performance analysis during design space exploration of
cyber-physical systems. SIGBED Rev., 8(2):23-26, June 2011.

[14] H. Neema, Z. Lattmann, P. Meijer, J. Klingler, S. Neema, T. Bapty,
J. Sztipanovits, and G. Karsai. Design space exploration and manip-
ulation for cyber physical systems. In Workshop on Design Space
Exploration of Cyber-Physical Systems (IDEAL’), 2014.

[15] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In IEEE International Symposium
on Circuits and Systems (ISCAS), volume 4, 2000.

[16] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney. Task scheduling
for control oriented requirements for cyber-physical systems. In Real-
Time Systems Symposium (RTSS), 2008.

[17] Y. Zhu, E. Westbrook, J. Inoue, et al. Mathematical equations as
executable models of mechanical systems. In ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), 2010.

