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Abstract—Artificial Intelligence methods to solve continuous-
control tasks have made significant progress in recent years.
However, these algorithms have important limitations and still
need significant improvement to be used in industry and real-
world applications. This means that this area is still in an active
research phase. To involve a large number of research groups,
standard benchmarks are needed to evaluate and compare
proposed algorithms. In this paper, we propose a physical
environment benchmark framework to facilitate collaborative
research in this area by enabling different research groups to
integrate their designed benchmarks in a unified cloud-based
repository and also share their actual implemented benchmarks
via the cloud. We demonstrate the proposed framework using
an actual implementation of the classical mountain-car example
and present the results obtained using a Reinforcement Learning
algorithm.

I. INTRODUCTION

Recent advancements in using Artificial Intelligence (AI)
to solve continuous-control tasks have shown promise as a
replacement for conventional control theory to tackle the
challenges in emerging complex Cyber-Physical Systems,
such as self-driving control, smart urban transportation
and industrial robots. An example of AI approaches is
Reinforcement Learning (RL). RL algorithms are mostly
model-free, meaning that the explicit modeling of the physical
system is not required. Also, RL-based agents can work
under uncertainty and adapt to the changing environment or
objectives. These unique characteristics of RL make it a good
candidate to solve the control problem of complex physical
systems. However, the RL solutions for continuous control are
in their infancy, since there are limitations when applying them
in real-world applications. Some examples are unpredictability
of agent actions, lack of formal proofs of closed-loop system
stability and not being able to transfer learning from one task
to other tasks with slight modifications. This calls for extensive
research to address these limitations and design RL and other
AI algorithms that can be used in real-world applications.

While there are a number of widely-used benchmarks in
different computing domains, for example MiBench [10] for
embedded processing and ImageNet [7] for computer vision,
the available AI benchmarks are very limited. This makes
conducting research in AI difficult and expensive. Moreover,
since there are not many available standard benchmarks, it is
hard to evaluate and compare newly proposed AI algorithms.

One of the reasons for the lack of AI benchmarks is the
interactive nature of dynamical systems. In other words, while
it is possible for many other domains to record and label
datasets and make them publicly available, AI benchmark
developers should provide an interactive “environment” which
the AI agent must be able to interact with by applying actions
and gathering the new system state (or observation) along
with reward signals. This makes AI benchmark development
a challenging task. Nevertheless, significant progress has been
made recently towards building simulation/emulation based AI
benchmarks such as OpenAI Gym and OpenAI Universe [5].

Although the recently developed AI benchmarks enable the
researchers to apply their algorithms on a vast variety of
different artificial environments, such as PC games or physical
systems simulations, real-world physical environments such as
industrial robots and self-driving cars are only available to a
limited number of groups in big institutes due to the high costs
of manufacturing and maintenance of those environments. The
lack of physical benchmarks slows down the research progress
in developing AI algorithms that can address challenges that
usually exist in the real-world such as sensor noise and delay,
processing limitations, communicational bandwidth, etc., and
can be used in emerging Internet-of-things (IoT) and Cyber-
Physical systems.

In this paper, we propose the Open Physical Environment
Benchmark (OPEB) framework to integrate different physical
environments. Similar to OpenAI Gym, in our approach
a unified interface of the environments is proposed that
enables research groups to integrate their physical environment
designs to OPEB regardless of the details involved in the
hardware/software design and implementation. To achieve
the main goals of universality and affordability, we propose
leveraging 3D printing technology to build the customized
mechanical parts required in the environments and using low-
cost generic hardware components such as bolts, ball bearings,
etc. We also use popular and affordable embedded processing
platforms, such as the Raspberry Pi [20], which is a promising
processing solution for IoT and Industry 4.0.

Furthermore, the users are not only able to replicate
physical environments using OPEB, but they can also share
the implemented environment on the cloud enabling other
users to evaluate their algorithms on the actual physical
environment. This feature results in higher availability of
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physical benchmarks and facilitates collaborative research to
design robust AI algorithms that can be applied on different
realizations of an environment with slight variations in the
physical properties of the hardware components. Since OPEB
is based on low-cost fabrication solutions, it can be used for
educational purposes for IoT, control, AI and other related
courses.

The remainder of this paper is organized as follows. In
Section II, we review the background and some related works
in AI benchmarks. In Section III, the elements of a physical
environment are introduced and it is explained how the
required artifacts are provided in OPEB to replicate a physical
environment. In Section IV, an example implementation of an
OPEB, i.e., the classical mountain-car problem, is described,
and the results of the experiments that are performed on the
physical system using an RL-based method is presented in
Section V. Finally, conclusions are presented in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we first review existing literature about
solving real-world tasks using AI algorithms. Next, we review
recent simulation-based AI benchmarks that are widely used
in academia. Finally, we review the related research projects
to provide real-world benchmarks in robotic applications.

Using RL as a replacement for conventional control theory
is an emerging trend in Cyber-Physical systems. In [15] an RL
algorithm is proposed to autonomously navigate a humanoid
Nao robot into a docking station used for recharging. An RL
model is proposed in [12] to learn hand-eye coordination for
grasping objects in an environment of robotic manipulators.
In [13], RL methods have been applied on an actual cart-
pole system to balance the pole. Researchers are exploring AI
algorithms as a way to simplify and speed up the programming
of industrial robots in factories. Fanuc [11], the world’s largest
maker of industrial robots, has used RL methods to train robots
to precisely pick up a box and put it in a container. In the
automotive industry, authors in [16] have proposed an RL-
based approach to control robot morphology (flippers) to move
over rough terrains that exist in Urban Search and Rescue
missions.

Access to these physical environments (hardwares/robots)
is not feasible for a lot of research groups. This
hinders partnerships and cooperation between academia
and industry. In this paper, for the first time, we
propose the idea of providing low-cost and easy-to-construct
physical environments that allow researchers and students
to implement, evaluate and compare their AI algorithms on
standardized benchmarks.

In a dynamic AI problem, the state of the environment
depends on the actions that are chosen by the agent. This
makes it almost impossible to store the environment as a fixed
dataset similar to the supervised machine learning paradigm.
Therefore, to facilitate reproducible research and accelerate the
pace of education, researchers in this community are trying to
design a standard programming interface for reinforcement-
learning experiments.

One of the earliest efforts to design a standard tool is RL-
Glue [19] which has been used for RL courses in several
universities and to create experiments for scientific papers. A
more recent effort, RLPy [8], is a software framework written
in python that has focused on value-function-based methods
with linear function approximation using discrete actions. ALE
[4] is another software framework designed to make it easy to
develop agents that play different genres of Atari 2600 games.

OpenAI Gym [5] is the most recent and comprehensive
toolkit for developing AI algorithms. It provides a diverse suite
of environments that range from classic control to 2D and 3D
robots. It is designed to let the users evaluate the proposed
AI algorithms with little background in AI. Researchers can
compare the performance of their proposed algorithm with
other approaches’ scores reported on the scoreboard. These
solutions are very effective in advancement of research and
education within simulated environments because it is usually
expensive and more challenging to implement AI algorithms
in real-world scenarios.

Most similar to our work is [17] that has proposed an open
hardware design for academic and research robots. They have
leveraged 3D printing technology to allow users to create
all required components except electronics parts. All basic
code and libraries have been released under the GNU General
Public License. Authors in [6] have made their research
on aquatic swarm robots reproducible by providing the 3D
printing models, CNC milling files and the developed software
on Raspberry Pi. In this paper, we propose a framework
that can be used to produce an arbitrary number of physical
environments, not limited to robots. Contrary to the mentioned
works where a specific physical environment is introduced,
a unified benchmark framework is proposed in this paper
to integrate a variety of physical environments. In other
words, research groups can contribute by sharing their physical
environment blueprints using the proposed framework. The
other contribution is that users are able to share their actual
implementation via a web-based software on the cloud to be
used by others for research and education purposes.

III. OPEN PHYSICAL ENVIRONMENT BENCHMARK
(OPEB)

In this section, we describe our OPEB framework. First, the
elements of a physical environment (PE) are introduced and
the requirements for each element are discussed. Next, we will
explain how the required components to replicate the PE are
encapsulated in OPEB and also how the actual implementation
can be shared to other users on the cloud.
A. Physical Environment Elements

The PE consists of the following elements:
• Mechanical parts and structures
• Electromechanical components
• Electrical components
• Embedded processing unit
• Embedded software
To achieve the goal of affordability and universality of

PE implementation, the physical parts should include either



generic mechanical hardware such as bolts, ball-bearings,
etc., or the parts that can be easily printed using a 3D
printer. The electromechanical parts such as actuators, dc
motors or transducers should be generic parts that can be
easily found all over the world. For example, low cost hobby
electromechanical parts can be used to build a PE. To drive
and interface the electromechanical parts, some electrical
parts such as motor drives should be included in the PE.
Additionally, to measure the physical quantities, some sensors
are required. Examples of such sensors are digital camera,
thermometer and proximity sensor.

The embedded processing unit is needed to perform basic
required tasks to run the environment such as timing, reading
the sensors’ outputs and the required signal processing,
producing the environment observation, applying the action
calculated by the AI algorithm, sending the monitoring data
over the network to the monitoring node locally or over
the cloud and running the AI algorithm. These tasks are
implemented by the embedded software developed for the PE.
All of the software components are provided by the OPEB
except the AI algorithm which is developed by the PE user.

Emerging single-board embedded computing platforms can
be used as the embedded processing unit in PE. Some
examples of these solutions are Raspberry Pi [20], C.H.I.P.
computer [1] and Arduino [3] platforms. Using a dedicated
embedded processor instead of a general purpose computer
reduces the cost of deployment of multiple instances of the
PE on the cloud and simplifies interfacing the electrical and
electromechanical elements because most of these platforms
have on-board I/O capabilities.
B. OPEB Components

In Fig. 1, the different components of OPEB for each
environment are shown. To realize an environment consisting
of the elements listed in the previous subsection, the
following components are provided in OPEB for that specific
environment:

• Parts that should be 3D printed in STL [9] format.
• List of materials of the generic mechanical hardware.
• Diagrams and instructions required for mechanical

structure assembly.
• List of electrical and electromechanical components.
• List of embedded processing units and peripherals.
• Wiring diagram of the electrical components.
• PE control and monitoring Embedded software.
• Web application for the cloud-based sharing of the PE.
The customized mechanical parts required by a PE are

included in OPEB as 3D models in STL format that can be
easily fabricated using a 3D printer. The specifications of other
parts that are not printable or can be selected from off-the-
shelf products are provided in OPEB. However, these parts
are generic mechanical hardwares that are supplied by many
manufacturers around the world.

Besides the information provided to obtain or fabricate the
components, OPEB includes the complete instructions and
diagrams to assemble the mechanical structures of the PE. The
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Fig. 1: OPEB framework components for each environment. Green
blocks are provided in OPEB. All other components listed and
specified in OPEB.

main goal of OPEB is that the environments can be reproduced
with minimum discrepancy across different implementations.
To achieve this goal, the user should be able to build the whole
environment using the provided components in the OPEB
without ambiguity. On the other hand, the instruction assembly
should be of low complexity and easy to follow to be usable
by users with different levels of expertise. For this purpose, a
step-by-step assembly instruction approach proposed in [2] is
employed for the mechanical and electromechanical parts.

Electrical and electromechanical parts, including actuators,
sensors, processing units and drivers are usually selected from
off-the-shelf products. The list of needed components and
their specification are listed in OPEB for each environment.
Also, unambiguous wiring diagrams are provided for electrical
interconnections.

After building the hardware components, the embedded
software should be deployed on the embedded processing unit.
The embedded software is included in OPEB and can be
deployed using installation manuals. To enable the OPEB users
to evaluate their algorithms using different PEs, a standard
API is defined similar to OpenAI Gym environments. More
specifically, the AI agent can interact with the PE using
functions that apply actions and returns the environment
observations and reward signal. Furthermore, the environment
can be reset to the initial state using the PE API.

Finally, the back-end and front-end software components
are provided that enable the OPEB users to deploy their
implemented PE over the cloud. Using this web-based
application, other users can use the PE to upload and run their
AI algorithms on the physical system and see the evaluation
reports such as accumulated score over time and record the
videos of the PE that runs their algorithm.

IV. EXAMPLE IMPLEMENTATION: CLASSICAL
MOUNTAIN-CAR EXAMPLE

In this section, we discuss the process of developing an
example OPEB environment, i.e., the Mountain-Car example,
to demonstrate the methods mentioned in Section III.

In the Mountain Car example, which is first introduced in
[14], the goal is to control the acceleration of a car inside a



x

y
sin
(3
x)

Fig. 2: Mountain Car example

Fig. 3: Car Assembly in the MC-OPEB.

valley in order to move it to the top of the mountain (Fig. 2).
However, the maximum acceleration of the car is limited and
it can not be driven to the top of mountain in a single pass
and the car has to go back and forth a number of times to get
enough momentum to reach to the desired destination. An AI
solution based on Q-learning and tile coding approximation is
presented in [18] for this example with a fast convergence in
a couple of hundred episodes. However, several simplifying
assumptions are made in the original mountain car example
including simplified dynamics equations, exact measurements
without noise and nonlineariy, no sensor or processing delays
and car motion with no friction and no slipping. The last
assumption makes the learning process a fairly easy task since
the kinetic energy delivered by the car’s motor is preserved
in the system. Consequently, the car can endlessly swing
in the valley and the AI agent can make gradual progress
towards the goal by increasing the swing range bit-by-bit using
successive actions. In a real-world situation, none of these
assumptions hold and the agent has to learn a successful policy
in a limited time since the car is going to stop after a few
swings. The mentioned limitations justify the importance of
physical benchmarks that can evaluate the AI algorithms which
are useful in real-world applications, for example industrial
robotics or self-driving vehicles.

A. Mechanical Structures

The MC-OPEB consists of two mechanical structures: Car
and Mountain rail. The car, which is shown Fig. 3, consists
of only two large wheels because a car with two pairs of
rear and front wheels might entangle around the positions of
the path that have low radius of curvature. Also, using only
two wheels results in less overall car weight which enables
us to use a low power motor and simplifies the design or
selection of electrical parts such as motor drive and power
supply. Moreover, to prevent the motor from spinning and to
constrain the car to move inside the mountain rail, 8 pieces
of small ball-bearings are embedded in the car structure using
short metal bars.

Each side of the mountain rail, which is shown in Fig. 4, is
divided to two smaller parts to make them printable using 3D
printers with small beds. Additionally, the whole rail surface is

Fig. 4: Mountain Rail Assembly in the MC-OPEB.

not printed to preserve filament. A flexible cardboard should
be placed on the support bars attached to the rail structure.
The complete STL set of the 3D printed objects are shown in
Fig. 5 and the set of required hardware is listed in Table I.

An example of assembly instruction documents is provided
in Fig. 6 which shows the exploded-view diagram of car
assembly. The assembly instruction includes the step-by-step
action diagrams as explained in [2].
B. Electromechanical Parts

The only electromechanical part needed for MC-OPEB is
the widely-used and low-cost 1.5-3 (V) hobby motor. To
reduce the friction and simplify the mechanical design this

Fig. 5: STL files included for MC-OPEB for all required 3D printed
parts.

TABLE I: List of Materials of required generic hardware parts

Item Quantity
3mmx10mm bolt and nut 29
32mmx2mm steel bar 7
2x6x2.5mm ball bearing 8
10mmx100mm wooden bar 1

Fig. 6: Exploded-view of car assembly as an example of assembly
instruction diagrams in MC-OPEB.



Algorithm 1: Hand-engineered policy for the mountain-car environment
Data: x, v . Instantaneous car position(x) and speed(v)
Result: a . action(a): acceleration direction

1 if |v| < 50 then
2 Choose a left or a right randomly with same probability.;

3 else
4 if v > 0 then
5 a left;

6 else
7 a right;

motor is directly coupled to one of the large wheels on the
car. Also, no transducers, such as potentiometer or a shaft
encoder is coupled to the motor to reduce the weight of the
car and overall cost of MC-OPEB.
C. Electrical Parts

The required electrical parts are: motor driver, two 5V power
supplies for the Raspberry Pi board and driving the motor, and
Raspberry pi camera. We have used low-cost HG7881 motor
drive with PWM inputs. Since the Raspberry Pi has two on-
board pwm outputs we can directly connect it to the motor
drive without any additional interfacing circuit.

The Raspberry Pi camera is used to measure the motion
quantities of the car, i.e., position and speed. The captured
image of the car also can be used to evaluate emerging deep
reinforcement learning algorithms that can control a physical
system only by raw visual data.
D. Embedded Processing Unit

We have used “Raspberry Pi Zero W” platform which
is a powerful and affordable processing unit for different
embedded applications.
E. Embedded Software

The Embedded software used in MC-OPEN is a C++
program that is executed on the Raspbian Jessie OS. The
embedded software is responsible for implementing the 0.01(s)
control timing, capturing and processing the camera image,
running the AI routine supplied by the environment user,
applying the motor voltage command using PWM outputs,
sending monitoring data consisting of instantaneous speed,
position and other status variables, running the learned policy
and recording the performance video upon user’s request.

The camera image is post processed to calculate the position
and speed of the car which are the observations of the MC-
OPEB. First, the HSV pixel values are filtered by some fixed
thresholds to extract the pixels of the yellow marker attached
to the car. Next, the spatial moments of filtered pixels are
calculated and used to obtain the single (x, y) coordinate of
the car. To reduce the noise and estimate the car’s speed, a
linear Kalman filter is implemented in the embedded software.
F. Web Application

The web application is an optional component that can
be run on a secondary general purpose computer. Using the
web application, the MC-OPEB user can see the monitoring
data online and share the implemented physical environment
on the cloud. The cloud user can upload a c++ routine

Fig. 7: Actual Implementation of MC-OPEB.

that implements any custom AI application and evaluate the
algorithm performance using the web application. The cloud
user can also pause the learning and run the learned policy and
see the recorded view of the actual AI algorithm performance.

Fig. 7 shows a picture of the actual MC-OPEB. In the next
section, we show the results of running a reference algorithm
and an RL-based algorithm on the built environment.

V. RESULTS

In this section, we present the results of the experiments
performed on the MC-OPEB to show the effectiveness of
a low-cost PE to perform real-world experiments using AI
methods. The objective is to move the car to a certain height
on the left side of the rail which corresponds to 80 pixel
displacement of the car to the left in the captured image. The
reward is defined is as -1 for all the sampling times that the
car has not reached the destination. Each episode starts from
the car being at the bottom of the valley and ends when it
reaches the desired height on the left side. Therefore, the total
reward which is the RL “return” is proportional to the negated
total episode time. The action is the car’s acceleration direction
assuming that the car moves with the maximum acceleration
and only changes the direction of the acceleration.
A. Reference Solution

To ensure the possibility of moving the car from the lowest
point in the valley to some certain height by any algorithm,
a hand-engineered solution is proposed in Algorithm 1. The
performance of the AI-based solution can be compared with
the reference solution to evaluate the AI algorithm. Fig. 8
shows the result of the reference solution.
B. AI-based solution

The Q-learning algorithm with tile-coding function
approximation is used to show that the proposed MC-
OPEB can be used to evaluate AI algorithms on a physical
environment in real-time.

Fig. 9 shows the learning curve of the AI agent where
the accumulated return vs the episode number is shown. Fig.
10 shows the learned policy at episode 37 which is the best
performance obtained using the AI algorithm. The results show
that the RL algorithm is able to achieve the performance of
hand-engineered reference solution. The less number of swings
made by the RL agent might be due to slight variations in the
physical system and does not necessarily mean the superiority
of the RL algorithm.
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engineered algorithm. After a few swings, the designed algorithm
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Fig. 9: Learning curve of the RL agent. x-axis is the episode number
and y-axis shows the RL return translated to the total time of each
episode. Less absolute value of return means less episode time and
better performance.

VI. CONCLUSION

In this paper, a novel physical environment benchmark
is presented for AI algorithms. The environments can be
implemented using low-cost parts and fabrication methods
such as 3D printing. The proposed benchmarks enable
researchers to easily replicate physical benchmarks to evaluate
their AI algorithms and also share their implemented physical
environments on the cloud with other users. Such collaborative
benchmarking accelerates development of AI algorithms
which can address challenges from real-world physical
systems by engaging many researchers that can replicate the
physical environments or access them on the cloud. We also
presented an example implementation of the proposed physical
environment framework. The results show the effectiveness
of the proposed methods to develop a simple and low-cost
physical benchmark.

Some possible future directions are adding more physical
benchmarks, addressing the resource limitations of Raspberry
PI for more computationally expensive algorithms and easy
deployment of the whole framework on cloud solutions such
as Amazon AWS.
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