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Abstract—Cyber-Physical Systems (CPS) are composed of computing
devices interacting with physical systems. Model-based design is a
powerful methodology in CPS design in the implementation of control
systems. For instance, Model Predictive Control (MPC) is typically
implemented in CPS applications, e.g., in path tracking of autonomous
vehicles. MPC deploys a model to estimate the behavior of the physical
system at future time instants for a specific time horizon. Ordinary
Differential Equations (ODE) are the most commonly used models to
emulate the behavior of continuous-time (non-)linear dynamical systems.
A complex physical model may comprise thousands of ODEs which
pose scalability, performance and power consumption challenges. One
approach to address these model complexity challenges are frameworks
that automate the development of model-to-model transformation. In
this paper, we introduce a model generation framework to transform
ODE models of a physical system to Hybrid Harmonic Equivalent State
(HES) Machine model equivalents. Moreover, tuning parameters are
introduced to reconfigure the model and adjust its accuracy from coarse-
grained time critical situations to fine-grained scenarios in which safety is
paramount. Machine learning techniques are applied to adopt the model
to run-time applications. We conduct experiments on a closed-loop MPC
for path tracking using the vehicle dynamics model. We analyze the
performance of the MPC when applying our Hybrid HES Machine model.
The performance of our proposed model is compared with state-of-the-
art ODE-based models, in terms of execution time and model accuracy.
Our experimental results show a 32% reduction in MPC return time for
0.8% loss in model accuracy.

Index Terms—CPS, Modeling, Simulation, Model-Based Design, Model
Generation, State Machine, FFT

I. INTRODUCTION

Cyber-Physical Systems (CPS) in today’s applications are designed

to control physical plants such as industrial machines, land vehicles,

medical equipment, spacecraft, Unmanned Aerial Vehicles (UAVs),

jet engines, etc. The control systems that are implemented to manage

these complex physical plants also have relatively high level of

complexity. Model-based design is a powerful methodology for the

implementation of CPS control systems. For instance, Model Predic-

tive Control (MPC) is typically implemented in CPS applications,

e.g., path tracking of autonomous vehicles [1], HVAC control in

electric vehicles [2, 3] and formation flying spacecraft [4]. MPC refers

to a range of control algorithms in which a dynamic model of the

physical system is used to predict the future outputs in a determined

horizon [5]. These future outputs of the system are estimated with

respect to known input and output values up to the current state and

future control signals. An optimization problem is evaluated as a

parametric quadratic function to calculate the set of future control

inputs subject to constraints enforced by the environment and the

dynamic of the system.

Ordinary Differential Equations (ODE) are the most commonly

used models to replicate the dynamic behavior of the real physical

system in presence of environmental constraints. The ODE models are

derived from the conservation laws of physics. A complex physical

model may be formulated as thousands of non-linear ODEs which

pose scalability, performance, and power consumption issues. Itera-

tive methods are applied to solve non-linear ODEs using quadratic

programming paradigms [6]. The execution time of this non-linear

programming problem may grow with regards to the algorithms used

for discretization and integration of the ODE models and the number

or order of ODEs representing the dynamic behavior of the physical

system. Development and implementation of techniques to resolve

the execution time of non-linear complex ODEs for online control

systems are fundamental requirements in CPS design.

A real physical system is under constant change from the effects

of the environment. Therefore, we are in need of methodologies to

adapt the system to environmental changes and determine the CPS

application behavior in respond to such changes. In model-based

design applications such as MPC, the complexity of the model under

control has a direct influence on the global performance of the system.

Specifically, different levels of complexity for the target physical

system shall be provided by the user for a specific application. The

work in [7] evaluates the performance of a hybrid controller to steer a

car in straight and curved trajectory segments. It suggests employing

a relatively more advanced model of the vehicle dynamics [8] in

curvature path as opposed to fast and simple kinematic model of

the vehicle to follow straight lines on the path. The state-of-the-

art modeling techniques to design physical models in model-based

CPS applications followed by our contributions in this work are

summarized in section II.

II. RELATED WORK

Cyber physical systems integrate various engineering areas such

as control-, computer-, mechanical-, and network engineering. The

complex and heterogeneous design aspects of CPS requires method-

ologies to combine the corresponding disciplines. Physical models

that capture and emulate the behavior of the real physical system have

gained extensive research attention in CPS design. A wide variety

of physical phenomena such as heart motion, the flow of electric

signal and chemical reactions are well described by equations in the

literature. Complex physical systems models may be implemented

as thousands of ODEs. The mathematical modeling of fuel cells as

a power resource in automobile applications is used to explore the

reduction in CO2 emissions [9]. The model-based design approach in

a vehicle simulation software (ADVISOR) evaluates the operation of

fuel cell models under physical settings such as temperature variation

in different driving cycles (NEDC, UDDS [10]).

Complex ODE models introduce challenges in terms of scalability,

performance, power consumption, and accuracy [11]. The ODE

description of a system requires approximations via solver methods

such as Euler and Runge-Kutta, to be suitable for computations

in computing devices [12]. The demand for more accurate and

mathematically sound CPS solutions, cause an increase in resource

utilization and energy consumption [13, 14]. Research in model-based

design techniques for CPS has introduced solutions to overcome

some of the challenges induced by the complexity of ODE models.
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One approach is to implement the ODEs on Field-Programmable

Gate Arrays (FPGA) using Lookup Tables (LUT) to speed up

the simulation and enable parallel execution [15]. In general, even

though the FPGA implementation of ODE models may improve the

execution efficiency for real-time applications, it has implementation

challenges regarding limited resources, especially for complex ODE

models. Hence, a better approach to modeling and solving of ODE

may be required to reduce the complexity not only on FPGAs but

also on general CPUs.

Another technique to resolve the challenges raised from complex

ODE models is model-to-model transformations and developing

frameworks and tools to automate this process. Model transforma-

tion introduces flexibility and compatibility in model-based design.

Frameworks have been developed to perform automated and semi-

automated model transformation [16]. A heart-on-a-chip model [17]

is introduced to employ timing behavior of the heart signal and

generate different state-based heart conditions as hardware-in-the-

loop to test pacemaker software. The heart model is implemented in

the Simulink environment and the HDL coder toolbox is employed

to generate Verilog code for hardware implementation. The proposed

approach is application specific which requires user expertise to

implement the model of the heart. Moreover, relying on the HDL

coder toolbox for more complex models may require fundamental

modifications in the generated Verilog code.

The work in [7] proposes a hybrid MPC method for path planning

in path following applications. The technique considers two models

of vehicle dynamics with different levels of complexity as predictive

models in an MPC application. A metric is introduced based on

values of speed and steering angle to select among the two predictive

models. The level of complexity for the selected predictive model

determines the tradeoff in accuracy for execution time. The technique

is application specific and limited to only two levels of complexity for

the vehicle model. Moreover, the overhead for complex ODE models

remains unresolved.

The observations from state-of-the-art to design physical models in

model-based CPS applications, categorize the approaches as follows:

• Application specific models of the physical system are selected

at design-time. This approach is bounded to existing mathemat-

ical models of the target physical system.

• Ordinary Differential Equation models are commonly used to

replicate the dynamic behavior of the physical system. The

execution time of non-linear ODE models is often impeding

real-time analysis of cyber-physical systems in model-based

techniques, e.g., MPC.

• Real hardware implementation approaches on FPGA and model-

to-model transformation solutions are proposed to overcome the

bottlenecks raised from ODE complexity.

Relative to existing literature, our contributions in this work can

be summarized as follows:

1) Development of a generic model of a physical system is

automated using software development and machine learning

techniques. ODE models are employed to train the proposed

model at design-time.

2) The model is implemented in state machine representation for

fast performance in CPS applications. A global clock conducts

the trigger to update the state variables and output actions for

the state machine model.

3) The proposed model has a hybrid feature that enables the model

to be adapted to coarse-grained time critical or fine-grained

safety critical situations. This is because the model is formu-

lated upon frequency harmonics information and outputs of the

dynamic model are synthesized from Fast Fourier Transform

(FFT) algorithm. Tuning parameters are proposed to reconfigure

the model with respect to system requirements.

The rest of the paper is organized as follows. In Section III the

architecture of the proposed methodology, tuning parameters, and M-

PC formulation is described in details. We demonstrate the workings

and effectiveness of our framework for path tracking application in

Section IV. Finally, we state our conclusions in Section V.

III. METHODOLOGY

In this work, we introduce the Hybrid Harmonic Equivalent State

Machine model of a physical system to be integrated in control

systems for fast and dynamic performance to model-based design

approaches. The proposed model is the includes frequency domain

properties to synthesize the outputs of the dynamic model for hybrid

accuracy. Moreover, the execution time of the model may be adjusted

in tradeoff with accuracy to adapt the model coarse-grained time

critical or fine-grained safety critical maneuvers. The model uses

notions of state, input, outputs, and dynamics to describe the behavior

of a system as following:

z(t) = f(s,u) (1)

where u represent the vector data of control inputs for a specific time

window which we call the HES Horizon. The variable z(t) stands for

the measured output of the system dynamics at time instant t. The

state variables of the proposed model are presented as s ∈ States.

The high-level architecture for the proposed model contains two main

blocks:

1) State Machine Generator. 2) Harmonic Predictor.

The State Machine Generator block captures frequency information

of the output signal for the determined HES Horizon and generates

the reconfigurable output signal for the target physical system.

The generated output can be reconfigured by the proposed tuning

parameters which are introduced in sections III-B. The inputs to

State Machine Generator block are vectors Rez and Imz of size

(N/2+1) which represent the real and imaginary components of the

frequency spectrum for the output signal z(t). A synthesis algorithm

is developed to integrate these imaginary and real components of

frequency harmonics Frz and generate a reconfigurable represen-

tation of output z(t) in the form of concurrent state machines.

The synthesis algorithm employs (N/2+1) inverse of frequency

harmonics and corresponding real and imaginary components, as

the periods and output magnitudes of concurrent state machines

respectively; this generates N samples of output signal z(t) in the

so-called HES Horizon. A band-pass filter is implemented to translate

the output square waves of the concurrent state machine models

into sinusoidal signals. The sinusoidal output signals, one per state

machine, represent the signal harmonic components. Finally, the

harmonic components are integrated to generate the output signal

for the target physical system. The Harmonic Predictor block is

developed to enable the adaptive feature of the proposed model in

run-time applications. The control inputs are given to the Harmonic

Predictor block to generate the harmonic information of output

signal z(t). Machine learning techniques are applied to develop the

Harmonic Predictor block as a prediction model to fit the relation

between the control input vector u and the harmonic information

vectors Rez and Imz.

A. Model Architecture

The detailed descriptions of the model sub-blocks are presented in

the following sections.
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Fig. 1. 5-State synchronous state machine with the inverse of the signal’s
harmonic frequency as the period.

1) State Machine Generator:

The Harmonic Generator block captures frequency spectrum infor-

mation of the output for the physical system and resynthesizes the

signal in the form of state machine model representation. A synthesis

algorithm is designed and implemented to integrate the harmonic

information vectors Rez and Imz and generate concurrent state

machines with respective frequency harmonics Frz as the update

rates. The synthesis equation of FFT for signal z[k] of size N is

employed as presented in Equation 2. In this equation, k stands for

the index of samples running from 0 to N -1. The vectors Rez[i]
and Imz[i] are the normalized frequency spectrum coefficients for

the sine and cosine waves with index i running from 0 to N/2 for

the respective harmonic frequencies [18].

z[k] =

N/2∑
i=0

Rez[i]cos(2πik/N) +

N/2∑
i=0

Imz[i]sin(2πik/N) (2)

The state machines are represented as a set of states and transitions

between those states that are triggered with respect to conditional

expressions or predicates. Designers use state machines to break com-

plex systems into manageable states and state transitions. Therefore,

the state machine model of computation can fit the synthesis function

components as concurrent state machines. Figure 1 illustrates the

structure of the model generated by the proposed HES framework.

In this model, the components of the physical signal may all be

generated by a five-state synchronous harmonic state machine (HES

Machine). Specifically, the proposed harmonic state machine model

definition is a 5-tuple,

StateMachine=(States,AuxVar,Outputs,Update, InitState)

where States, Aux Var and Outputs are sets, Update is a function,

and Init State ∈ States. These variables are defined as follows:

• States (State Variables): are state space variables enumerated

as −1, S1, S2, S3 and S4. The system is always in the

”current” state.

• Auxiliary Variables : refers to the conditional expressions or

predicates which trigger the state transition process. The proposed

methodology tracks the value of elapsed time variable to perform

state transition when the conditions are met.

• Outputs: is a set of actions per state which assigns FFT coeffi-

cients as output values.

• Update: is referred to as the T ick function in the proposed

methodology. On each call of the T ick function the state machine

executes and the current state’s outgoing transitions are examined

to set the new current state. The actions of the new current state

are then executed.

• Initial State: is the initial current state and its actions are executed

once. The execution of the harmonic state machine is initialized

at state −1.

In the integration process, (N/2+1) concurrent state machines are

implemented with vectors Rez and Imz as output values and the

harmonic frequencies vector Frz is used to calculate the period of

each state machine. These concurrent state machines are executed at

a global rate of Tres which is configured by the user as a framework

parameter. This global clock represents the time resolution of the

state machine. It can be measured as an actual wall-clock (real) time

by periodic programmable interval timers [19] that call an interrupt

service routine (ISR). The global period is designated as the timer

value to iterate the ISR calls. We define one global T ick function to

execute (N/2+1) concurrent state machines per call of the ISR. In

other words, the synthesis components are generated as square waves

with user-specified global time resolution. The framework parameters

are described in Section III-B.

Algorithm 1 illustrates the structure of the Tick function for the

executable state machine model of computation. HES[i] represents

a data structure that includes associated data values per harmonic

state machine. Here, i is the index for harmonic state machine

ranging from 0 to (N/2+1). The parameter HESsize stores the

number of concurrent harmonic state machines which are synthesized

in a signal synthesis process and may be selected as framework

parameters for design configuration and optimization. The output

array values computed by the FFT algorithm, reX[] and imX[]
and frX[], are placed in the HES data structure to represent

HES[i].real, HES[i].imag and HES[i].period respectively. The vari-

able HES[i].elapsedT ime is tracked on each call of the Tick function.

When (HES[i].elapsedTime ≥ HES[i].period/4) condition evaluates

to true, a state transition occurs and an output action is determined

with respect to the current state. N samples of signals are fed into

the HES machine model generator in intervening time windows of T .

Each execution of the Tick function updates the HES[i].elapsedT ime
variable by adding Tres values. The values for the new time window

are evaluated when the HES[i].elapsedT ime variable surpasses the

value T and resets to zero.

The generated square waves are to be translated into sinusoidal

equivalents to represent the sine components of the original physical

signal in the synthesis function. A band-pass filter is applied to

attenuate the unwanted square wave frequencies. The quality factor

of the band pass filter, Q, is considered as a framework parameter

to be configured by the user during optimization. In future work,

we plan to apply further measurements to compensate for filter

error. (N/2+1) sinusoidal signals are integrated to synthesize the

decomposed signal according to Equation 2. The tool generates an

executable C code in state machine representation for the physical

signal to be implemented on a target platform.

2) Harmonic Predictor:

Harmonic Predictor block enables the run-time adaptive feature of

the proposed model—it provides a relationship between the control

inputs and values of the harmonic components for the respective out-

put signal. Machine learning as non-parametric modeling approaches

has gained attention to establish the relation between some measured

responses for complex and non-deterministic system behavior. We
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Algorithm 1: Global Tick Function

Input: index of the state machine i

1 global variable HES
2 global variable magnitude1,magnitude2
3 const TimeResolution

4 switch HES[i].state do
5 case −1 do
6 HES[i].state = S1

7 case S1 do
8 if HES[i].elapsedTime ≥ HES[i].period/4 then
9 HES[i].state = S2

10 HES[i].elapsedTime = 0

11 else
12 HES[i].state = S1

13 case S2 do
14 if HES[i].elapsedTime ≥ HES[i].period/4 then
15 HES[i].state = S3
16 HES[i].elapsedTime = 0

17 else
18 HES[i].state = S2

19 case S3 do
20 if HES[i].elapsedTime ≥ HES[i].period/4 then
21 HES[i].state = S4
22 HES[i].elapsedTime = 0

23 else
24 HES[i].state = S3

25 case S4 do
26 if HES[i].elapsedTime ≥ HES[i].period/4 then
27 HES[i].state = S1
28 HES[i].elapsedTime = 0

29 else
30 HES[i].state = S4

31 otherwise do
32 HES[i].state = −1

33 switch HES[i].state do
34 case S1 do
35 magnitude1[i][HES[i].N1] = HES[i].real× 1.0

magnitude2[i][HES[i].N1] = HES[i].imag× 1.0

36 case S2 do
37 magnitude1[i][HES[i].N1] = HES[i].real×−1.0

magnitude2[i][HES[i].N1] = HES[i].imag× 1.0

38 case S3 do
39 magnitude1[i][HES[i].N1] = HES[i].real×−1.0

magnitude2[i][HES[i].N1] = HES[i].imag×−1.0
40 case S4 do
41 magnitude1[i][HES[i].N1] = HES[i].real× 1.0

magnitude2[i][HES[i].N1] = HES[i].imag×−1.0
42 otherwise do
43 magnitude1[i][HES[i].N1] = HES[i].real× 1.0

magnitude2[i][HES[i].N1] = HES[i].imag× 1.0

44 HES[i].elapsedTime+ = TimeResolution
45 HES[i].N1 ++

46 return

apply a machine learning technique to fit a predictive model that

maps the control input vector u of size N to respective harmonic

information vectors Rez and Imz of size (N/2+1). We interpret

our input and output vectors for the predictive model as time series

data to leverage time series prediction approaches [20].

Neural Networks (NN) have solved time series prediction [21]

and hold promising performance to learn linear and non-linear

models without prior knowledge of the relation between input and

output variables[22, 23]. Feedforward networks are a class of neural

networks, where the input feeds forward through the network layers

to the output. This network is arranged as three input, hidden and

output layers. Each layer includes a set of nodes with edges to pass

the information. The nodes in the hidden layer and output layer are

active and data may be modified as opposed to nodes in the input

layer that are passive with no permission to change the data. The

edges entering the active nodes are associated with a weight that

are factors to inputs of the nodes—these wights are adjusted to yield

good performance for the predictive model. A nonlinear mathematical

function, e.g., the sigmoid function, is used to limit the node’s output

[18]. The prediction of the time series data is conducted using the

direct NN method in which the time series of output is predicted all

at once [24].

The Harmonic Predictor block is implemented in two offline and

online phases. The implementation of these phases in for MPC

application is illustrated in Figure 2.

(a) Training.

(b) Prediction.

Fig. 2. Training and Prediction phases of the Harmonic Predictor block in
MPC.

1. Offline Training Phase: In this phase the weight values are

adjusted and determined with respect to the iterative flow of training

data through the network. The network learns the pattern that maps

the vector of input values to the associated output signal. As shown in

Figure 2(a), simulation is conducted on the ODE model of the target

physical system to record the control inputs u and respective output

values z to be employed as the data set for the training phase. The

recorded current output values zc are fed into Fast Fourier Transform

algorithm in time windows of so-called HES Horizon to derive the

frequency information. The frequency domain of a signal carries the

same information as the time domain; that is, you can calculate one

domain symmetrically from the other one, which is addressed as the

duality property [18]. The vector data of control inputs u and the

output value from previous time step zp are considered as the input

features and the respective output signals Rez and Imz are the target
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values of the training data sets.

2. Online Prediction Phase: The mapping that is fitted in the

NN layers during the training phase is automatically retrieved in

online prediction. The Harmonic Predictor block is used to predict

harmonics information of the output signal from the respective run-

time values of control inputs u. The predicted harmonic information

is fed into the State Machine Generator block for output generation

as shown in Figure 2(b). That is, the output of the proposed physical

model z can adapt to variations in control inputs u in run-time.

B. HES Machine Tuning Parameters

In this section three tuning parameters HESsize, Tres and Q for

the proposed framework are described by which the model may be

adjusted to meet system requirements (e.g. accuracy and timing).

Machine Size (HESsize) specifies the number of harmonic concurrent

state machines to be integrated during the synthesis process ranging

from 1 to (N/2+1). The model accuracy may be adjusted with

respect to this parameter by inclusion/elimination of certain harmonic

frequencies.

Time Resolution (Tres) parameter indicates the smallest time unit in

the proposed framework by which the generated state machine will

be executed. The proposed framework tracks the value of Tres as an

actual wall-clock (real) time. Tres specifies the timer values for the

periodic programmable interval timers to trigger the interrupt service

routines.

Q-Array (Q) is an array of filter quality factors that characterize

the band-pass filter response with respect to its center frequency. A

filter with a high-quality factor will have a narrow pass-band and

vice versa. The quality factor is calculated as the ratio of cut-off

frequency to bandwidth. The band-pass filter is required to translate

the generated square waves for the harmonic state machine output to

sinusoidal equivalents.

The following section describes the application of the proposed

framework in model predictive control systems.

C. MPC Formulation

The proposed model is integrated into the context of model

predictive control for CPS applications. Model predictive control

designates an ample range of control techniques that incorporate three

elements[25]:

1. Prediction Model: a predictive model to replicate the dynamic

behavior of the real physical system with regards to laws of physics.

2. Objective Function: the objective function is usually formulated

as a Least Squares (LSQ) objective to obtain the control law. The

future output values z should follow the desired reference signal zr

in a determined prediction horizon Tp. Moreover, the deviation from

a given reference Δz and the control effort Δu should be penalized.

3. Obtaining the Control Law: the controller employs a mathemat-

ical formula called the control law to determine the output u that is

sent to the physical model f(s, u).

The predictive model of the physical system is employed to

estimate the future outputs z(t+k|t) at time instant t for k = 1...Tp.

The notation z(t + k|t) refers to value of the output variable z in

time instant t + k, estimated at time t. The future output values

are determined by the past input and output values up to instant

t and future control inputs u(t + k|t), k = 0...Tp − 1. These

future control inputs are calculated in an optimization problem that

forces the system to satisfy a determined criterion and follow the

reference values for the output signal. This optimization problem

is a parametric quadratic function to be solved with analytical or

iterative solutions using the linear or non-linear model of a physical

system respectively[26]. The optimized control input value for the

first instant of the prediction horizon u(t|t) is sent to the physical

system under control and the process is repeated for the next sampling

time. The MPC formulation taken from [26] is the solution to the

following optimization problem at each time instant

min.
z,u

‖z(Tp)− zr(Tp)‖2Pc

+

Tp∑
t=0

‖z(t)− zr(t)‖2Qc
+ ‖u(t)− ur(t)‖2Rc

(3a)

s.t.

z(t) = f(s(t), u(t)), (3b)

s(0) = ŝ(0), (3c)

q(z(t), s(t), u(t)) ≥ 0 t ∈ [0, Tp] (3d)

Equation (3a) represents the LSQ objective function where Pc, Qc

and Rc are weight matrices. The model of system dynamics is defined

in Equation (3b), where z(t), s(t) and u(t) represent outputs, state

variables and control inputs respectively. Equation (3c) initializes the

state variables at time s(0) with current estimates ŝ(0). Additional

physical limits and constraints may be imposed for system variables

through Equation (3d).

Ordinary Differential Equations are the most commonly used mod-

els to emulate the behavior of continuous-time (non-)linear dynamical

systems in response to all possible inputs and initial conditions

[5]. Discretization methods (e.g. Euler and zero-order hold) are

applied to transform the continuous differential equations into discrete

difference equivalents, appropriate for numerical computing. The

discretized differential equations are solved using numerical methods

with regards to the linearity of the model. The approach to solve non-

linear ODEs is iterative methods, where a series of linear equations

are solved iteratively to converge to the solution for the non-linear

ODE. Therefore, the computation complexity of solving N samples

of ordinary differential equations may grow with respect to c′N ,

where c′ is a constant factor defined by the discretization algorithm,

numerical ODE solver, number and order of the ordinary differential

equations in the physical model.

In an MPC application, the ODE solver method is evaluated per

equation to estimate the future control inputs u(t + k|t) at each

prediction horizon time instant k = 0...Tp − 1; that is, to calculate

the control inputs in the next k future steps, one equation in the ODE

model of the physical system should be solved k times. Therefore, nk
iterations of the solver are computed to solve n equations comprising

the ODE model of the physical system.

As mentioned before, The proposed state machine model for the

physical system is featured with vector data for control inputs u. At

each simulation time step: 1. The Harmonic Predictor block generates

the frequency information of the output signal for the next k time

instants for k = 0...Tp − 1 all at once where Tp represents the HES

Horizon, 2. The State Machine Generator block generates the output

z(t) as a signal for time interval Tp. The execution time to generate

the output signal in time window Tp is based on the term cN , where

c may be adjusted by the proposed tuning parameters HESsize, Tres

and Q in tradeoff with accuracy. Therefore, for c � c′ the proposed

model can surpass the ODE equivalent in terms of execution time.

The MPC application may leverage this feature of the proposed model

to reduce its return time for fast estimation of future control inputs.
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IV. EXPERIMENTAL RESULTS

A. Setup

The State Machine Generator block is implemented using the

C/C++ programming language in order to enable it to be highly

portable and compatible with various platforms for compilation and

execution. The global clock of the state machine model is updated

by interrupt handlers of the operating system.

TABLE I
ERROR ANALYSIS FOR NN WITH RESPECT TO VARIATIONS IN NUMBER OF

STEPS IN THE PREDICTION HORIZON.

The Harmonic Prediction model is trained by using the Matlab

neural networks module (nftool). The training algorithm used in

this work is the Levenberg-Marquardt (LM) algorithm also known

as damped least-squares (DLS). The LM algorithm is an edition to

Gauss-Newton method using a trust region approach [27] which is

initially designed as a numerical method to minimize functions that

are sums of squares of nonlinear functions. This benefits the neural

network training, where the performance metric is the mean squared

error. As mentioned before the training phase is offline and applies

no additional execution time to the run-time application. The input

features and the target outputs for the training phase are the control

input vectors u and frequency harmonic components Rez and Imz

respectively.

The experiments are conducted for prediction horizon of size Tp

which determines the size for vectors u, Rez and Imz as Tp,

(Tp/2)+1 and (Tp/2)+1 respectively. We concatenate the control input

vectors with the output values from the previous time step to create

the vector for input features. The output values from the previous time

step are concatenated to the time series to consider past behavior of

the system. The target outputs dataset is a time series of size Tp

for Rez vector of size (Tp/2)+1 followed by the same size vector

Imz. The dataset is acquired from 2 seconds simulation of MPC

application with 0.01 seconds sampling time and 2 iterations of FFT

algorithm for output signal z(k) for k = 0...Tp−1. Table I illustrates

the configurations for the neural network and corresponding train and

validation error.

For our control application, we adopt the software framework

based on the ACADO Toolkit [28]. ACADO Toolkit is an open

source software written in C++ for automatic control and dynamic

optimization. It provides a self-contained environment to implement

control algorithms including model predictive control as well as

state and parameter estimation. The framework contains efficient

implementations for numerical integrators, Runge-Kutta [29] and

BDF [30] to solve ODEs and differential algebraic equations(DAEs).

ACADO is designed with the object-oriented paradigm and may

easily be extended to link external packages and existing algorithms.

Our experiments are performed on a PC with a quad-core Intel Core

i5 and 8 GB of DDR3 RAM.

Fig. 3. Schematic view of the vehicle model.

B. Model Performance Metrics

Two performance metrics of computation time overhead and pre-

cision are considered for comparing the performance of our HES

Machine model with state-of-the-art models.

• Execution Time: refers to the processing time required by the

operating system and any utility that supports application pro-

grams. One of the merits of the proposed state machine-based

model is that the state machines do not execute compute-intensive

and iterative tasks to describe the behavior of a physical system.

Moreover, concurrent operation of the state machines is perfectly

suitable for intrinsic parallel characteristics of physical systems.

In other words, it allows multiple sub-state machines to react to a

set of events at the same time.

• Accuracy: is a quality factor to measure the error between the

values evaluated by a model and the corresponding expected

real values. Root Mean Squared Error (RMSE) is considered to

quantify the accuracy as in Equation 4. The Expected variable

holds the sample values of the real physical signal, Evaluated
variable is the output of the HES Machine model for the respective

physical system, and N represents the number of samples.

RMSE =

√
(
∑

(Expected− Evaluated)2)

N
(4)

C. Implementation for Path Tracking Application

To evaluate the effectiveness of the proposed design, we imple-

ment our generated model of vehicle dynamics to be integrated

into the MPC closed-loop for path tracking application. The path

tracking problem is dependent on the vehicle modeling to design

multi-constraints model predictive control law. As mentioned in the

methodology section, the training phase for the Harmonic Predictor

block performs the offline simulation with the ODE model of the

target physical system to acquire training datasets. The ODE model

of the vehicle dynamics [7] shown in Figure 3 is given in equation

form as:

ẋ = v sin(θ) (5a)

ẏ = v cos(θ) (5b)

v̇ = cos(δ)a− 2

m
Fy,f sin(δ) (5c)

θ̇ = φ (5d)

φ̇ =
1

J
(La(masin(δ) + 2Fy,fcos(δ))− 2LbFy,r) (5e)

δ̇ = ω (5f)

where x and y are longitudinal and lateral positions, v is the

longitudinal velocity, θ is the azimuth, φ and δ represent the angular
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speed and steering angle respectively. The variable La is the distance

of sprung mass center of gravity from the front axle, Lb is the

distance of sprung mass center of gravity from rear axle and J is te

angular momentum. The variables Fy,f and Fy,r stand for front and

rear tire lateral force. These forces are computed from the following

equations:

Fy,f = Cy(δ − Laφ

v
) (6)

Fy,r = Cy(
Lbφ

v
) (7)

where Cy refers to the lateral tire stiffness. The model is

parametrized with respect to real-world specifications. La=Lb=1.5m,

mass m=1700 kg and tire stiffness data for a 2011 Ford Fusion is

applied.

The following cost function is considered for tracking a path

subject to track and input constraints:

min.
x,y

Tp∑
t=0

‖x̂(k + 1|k)− xr(k + 1|k)‖2Qc
(8a)

+ ‖ŷ(k + 1|k)− yr(k + 1|k)‖2Qc
(8b)

s.t.

−0.25 ≤ δ ≤ 0.25 (8c)

−1.25 ≤ ω ≤ 1.25 (8d)

−30 ≤ a ≤ 30 (8e)

The performance of the proposed HES model of the vehicle

dynamics in run-time MPC for path tracking application is compared

with the model in Equation 5a. The performance of two models in

tracking a static path for a certain time horizon is illustrated in Figure

4. The HES model is capable to follow the reference path with the

average of 1% error in comparison to ODE model with an average

error of 0.2%. The small loss in accuracy in using HES model is in

the tradeoff for improved performance for applications that are error

tolerant.

Fig. 4. Analysis of performance for HES model and ODE model in trajectory
tracking application.

We compare the error values for ODE model and HES machine

for different prediction horizon time steps in Table II. The HES

Machine is configured with respect to framework parameters, Time

Resolution and Machine Size. The Machine Size parameter is set to

the maximum value for fair comparison of HES and ODE models.

The results indicate comparable error values for two models. The

variations in the error for HES model is due to the non-deterministic

behavior of the neural network model. In our future work, we plan

to evaluate Machine Learning techniques to consider the step size in

the prediction model.

TABLE II
ERROR COMPARISON OF ODE MODEL AND HES MODEL FOR DIFFERENT

STEP SIZE IN THE PREDICTION HORIZON.

TABLE III
EXECUTION TIME COMPARISON OF ODE MODEL AND HES MODEL FOR

DIFFERENT STEP SIZE IN THE PREDICTION HORIZON.

The models are analyzed in terms of execution time over different

prediction horizon time steps. The results in Table III indicate that

the performance of HES model surpasses the ODE equivalent for

large values of step size. The execution time for both ODE and HES

models are compared in Figure 5 with respect different number of

steps. The results in Figure 5 illustrate that the performance of ODE

model drops below HES model after a certain cross point; that is,

HES model of vehicle surpass the ODE equivalent by 32% in terms

of performance for large prediction horizon time steps. Therefore,

HES Machine models of physical systems may be an appropriate

reconfigurable replacement for ODE equivalents in applications with

large prediction horizon requirements that are tolerant to 1% error.

Fig. 5. Comparison and analysis of execution time for ODE model and HES
model.

Figures 6 depicts the accuracy of the generated model for Pareto-

optimal configurations of model parameters. The Pareto-optimal

points were explored for the precision metric of RMSE as the

optimization cost function. The results justify our claim to reduce

the value of HESsize parameter for faster execution of the model with

minor loss of accuracy. The proposed hybrid state machine system

may be an excellent replacement for complex ODE solvers when

used for in CPSs.
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Fig. 6. ”Time Resolution” analysis considering RMSE for the HES Model

V. CONCLUSION

We presented a model generation framework to transform ODE

models of physical systems to Hybrid Harmonic Equivalent State

(HES) Machine model equivalents. The proposed model may be

reconfigured to adjust its accuracy and execution time from coarse-

grained time critical situations to fine-grained scenarios in which

safety is paramount. Experiments on a closed-loop MPC for path

tracking application is performed using a model of vehicle dynamics.

We analyze the performance of MPC when applying our HES

Machine model. The performance of our proposed model is compared

with state-of-the-art ODE-based models, in terms of execution time

and model accuracy. Our experimental results show 32% reduction

in MPC return time for 0.8% loss in model accuracy.
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