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Abstract—This paper introduces the Gravity compiler.
Gravity is an open source optimizing Artificial Neural Network
(ANN) to ANSI C compiler with two unique design features that
make it ideal for use in resource constrained embedded systems:
(1) the generated ANSI C code is self-contained and void of any
library or platform dependencies and (2) the generated ANSI C
code is optimized for maximum performance and minimum
memory usage. Moreover, Gravity is constructed as a modern
compiler consisting of an intuitive input language, an expressive
Intermediate Representation (IR), a mapping to a Fictitious
Instruction Set Machine (FISM) and a retargetable backend,
making it an ideal research tool for exploring high-performance
embedded software strategies in AI and Deep-Learning
applications. We validate the efficacy of Gravity by solving the
MNIST handwriting digit recognition on an embedded device. We
measured a 300x reduction in memory, 2.5x speedup in inference
and 33% speedup in training compared to TensorFlow. We also
outperformed TVM, by over 2.4x in inference speed.

Keywords—Artificial Neural Networks, Embedded Software,
Compilers for Embedded Systems, Design Automation

I. INTRODUCTION

An Artificial Neural Network (ANN) is a numerical information
processing system inspired by the way biological nervous systems,
including the human brain, manipulate information [1]. Properly
configured and trained, ANNs are remarkably good at extracting
patterns, extrapolating trends, discovering complex correlations or
detecting faint signals in ways that traditional computer algorithms or
humans fall short [2]. Some examples where ANNs provide an effective
solution include function approximation [3], time series signal
prediction [4], correlation analysis [5], classification and pattern
recognition [6], model predictive control [7] and deep reinforcement
learning [8].

A fully connected, feed-forward ANN is a network of neurons
organized in a number of /ayers. The neurons of the first layer are the
input values. The neurons of the last layer are the output values. All
other layers are called the hidden layers. During activation, the output
(i.e., y) values are computed for some input (i.e., x) values. During
activation, each neuron receives a weighted sum from neurons in the
previous layer, makes a bias adjustment, applies an activation function
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and feeds its value forward. Hence, an ANN must be configured with a
large set of weight/bias values. During training, a cost function is used
to compute the error in the activation output of the ANN with respect
to the target values. Through a back-propagation process, these error
derivatives are used to adjust the weight/bias values at some rate (i.e.,
learning rate). Typically, a number (i.e., batch) of training passes are
averaged prior to adjusting the main weight/bias values for better
numerical stability. A comprehensive discussion of the activation and
training techniques can be found here [9][10].

For general computing, a number of high-level modeling
platforms exist that enable designers and scientists to rapidly
capture ANNs and train/deploy them efficiently. These
platforms are often available with bindings in high-level
languages such as Python [11], Apache Spark [12],
MATLAB/Simulink [13] and so on. Perhaps one of the best-
known and highly optimized examples is the TensorFlow
platform [14], which we will use as a benchmark in this work.
While such platforms are appropriately well suited for desktop
and cloud computing environments, they are highly onerous for
use in embedded environments with limited compute and
memory resources [ 15][16]. The Gravity compiler combines the
abstraction and ease-of-use attributes of TensorFlow with a
lightweight and resource optimized implementation that is well
suited for resource constrained embedded devices.

The key contributions of this work include:

e  Gravity, a compiler taking as input an abstract description of
an ANN and generating an ANSI C compliant, dependency
free and memory optimized executable ANN with training and
inference functionality. Specifically, the generated code uses
a succinct memory representation for weight/bias and
intermediate calculations without reliance on a dynamic
memory manager. The output is dependency free and does not
require linking with external libraries.

Gravity is constructed as a modern compiler consisting of an
intuitive input language, an expressive Intermediate
Representation (IR), a mapping to a Fictitious Instruction Set
Machine (FISM) and a retargetable backend, making it an
ideal research tool for exploring high-performance embedded
software strategies in Al and Deep-Learning applications.

Gravity is open source and freely available for community use
and contributions. Moreover, all examples, data, validation
and testing reported in this paper are released as part of the
Gravity repository for complete reproducibility [17].

This paper describes the innerworkings of Gravity and
demonstrates the benefits of using it to solve the MNIST handwriting
digit recognition system [18][19].
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Directive Req.
.module string-arg Y

Description

Defines the name of the output C files to be
the string-arg.

Prepends the string-arg to every external C
function generated by the Gravity compiler.
Specifies the objective function optimization
strategy. Default is stochastic gradient
descent with a learning rate of 0.1[20].
Specifies the numerical precision of the
generated code. The type may be any of
float, double or fixed [whole-digits, frac-
digits]. The default is 32-bit IEEE floating
point, i.e., float.

Specifies the loss function between the ANN
prediction and training labels. The fiic may
be any of quadratic, exponential or
cross_entropy. The default is the cross
entropy [21].

Specifies the training batch size. Default is
1.

Specifies the ANN input layer dimension.
The int-expr is any valid positive integer
expression.

Specifies the ANN output layer dimension
and activation function. The int-expr is any
valid positive integer expression. The act-
fnc is one of ReLU, linear, SoftMax or
Sigmoid.

Specifies an ANN hidden layer dimension
and activation function. The int-expr is any
valid positive integer expression. The act-
Jnc is one of relu, linear, softmax or sigmoid.
At least one hidden layer is mandatory. The
ordering of the hidden layers will follow the
order in which they are defined in the source
file.

.prefix string-arg N

.optimizer opt args N

.precision type N

.costfnc firc N

.batch int-expr N

.input int-expr Y

.output int-expr act-fnc Y

.hidden int-expr act-fnc Y

Table 1: The Gravity Language Specification.
II. THE GRAVITY COMPILER

In this section, we describe each of the main components of the
Gravity compiler. These include the input language and lexical
analyzer/parser that generate an Intermediate Representation (IR), the
Artificial Neural Network (ANN) compiler that generates the output
program for a Fictitious Instruction Set Machine (FISM) and the final
stage of generating the ANSI C code using a retargetable backend.
Then, we describe the memory architecture used by Gravity to
accommodate the weight/bias as well as intermediate values.

A. Language Analyzer/Parser & Intermediate Representation

Gravity takes as input a simple text file description of the desired
ANN. By convention, a program written for Gravity will have a * . g
extension and contain a number of directives. Other than directives, the
only other permissible content may be white spaces or comments,
which begin with the “//” and extend to the end of the line. Table 1 lists
all the available directives. Listing 1 gives a complete Gravity program
that describes the ANN model used in our MNIST handwriting digit
recognition system.

.module "mnist"; // output: mnist.[h]|c]
.prefix "mnist";

.optimizer sgd 0.1;

.precision float;

.costfnc cross_entropy;

.batch 8;

.input 28 * 28;

.output 10 softmax;

.hidden 100 relu; // first hidden layer
.hidden 100 relu; // second hidden layer

Listing 1. The Gravity description of the MNIST ANN.

Gravity uses lex/yacc to generate the lexical analyzer and parser
front-end. This front-end tokenizes the input, checks for grammatical
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correctness and calls a set of backend functions for each language
production to construct the IR object. The IR objectisa C struct type
containing nested elements that closely correspond to the directives
listed in Table 1. In particular, the top-level object contains a member
array object called “nodes” that recursively defines the input, hidden
layers 1, 2, ... and output layer specification. Finally, additional sanity
checks and ANN model correctness steps are carried out over the IR
object. The fully validated IR object is then passed on to the ANN
compiler to generate a number of programs for a virtual machine with
a fictitious set of instructions.

B. Artifical Neural Network Compiler

Gravity translates the ANN model (i.e., the IR) to three distinct
programs, each defined as a sequence of high-level instructions for
FISM, namely: activate, propagate and train. Think of these programs
as procedures in high-level languages.

The activate program implements an inference pass on a fully
connected ANN having layers 1 (input), 2 ... N—/ (hidden) and N

(output). The activate program computes a’-" as shown:
at =x
Kl ki1
1 _ 1-1 ! 1
a=o ZZaj xW;; + B;
i=1 j=1

Here, x is the ANN input vector and W/B represent the weights and
biases. Superscripts reference the corresponding layer and subscripts
reference the corresponding neurons within a layer. The indices of
represent the weights on the edge between the source i and destination
Jj neurons. Finally, K denotes the number of neurons at the given layer
I. As a last step, an activation function (i.e., ) is applied to the
weighted average. The activate program is used for inference as well
as for training. For inference, the ANN model output is @". Hence the
generated C pseudocode for forward inference is defined as:

inference( x — y )
activate( x — alV)
y = aN

The propagate program computes a single back-propagation pass
using the previously computed o’V activations. Specifically, given y
as a sample output label, the algorithm starts from the last layer N,
computes a loss function and uses the chain-rule to compute partial
derivatives for each of the layers, storing the results in &"+2. A full
description of the back-propagation algorithm can be found here
[9][10]. The ANN compiler generates a sequence of high-level
instructions for FISM that precisely compute a set of derivatives d"-2.
The derivatives @2 are used to compute adjustments, a batch at a
time, to the W and B parameters using the specified optimization
strategy (e.g., stochastic gradient descent). Hence the generated C
pseudocode for the frain program is as follows:

train( xi.s,yi.s = W,B )
for s = 1 .. S /* batch_size */

activate( xs = a )
propagate( a,ys > +W’,+B’ )
W/B = W/B - learning rate * W//B’ + S

In the above pseudocode, weight/bias adjustments are averaged as
W’/B’ and then applied to the actual W/B parameters using the
specified learning rate.

The ANN compiler produces intermediate code using the FISM
instructions for each of the three programs: activate, propagate and
train. These instructions are summarized in Table 2. Listing 2 shows
the generated FISM instructions for the activate program of the ANN
model used in our MNIST handwriting digit recognition system.
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Instruction

RET

RETARG a
BATCHLOOP N
RANDOM g, N, R
CLEAR a, N
COPYX a, N
MAC1 a, b,c, N, M
MAC2a, b,c, N, M
MAC3 a, b,c, N, M
MAC4 a, b, C, N
ADD a, b, N

SUBY a, N

RELU a, N

LINEAR a, N
SOFTMAX a, N
SIGMOID a, N
RELUD q, b, N

SOFTMAXD a, b, N
SIGMOIDD a, b, N

Description

Program ends and returns void.

Program ends and returns a.

Executing a training loop with N iterations.
a; = random(—Rto+R)|i=1..N
a;=0]i=1..N

a; =x;|i=1..N,xis the ANN input
a; =X X by X g

a =X X b Xg

t=a a; =YL XLt +hxg
a=a;+ byxC|li=1..N

a;=a;+ b |i=1..N

a;=a;— y;|i=1..N,yisthe ANN output
ai={02: Z;g li=1..N
a;=a;|i=1..N

a; = softmax(a,a;) |[i=1..N
sigmoid(a,a;))|i=1..N

8
Il

(0, b <0,
ai_{ai, bi20|1—1...N
a; = softmax’(a,a; — b)) |i=1..N

a; = sigmoid'(a,a; —b)|i=1..N

Table 2: The FISM instructions.

COPYX <float> @716880 784

MAC1l <float> @720016 @0 @716880 100 784

ADD <float> @720016 @313600 100

RELU <float> @720016 100

MAC1l <float> @720816 ©@314000 @720016 100 100
ADD <float> @720816 @354000 100

RELU <float> @720816 100

MAC1l <float> @721616 ©@354400 @720816 10 100
ADD <float> @721616 @358400 10

SOFTMAX <float> @721616 10
RETARG <float> @721616

Listing 2. ANN Compiler FISM output (activate program).

Listing 2 shows a sequence of instructions where each instruction
is annotated with the desired precision, in this case 32-bit IEEE floating
point. Depending on the user specified precision directive, the ANN
compiler will generate appropriate instructions, including 64-bit IEEE
floating point or fixed-point integer arithmetic with a user specified
precision for the whole and fractional parts of the real value.

Furthermore, Listing 2 shows the arguments to the FISM
instructions which are either a numerical address of the memory
containing the operand vectors (i.e., those starting with the @ symbol)
or integers that define the vector dimensions as shown in Table 2. A
FISM program describes a dataflow in terms of a sequential set of
instructions. Hence, jumps and branches are not allowed. However,
each one of the FISM instructions, as described in Table 2, is in turn
implemented with some looping internal structure. These looping
structures have two attributes that make them ideal for further
optimization: (1) the number of loop iterations are always a priori
known and (2) the loop nests access memory sequentially.

Finally, the BATCHLOOP N instruction deserves a special
mention. This instruction is used to emulate the batch training loop of
the train program (see above). Semantically, it calls the activate
followed by the propagate programs N times.

C. Retargtable Backend

For each of the FISM programs (i.e., activate, propagate and train),
Gravity’s retargetable backend is responsible for generating the output
ANSI C code. Currently, the ANSI C generator is the only available
target, however, other backends (e.g., OpenCL and OpenGL for use
with FPGA/GPU acceleration [22][23]) are being developed.
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0 hard (not needed for inference) size - 1

Weights & Biases

Figure 1: Memory Utilization of Gravity Generated ANSI C Code

The ANSI C backend applies a template for each of the FISM
instructions listed in Table 2 to generate a corresponding output. For
example, the template for the MACT1 instruction is shows in Listing 3.
{ /* MAC1 */

$typel *z =
const %$typel *A =
const %typel *B =

(¥typel *)( m_ + %offsetl );
(const %typel *)( m_ + %offset2 );
(const %typel *)( m_ + %offset3 );

$type2 i, j;
for (i=0; i<%boundl; ++i) {
z[i] = 0.0;

for (j=0; j<%bound2; ++j) {
z[i] += A[i * %bound2 + j] * B[]jl];
}
}
}

Listing 3. ANSI C backend template for MAC1 instruction.

Here, typel is derived from the ANN precision specification and
type2 is automatically optimized to be sufficiently large to
accommodate the loop iterations. The offset!, offset2 and offset3 give
the memory address of the operand vectors and are extracted from the
corresponding FISM instruction. Likewise, boundl and bound? are
extracted from the corresponding FISM instructions. The generated
ANSI C code for the MNIST handwriting digit recognition system is
shown in Listing 5 (activate program).

These ANSI C templates are carefully designed to provide an
optimizing C compiler all the hints necessary to generate highly
optimized machine code and are void of safety hazards.

D. The Gravity Memory Model

Gravity packs the various vectors needed to train or activate the
ANN in a contiguous memory region. Moreover, this contiguous
memory region is composed of two sub regions, starting with the
memory address [0 ... hard— 1] and [hard ... size — I]. For a particular
ANN specification, the hard and size values are computed by Gravity
and can be queried by the calling application to supply the required
memory as a single byte array. The memory utilization of the
generated code will depend on the precision specification as well as
the number of ANN layers and neurons. However, the memory
utilization is both minimal and deterministic.

The region of contiguous memory from [0 ... hard — 1] contains
the weight/bias values plus a small amount of working memory needed
for inference. No other memory is allocated or used by the generated
ANSI C code. Moreover, this first region of memory is serializable. In
other words, a calling application can store and retrieve this region of
memory as needed. This is how a trained ANN can be persisted for
subsequent inference. The region of contiguous memory from [hard
... size — 1] is used during training to hold intermediate calculations.

The memory addresses referenced in Listing 2 (i.e., those starting
with the @ symbol) denote an offset within this contiguous memory
region.

Figure 1 pictorially depicts the memory layout of Gravity
generated ANSI C code.

Another capability of the Gravity compiler is that it can generate
code with any of the float/double precision IEEE or user specified
fixed point arithmetic with the desired number of bits dedicated to the
whole part as well as the fractional part (see .precision directive in
Table 1).
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E. Invoking the Gravity Compiler

The Gravity compiler is open source software distributed under the
GNU General Public License v3.0. The compiler itself is written in
ANSI C and available as a public GIT repo [17]. It has been compiled
on macOS as well as different Unix/Linux flavors. Other than lex/yacc,
there are no external library dependencies when building the Gravity
source code. Gravity can be used in two modes: (1) as a traditional
compiler and (2) as a just-in-time (JIT) compiler.

The traditional compiler mode includes modeling the ANN in the
Gravity language and using the gravity compiler to generate the
*. [c|h] files. These files are then compiled and linked with the target
application. The generated MNIST digit recognition function signatures
are shown in Listing 4.

int mnist_version(void);

size_t mnist_memory size(void);

size_t mnist_memory hard(void);

void mnist_initialize(void *m);

void *mnist_activate(void *m, const void *x);

void mnist_train(void *m, const void *x, const void *y);

Listing 4. Generated ANSI C code function signatures.

Here, version () returns the version of the Gravity compiler
used, memory size () returns the size of the contiguous memory
needed for inference and training, memory hard () returns the size
of the contiguous memory needed for inference only, initialize ()
assigns random weight/bias values to a contiguous memory,
activate () runs inference on input x using the weight/bias values
stored in the contiguous memory m and train () trains a batch of
input/output pairs (i.e., x and y) and updates the weights in m.

When building Gravity, in addition to the compiler executable,
libgravity. [a|so] are generated. An application can link with
these libraries and use Gravity facilities in JIT mode. Specifically,
Gravity can be embedded within an application and an executable ANN
can be created dynamically using the function show in Listing 6.

g_t g_open(const char *optimizer,
const char *precision,
const char *costfnc,
const char *batch,
const char *input,
const char *output,

/* hidden */ ...);

Listing 6. Gravity compiler used in JIT mode.

Here, g open()is used to invoke the Gravity compiler to
generate an ephemeral ANSI C file, which in turn is compiled on-the-
fly into machine code and dynamically linked (using d1open) with the
calling process. This function’s arguments closely resemble the
directives stated in Table 1. A returned handle is thereafter used with
functions identical to those listed in Listing 4. The JIT mode is ideal for
desktop or cloud use cases where a highly optimized ANN executable
model is desired. One such use case is in design space exploration
where a large number of hyper parameters are explored in parallel.

EXPERIMENTS AND VALIDATION

We set forth to establish the efficacy of Gravity in a series of
experiments and validation benchmarks. To do so, we utilized Gravity
as the core component in solving the MNIST handwriting digit
recognition system [18][19].

The MNIST dataset is composed of 60,000 28%28 8-bit/grayscale
images of handwritten digits (i.e., 0 through 9) for training and 10,000
additional images, having the same attributes, for testing. Furthermore,
the datasets include, for each image, a label that identifies the depicted
digit in the corresponding image (i.e., a number between 0 and 9). The
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static float *_activate_(char *m_, const float *x_) (
{ /* COPYX *
memcpy(m_ + 716880, x_, 784 ¥ sizeof (float));

{ /* MAC1 */

float *z = (float *)( m_ + 720016 );
const float *A = (const float *)( m_ + 0 );
const float *B = (const float *)( m_ + 716880 );
uint32 ¢ 4, 1
for (i=0; i<100; ++i) {

2[i] = 0.0;

for (j=0; j<784; ++j) {

z[i] += A[1 * 784 + j] * B[j];

3

e

e

ADD */
float *za = (float *)( m_ + 720016 );

const float *B = (const float *)( m_ + 313600 );
uint32_t i;

for (i=0; i<100; ++i) {

za[i] += B[i];

/* RELU */
float *za = (float *)( m_ + 720016 );
aint32 ¢ 1
for (i=0; i<100; ++i) {

if (0.0 >= za[i]) {

za[i] = 0.0;

3

3

{ /* NAC1 ¥/
float *z = (float *)( m_ + 720816 );
const float *A = (const float *)( m_ + 314000 );
const float *B = (const float *)( m_ + 720016 );

~

uint32_t
for (i=0; i<100; ++i) {
z[i] = @.0;

for (j=0; j<100; ++j) {
z[i] += A[1 * 100 + j] * B[i];

b

}
{ /= ADD */
float *za = (float *)( m_ + 720816 );
const float *B = (const float *)( m_ + 354000 );
uint32 t 1:
for (i=0; i<100; ++i) {
za[i] += B[il:

/* RELU */
float *za = (float *)( m_ + 720816 );
uint32_t i;
for (i=0; i<100; ++i) {
if (8.8 >= za[i]) {
za[i] = 0.0;

e

3

/% MAC1 */
float *z = (float *)( m_ + 721616 );
const float *A = (const float *)( m_ + 354400 );
const float *B = (const float *)( m_ + 720816 );
uint32 t 1, 3§;
for (i=0; i<10; ++i) {

z[i] = @.0;

for (j=0; j<100; ++j) {

z[i] += A[1i * 100 + j] * B[j]:

e

3

* ADD */
float *za = (float *)( m_ + 721616 );
const float *B = (const float *)( m_ + 358400 );
uint32_t i;
for (i=@; i<10; ++i) {

za[1] += B[i];

~

3

{ /* SOFTMAX */
float *za = (float *)( m_ + 721616 );
float x=za[@], m=0.0;
uint32 ¢ 13

for (i=1; i<10; ++i) {
if (max < za[i]) {
max = za[i];

3

for (i=0; i<1@; ++i) {
za[i] -= max;
sum += (float)exp(za[i]);

3
for (i=@; i<10; ++i) {
za[i] = (float)exp(za[i]) / sum;

{ /* RETARG */
return (float *)( m_ + 721616 );
}
>

Listing 5: Generated ANSI C code (activate program).
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Accuracy Train-Time Test-Time Train/Test-
(usec / (usec / Memory
sample) sample) (MB)
GravityC 0.967 124 18.3 0.722/0.358
TensorFlow 0.971 154 39.7 209/ ---
TVM 0.966 211 67.9 345/ ---

Table 5: Gravity performance vs TensorFlow/TVM on iMac.

Accuracy Train-Time Test-Time Train/Test-
(usec / (usec / Memory
sample) sample) (MB)
GravityC 0.967 2060 139 0.722/0.358
TensorFlow FAIL FAIL FAIL FAIL
TVM 0.965 3019 328 335/ ---

Table 3: Gravity performance vs TensorFlow/TVM on Raspberry Pi 3.

Accuracy Train-Time Test-Time Train/Test-
(usec / (usec / Memory
sample) sample) (MB)
GravityC 0.967 475 333 0.722/0.358
TensorFlow 0.971 644 111 209/ ---
TVM 0.965 911 78.4 382/ ---

Table 4: Gravity performance vs TensorFlow (Raspberry Pi 4).

MNIST problem is to build a classifier capable of being trained with
the 60,000 image/label pairs (i.e., training dataset) and tested with the
additional 10,000 image/label pairs (i.e., the test dataset) for accuracy.

As a reference implementation, we chose the Python TensorFlow
platform (data and source code available at the Gravity repository [17]).
We modeled the MNIST ANN as having 784 inputs, two hidden layers
(i.e., 100 neurons per layer and ReLU activation) and 10 output neurons
using SoftMax activation. Furthermore, we used a stochastic gradient
descent optimization strategy with a learning rate of 0.1. Our cost
function for training was set to cross-entropy. Tuning of this ANN
would require setting 89,400 weight and 220 bias values.

For performance measurements, we ran the TensorFlow as well as
TVM [27] implementations for 4 training/testing epochs on a desktop
computer. A training epoch consisted of feeding batches of 8 images as
input and using the known labels as output for the entirety of the 60,000
image/label pairs. Testing consisted of feeding the 10,000 test images
as input and checking the output for correctness against the known
labels. Likewise, we used Gravity to generate an identical ANN and
combined it with a small C driver application to execute precisely as
our TensorFlow/TVM implementations. Our Gravity description of the
ANN is shown in Listing 1. We preloaded the training/test datasets into
RAM in both TensorFlow/TVM and Gravity/C versions to exclude the
effects of dataset load time from our measurements.

In our benchmarking, we tracked the following metrics: accuracy
(i.e., measured as the number of correct test activations divided by the
total number of test images, namely, 10,000), training-time (i.e., the
time it takes per a single training backpropagation pass), activation-time
(i.e., the time it takes per a single inference pass) and train/test-memory
(i.e., the amount of RAM necessary to train and activate, respectively).

A.  Gravity Generated C Code vs. TensorFlow/TVM Models

For the first experiment, our machine consisted of a 4 GHz Quad-
Core Intel Core 17 with 32 GB 1867 MHz DDR3 running CentOS Linux
release 8.0.1905. The software environment included GCC 8.2.1,
Python 3.6.8 and TensorFlow 2.0. Results are given in Table 3. Table 3
shows that despite TensorFlow’s highly optimized engine, the Gravity
generated ANSI C code performed 20% better during training and 2.4x
better during inference. More importantly, the memory utilization of the
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Gravity generated code was approximately 300x lower. Similarly,
Gravity outperformed TVM by a considerable margin.

We repeated the tests on a Raspberry Pi 3 Model B+ having a 1.4
GHz 64-bit Quad-Core ARM Cortex-A53 processor running Raspbian
9.11. This system had 1 GB of RAM. The software environment
included GCC 6.3.0, Python 3.5.3 and TensorFlow 1.14.0 as well as
TVM. Results are given in Table 4. Table 4 shows that Gravity was
successful at running the MNIST benchmark on limited resources with
predictable memory utilization and reasonably performant training and
inference latencies. On the other hand, TensorFlow failed to execute
this benchmark due to out-of-memory faults, despite numerous
attempts to tune and optimize the TensorFlow model. TVM was able to
execute on this device, but it only achieved 50% training rate compared
to Gravity and 2.4x reduction in inference times.

To address the above mentioned TensorFlow failure, we opted for
a more powerful Raspberry Pi 4 Model B 2019 having a 1.5 GHz 64-
bit Quad-Core ARM Cortex-A72 processor running Raspbian
Gnu/Linux 10 (buster). This system had 4 GB of RAM. The software
environment included GCC 8.3.0, Python 3.7.3 and TensorFlow 1.14.0.
Results are given in Table 5. This time, we were able to execute the
MNIST benchmark using TensorFlow. Nevertheless, Gravity generated
ANSI C code outperformed TensorFlow in every aspect averaging 35%
better training times, 4.2x better testing times, and 289x lower memory
utilization.

For all TensorFlow tests, we note that we measured the
libtensorflow-framework.so.2 resident (i.e., physical)
memory only to better isolate the ANN memory utilization (the total
Python process memory utilization exceeded 1 GB). There are no
facilities in TensorFlow to limit the memory utilization for inference
only. Furthermore, the accuracy of both TensorFlow and Gravity
tracked closely and the small variance in accuracy was discovered to be
a function of different random weight/bias assigned values during
initialization.

Averaging all Gravity vs. TensorFlow data, we measured a 33%
speedup in training, 2.5x speedup in inference, and 300x reduction in
memory utilization.

B.  Gravity Generated C Code for a Deeper ANN

We repeated our previous experiments on the MNIST dataset but
this time changed the ANN architecture from 784:100:100:10 to
784:50:50:50:50:10. Specifically, we changed the ANN from 4 layers
(inclusive of input/output) to 6 layers win each hidden layer having half
as many neurons. We re-evaluated the same set of performance metrics
(i.e., accuracy, train-time and test-time) for Gravity generated code vs.
TensorFlow and TVM. Our results are summarized in Table 6.

As expected, the running time improved, as the overall capacity
computational load of the deeper ANN was reduced. Of note is that
Gravity generated C code showed better execution time improvement
in both training and inference with respect to TensorFlow and TVM.
Specifically, Gravity training time was reduced by 37% while
TensorFlow and TVM was reduced by 25%. Similarly, Gravity
inference time was reduced by 56% while TensorFlow and TVM was
reduced by 47/45% (TensorFlow/TVM).

Accuracy | Train-Time Test-Time Train/Test-
(usec / (usec / Memory
sample) sample) (MB)
GravityC 0.955 79.1 8.00 0.384/0.190
TensorFlow 0.954 115 21.2 171/ ---
TVM 0.931 158 37.5 19.6 / ---

Table 6: Gravity performance of Deep ANN vs TensorFlow/TVM on iMac.
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C. Gravity Generated C Code on a Microcontroller

A main objective in the design of Gravity was to create an
automated and rapid software synthesis methodology for embedded
applications. To test this, we designed an embedded device with a single
AVR ATMEGA1284-PU microcontroller running at 20 MHz. This
microcontroller is a tiny 8-bit device without support for floating point
arithmetic [24]. Our microcontroller had 128 KB of program memory
and 16 KB of RAM. We attached a 16 GB SD card to our
microcontroller using its SPI interface to hold our training and test
datasets (i.e., approximately 50 MB of data). We added 1 MB of
external SRAM to serve as the working memory (8 x AN1245 serial
SRAM). We ported our Gravity implementation of MNIST to this
embedded device (i.e., modified the C driver application to load the
datasets from the SD card) and successfully ran a number of training
and test epochs to measure performance. We used GCC as a cross-
compiler to build the AVR binary.

For this embedded device, the total MNIST code size, including the
driver application and the 32-bit floating point emulation library was
approximately 107 KB. Our embedded device was able to execute a
single training pass in approximately 1.63 sec/sample. The test pass
took approximately 0.486 sec/sample. While slow compared to our
powerful desktop, these numbers are remarkable given the limited
capabilities of our tiny microcontroller!

We intentionally chose a tiny 8-bit microcontroller in this
experiment to demonstrate the enabling capabilities of Gravity. It would
be extremely difficult, if not impossible, to port TensorFlow to an 8-bit
AVR! While a competent engineer can program the same ANN in C by
hand, gravity automates the process, generates code in a fraction of a
second, does not require domain expertise and outputs a correct by
construction executable model from an abstract ANN description. This
is the value added to the design automation community.

RELATED WORK

We have already introduced a number of platforms, including
TensorFlow, which provide a rich set of API for capturing ANNs at a
high level of abstraction [11][12][13][14]. While highly efficient and
easy to use, these platforms are very demanding in terms of resource
utilization and unavailable on embedded devices with limited
capabilities. A well-known attempt at addressing ANNs for embedded
devices is the FANN [25] library. While lightweight, FANN is not an
ANN compiler and is mostly optimized for inference rather than
training. FANN has a higher memory and execution overhead and
requires porting to a target that is more onerous in nature. Similarly,
TensorFlow Lite is a designed for deployment on IoT and mobile
devices. TensorFlow Lite is an open source deep learning framework
for machine learning models. Unlike Gravity, TensorFlow Lite is
intended for on-device inference only. Gravity, on the other hand can
be used for efficient training as well. As with other library-based
solution, TensorFlow Lite is a one size fits all attempt and lacks the
ultra-low resource utilization design principles of Gravity.

Perhaps one of the most significant contribution in this area is
TVM, a compiler that exposes graph-level and operator-level
optimizations to provide performance portability to deep learning
workloads across diverse hardware back-ends. TVM solves
optimization challenges specific to deep learning, such as high-level
operator fusion, mapping to arbitrary hardware primitives, and memory
latency hiding. It also automates optimization of low-level programs to
hardware characteristics by employing a novel, learning-based cost
modeling method for rapid exploration of code optimizations [27].
While TVM has a similar purpose as Gravity, its footprint, in terms of
code size, is considerably larger than Gravity and has lower
performance than Gravity, as illustrated in our experiments.
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Another relevant art, called Glow is a machine learning compiler
for heterogeneous hardware [28]. Specifically, Glow, is a pragmatic
approach to compilation that enables the generation of highly optimized
code for multiple targets. Glow lowers the traditional neural network
dataflow graph into a two-phase strongly typed intermediate
representation. The high-level intermediate representation allows the
optimizer to perform domain-specific optimizations. As with many
other approaches, the Glow design flow is targeted toward research rich
systems and is unable to generate efficient code on embedded, low-
memory systems.

Another class of work in this area is the building of custom
compilers for neuromorphic hardware [29][30][31]. These compilers
assume the existence of some highly specialized processing element
and generate code that is intended to run on these hardware accelerators.
In contrast, Gravity generates ANSI C code for standard processors,
including those without floating point support. Moreover, these
compilers require a pre-trained ANN to function correctly [29].

Hardware implementation of ANNs have received tremendous
attention, particularly for low latency applications. A good summary of
such techniques can be found here [32]. Gravity can be retargeted to
generate high-level circuit description with OpenCL as a backend.

CONCLUSION

This paper introduced Gravity, an Artificial Neural Network to
ANSI C compiler that is particularly good at generating software for
embedded systems. Gravity automates the generation of tight and
lightweight code for resource constrained embedded processors. This
open-source project is intended as a useful tool for engineers who are
designing AI/ML-based embedded devices as well as researchers who
are exploring high-performance embedded software strategies in Al and
Deep-Learning applications. We demonstrated the usefulness of the
Gravity compiler with the MNIST handwriting digit recognition system
in an embedded environment that is capable to train and activate a
relatively large ANN on limited memory and compute resources. We
measured a 300x reduction in memory usage, 2.4x speedup in inference
and 20% speedup in training compared to TensorFlow. We are
currently working on adding OpenCL and OpenGL backends to
Gravity. We like to explore more sophisticated data precision
management systems. Future work can include using Gravity as the
kernel of a design space exploration algorithm to optimize the ANN
hyper-parameter space.
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