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Abstract—Diabetes impacts around 8% of the world’s pop-
ulation, with Type 2 diabetes comprising up to 90% of cases.
This chronic disease is characterized by a metabolic resistance
to insulin which results in a high blood sugar level and increased
potential for serious health complications. Preventative medicine
and the detection of genetic predisposition play a key part
in successful treatment. Although several factors have been
identified as possible indicators of underlying diabetes, they
are not the same in every patient. There have been different
approaches to producing predictive models that could help
identify risk of onset diabetes. Models built using Machine
Learning algorithms have showed promise in the past in detecting
relevant features in sample datasets with data from patients at
risk of developing diabetes. However, overall performance has
not been consistent across datasets. In this paper we describe a
feature extraction approach using Hyperdimensional Computing
as a tool for improving already existing classification models.
We tested our approach using two public datasets and compare
across several state of the art models. Our approach improves
poor performing models while fine tuning models with a high
classification accuracy.

Index Terms—diabetes, hyperdimensional computing, deep
learning, classification

I. INTRODUCTION

Diabetes mellitus (commonly known as diabetes), is a

metabolic disorder that affects a considerable percentage of

the world’s population, with some reports suggesting that

over 8% of the world’s population is living with diabetes

[1]. Type 2 diabetes, the most common form (up to 90%

of all cases of diabetes), is characterized by a metabolic

resistance to insulin, a natural hormone produced by the

pancreas, and relative insulin deficiency. This results in a high

blood sugar level and health complications that include heart

disease, blindness, poor circulation, and death [2]. In most

cases, type 2 diabetes is treatable and a number of lifestyle-

related approaches can be effective in preventing diabetes or

delaying disease progression. Sedentarism, high body fat, and

poor nutrition rich in sugars and carbohydrates are heavily

linked to an increased risk of developing type 2 diabetes.

However, genetic predisposition can be a determining factor

that is difficult to detect. While individual cases might not be

linked to a broader predisposition, many studies have identified

key populations with a high tendency for type 2 diabetes. One

of the study populations is that of the Akimel O’odham or

commonly known as Pima [3].

In the early 1970’s, a large study of the Pima Population

sponsored by the National Institute of Diabetes and Digestive

and Kidney Diseases was conducted to identify the main

factors behind the high index of diabetes registered in this

group. While obesity and genetics were identified as key

indicators, other factors were identified as predictors too.

The resulting dataset from this study has been the focus of

medical and machine learning (ML) research for many years.

Smith, et al. [4] developed an adaptive neural network called

ADAP that was applied to a subset within the Pima population

dataset. These analyses focused on predicting future diabetes

in women over the age of 21 among those who were not

diagnosed with diabetes within the next year. The goal was to

develop a prediction algorithm to identify women who would

be diagnosed with diabetes within one to five years after the

initial assessment.

A newer dataset was presented by Islam, et al. [5]. This

dataset was constructed by surveying patients at the Hospital of

Sylhet, Bangladesh, who had symptoms that were considered

indicative of diabetes. The outcome was validated by the

result of medical assessment. The authors of the dataset use a

supervised ML algorithm to classify patients as being diabetic

or not at the time of medical assessment. Unlike the Pima

dataset, the outcome of the Sylhet dataset was immediate

(diabetes testing performed at the same visit when the features

are collected).

Both datasets show that there’s a correlation between vital

signs, lab results and genetic predisposition, to a positive

diagnosis of diabetes. Since then, other ML algorithms have
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been used with different levels of success at detecting such cor-

relation. The purpose of this work is to use a novel approach

based on Hyperdimensional Computing (HDC) to improve

predictive models without adding a large computational over-

head. HDC is a neuroinspired architectural approach to pattern

recognition [6]. The full scope of HDC proposes replacing the

Von-Neumann models that focus on translating problems into

models that can be executed using binary computing, for a

new model of computation that relies on sparse distributed

memory. Even on current architectures, HDC has shown great

potential for classification problems [7].

A. Related work

On the intersection of diabetes and ML, most research is

focused on predicting diabetes before the patient is diagnosed

with the condition. With the greater availability of data and

the accuracy that deep learning achieves, some of the research

has seen real life implementation [8]–[10]. In the specific case

of the Pima dataset, most recent research achieves up to 98%

validation accuracy using deep learning [11]. It is important

to note, however, that due to the size of the dataset, vali-

dation accuracy is unlikely to translate into testing accuracy.

For example, one of the models we developed that used a

Sequential Neural Network without early stopping, achieved

100% validation accuracy, but very poor testing accuracy. This

is most likely due to overfitting. Therefore, it is difficult to

cross compare work done for Pima since they vary on how

they handle the data. However, models closely comparative to

ours that do little preprocessing of data have a testing accuracy

range between 67% and 85% [12]–[16].

Park et al. [17] used a sequential neural network, similar to

the one we used in this work, but applied to a different dataset.

They achieved an overall classification accuracy of 86% in

detecting diabetes. There’s promising research with bigger

datasets that is being translated into real world applications

[18]. The most resilient ones are self-improving and self-

sustainable by feeding from the data they process. This is what

allows novel approaches achieve the development study phase

of research and eventually implementation.

HDC has had good results within bioinformatics. The work

of Rahimi, et al. [19], [20] uses data from non-invasive

electrode’s to model brain activity and predict the subject’s

intentions. They achieve a 5% improvement in accuracy over

ML approaches. Similarly, Imani, et al. [21] uses HD comput-

ing for DNA modeling, achieving over 99% accuracy.

In this work, we use HDC on the features present in

each dataset to encode each instance (patient subject) as a

multi-dimensional vector (hypervector) to predict the future

onset of diabetes (for the Pima dataset) or to detect the

presence of diabetes (for the Sylhet dataset). We describe a

purely HDC model that uses Hamming distance [22] as the

classification metric and a hybrid HDC with Deep Learning

(HDC+DNN) model that uses hypervectors as input for ML

models. The HDC model achieves up to 79% classification

accuracy on the Pima dataset and 96% classification accuracy

on the Sylhet dataset. The HDC+DNN model achieves 89%

validation and testing accuracy on the Pima dataset and 97%

validation and testing accuracy on the Sylhet dataset. Finally,

we compared our models with state of the art models, using

both regular features and hypervectors. We discuss that adding

hypervectors to existing models has the potential of improving

their validation accuracy up to 10%.

II. METHODOLOGY

For this work, we first encoded the features into binary hy-

pervectors with ten thousand (10k) bits. The full and detailed

explanation for the relationship between dimensionality and

representation can be found in Kanerva’s work [6] but here is a

brief and paraphrased explanation of it. With 10k bits we have

210,000 different hypervectors that we can generate to represent

unique data points by flipping digits. Our data points can be

represented in this high dimensional hyperspace where we can

exploit certain properties, especially those related to clustering

and proximity of relevant hypervectors. For example, for any

given point, half of the space is closer than 0.5 (that is, 5,000

bits or less are different) and the other half is farther away.

However, at a distance of 0.47 only a thousand-millionth is

closer. This distribution makes the model robust and tolerant to

noise since it is easier to separate correlated hypervectors from

those that are distant in the hyperspace. While dimensions of

20,000 or 30,000 share similar properties, through informal

experiments, we didn’t see much improvement by using larger

vectors.

We use binary hypervectors because binary operations on a

Von Neumann architecture are easy and highly efficient. Many

operations such as multiplication and addition can be applied

using logical operators (such as AND, OR and XOR) and can

exploit low-level parallelism. However, ternary (with values of

-1, 0 and 1) and integer hypervectors could also be used [6].

After encoding our data points, we classified the hyper-

vectors using a distance metric and later a supervised ML

algorithm. The original HDC classification model relies on

hamming distance to identify the output class. While euclidean

distance could also be used, computing hamming distances on

binary vectors is more straightforward (the distance is given

by the number of bits that are different between two hyper-

vectors). In addition to this distance based model, we used the

hypervectors to train classification models based on Random

Forest [23], Decision Trees [24], K Nearest Neighbors (KNN)

[25], eXtreme Gradient Boosting (XGBoost) [26], CatBoost

[27], Stochastic Gradient Descent (SGD) [28], Support Vec-

tor Classifier (SVC) [29], Light Gradient Boosting Machine

(LGBM) [30], Logistic Regression [31], and a Sequential Deep

Neural Network (Sequential NN) with a Rectified Linear Unit

(ReLU) activation [32]. All of these models were used as

implemented in the Scikit-Learn ML library [33].

A. Datasets

For this work we use the Pima dataset and the Syhlet dataset.

We chose these two because of the work that has been done

around them and because they offer different perspectives
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Feature Positive Negative
Age 36 (21-60) 28 (21-81)
Pregnancies 4 (0-17) 3 (0-13)
Glucose 145 (78-198) 111 (56-197)
BMI 36 (23-67) 32 (18-57)
Skin Thickness 33 (7-63) 27 (7-60)
Insulin 207 (14-846) 130 (15-744)
DPF 0.6 (0.12-2.42) 0.47 (0.08-2.39)
Blood Pressure 74 (30-110) 69 (24-106)

TABLE I
FEATURE DISTRIBUTION FOR THE 8 FEATURES CAPTURED IN THE DATA

SET. THE VALUE REPRESENTS THE AVERAGE AND INSIDE THE

PARENTHESES, THE RANGE.

to the problem of predicting onset diabetes. However, it is

important to understand the pecularities of both datasets.

1) Pima Dataset: The data captured by Knowler, et al.

[3] included all adult members of the Pima community in

Arizona. For a span of 5 years, they captured relevant data

including family history, plasma glucose concentration, and

physical measurements such as body mass index. The derived

dataset, made initially available by Smith, et al. [4], considered

additional qualifiers:

• The subject is female.

• The subject is over 21 years old.

• Using a glucose tolerance test (GTT), diabetes was either

detected within the next five years (positive) or GTT

didn’t detect any in five years or more.

• If diabetes occurred within one year or less of the sam-

pling date, then the data for that subject was discarded.

This is done as a curating measure to reduce the number

of patients who were misdiagnosed as non-diabetic and

the time of collection.

The dataset contains several entries with missing data. To

deal with this drawback we removed subjects that had missing

data, ending up with 262 patients in the negative class and 130

in the positive class. Table I describes the value distribution

per feature. These were selected due to their relevance for

diagnosing type 2 diabetes. Age and Body Mass Index (BMI)

have been widely documented as correlated to type 2 diabetes

[34]. Glucose and Insulin concentrations are obtained through

the Plasma Glucose Concentration at 2 Hours in an oral

Glucose Tolerance Test (GTT) which is a trusted source for

diagnosis. Number and quality of pregnancies, as well as

blood pressure (diastolic) are indicators of diabetes as well

[35]. Diabetes degree function and Skin Thickness were novel

observations at the time of the study:

• Skin thickness: Triceps Skin Fold Thickness has been

used as an assessment of proper nutrition since the mid-

1970s [36]. The measurement is done around the upper

back of the left arm. This value is often used along with

BMI for assessing a patient’s fat concentration. Since type

2 diabetes is heavily linked with obesity, skin thickness

is as accurate as using other bodily measurements.

• Diabetes Pedigree Function: DPF was developed by

Smith, et al. [4] to quantify the family history with type

2 diabetes. For each subject, DPF is computed as:

DPF =

∑
i(Ki(88−ADMi) + 20)

∑
j(Kj(ALCj − 14) + 50)

Where i measures the ranges of all relatives who had

developed diabetes before the examination date, j for

all the relatives who didn’t develop diabetes. K is the

percentage of genes shared by the relative (0.5 for a

parent or sibling, 0.25 for half sibling, grandparent or a

parent’s sibling, and 0.125 for cousins and parent’s half

siblings). Relative’s age of diabetes mellitus (ADM) is

the age of a relative with diabetes and Relative’s age

of cleared diagnosis (ACL) for a non-diabetic relative.

Constants 88 and 14 are for normalizing the function

according to the maximum and minimum relative ages.

The constants 20 and 50 adjust the function to emphasize

old relatives without diabetes and young relatives with

diabetes.

The effectiveness of these two features in predicting dia-

betes has been documented since then [37].

In order to deal with the issue of missing data, the dataset

with all missing values removed is called Pima R. We did a

separate set of experiments using the version of the dataset

generated by Artem [38] where each missing value was

replaced with the median value of it’s corresponding class.

We call this Pima M.

2) Syhlet dataset: The Syhlet dataset was collected through

questionnaires from patients of the Sylhet Diabetes Hospital in

Sylhet, Bangladesh [5]. It contains 520 entries (320 positive,

200 negative). The purpose of their work was to compare the

accuracy of 4 ML models (Naive Bayes, Logistic Function,

Decision Tree and Random Forest) in identifying diabetes in

patients that had symptoms correlated to it. unlike the Pima

dataset, patients in the Sylhet dataset who are positive have

already developed diabetes at the time of data extraction. Their

best performing model is built using Random Forest with a

97.4% accuracy in a 10 fold cross-validation test. The features

of the dataset are: age, sex, polyuria, polydipsia, sudden weight

loss, weakness, polyphagia, vaginal thrush, itching, irritability,

delayed healing, partial paresis, muscle stiffness, alopecia, and

obesity. Other than age, all the other features are binary (sex

uses 1 for Male and 2 for Female).

B. Data encoding

The features in the Pima dataset are linear. That is, the

different values are in proximity to each other relative to the

difference in magnitudes. Because of this, we used linear en-

coding for generating the hypervectors. In general, this type of

encoding is used when the relative value of a feature contains

crucial information about the instance [19]. For example, when

analyzing age we know by intuition that a value of 45 is closer

to 50 than it is to 70. The linear encoding algorithm for binary

10k long hypervectors is as follows:

1) For each feature, identify min(V) and max(V) which are

respectively the lowest and highest feature values.
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2) Generate a random 10k binary hypervector that is par-

tially dense (has an equal amount of 1s and 0s). This

is our seed vector and is used to represent every value

equal or lesser than min(V). (A lesser value could be

found in new data that hasn’t been seen by the encode)

3) For all the remaining values, flip an equal x number

of 0 and 1 bits from the seed vector according to the

following formula:

x =
k(t−min(V ))

2(max(V )−min(V )))

Where k is the dimensionality of the vectors, t is the

target value, and V is the list of all the continuous values

for a specific feature. The range is doubled so that the

highest value gets a hypervector orthogonal (half of the

elements are different) to the hypervector representing

the lowest value.

Notice that our encoding process will generate two hyper-

vectors that are orthogonal to each other: one for the lowest

value and one for the highest value. This means that for

each feature, each hypervector is at most 5,000 bits away

from all other hypervectors and the hypervectors that represent

neighboring values are closer to each other than to those

of distant values in a linear sequence. Each feature has a

different seed hypervector. Randomness is important during

the encoding process, we don’t want to bias the encoding

towards the relevance of a subset of features.

For the Syhlet dataset, we used linear encoding for the age

feature. The remaining features are binary (values can be yes

or no), therefore, we generated a seed hypervector to represent

0 and an orthogonal hypervector to represent 1. The orthogonal

hypervector is generated by flipping an equal number of 1’s

and 0’s chosen randomly.

For each dataset, the hypervectors that represent the features

are combined into a patient (or instance) hypervector. The

encoding for each patient works as follows:

1) Compile all the feature vectors for the patient.

2) Combine all the feature hypervectors using the majority

rule (also known as majority voting) on each bit.

3) Use the newly generated 10k bit hypervector to represent

the patient in the hyperspace.

Majority voting works as follows:

1) For each bit of the hypervectors. Count the number of

1’s and 0’s.

2) Set the bit in the combined hypervector to the most

common number (1 or 0) in the feature hypervectors.

3) For tie braking (when the number of 1s and 0s is equal)

we chose 1 as the resulting number [39].

For example, given three feature hypervectors: A, B and C.

If the first bit of A (A0) and the first bit of B (B0) are 1, and

the first bit of C (C0) is 0, then the first bit of the hypervector

resulting from combining the three vectors will have the value

of 1. An alternate approach to counting each bit is to add the

respective bits, divide by the number of feature hypervectors,

and round the result to 1 or 0.

C. Classification with Hamming distance

After all the patients have been encoded, we can use a

distance metric to determine similarity among them. Hamming

distance was originally proposed as the go to metric for binary

hypervectors due to its computational efficiency [6], [39]. We

used Hamming distance for classification and validate our

model using leave-one-out cross-validation. The process for

this validation is as follows:

1) For each patient hypervector, measure its Hamming

distance to all other patient hypervectors. Record the

predicted class as the known class of the closest hyper-

vector.

2) Compare the actual class of the patient hypervector to

the predicted class. If the classes are equal it is recorded

as a true positive (both classes are 1) or true negative

(both classes are 0). If they are not equal it is recorded

as a false positive or false negative.

3) Repeat for all other patient hypervectors in the dataset.

Leave-one-out is generally the most accurate cross-

validation method but also the most cost-prohibitive [40].

However, when compared to traditional ML, HDC has the

algorithmic advantage that once the hypervectors are con-

structed there’s no model that needs to be built, we only need

to measure distances. Considering the relative small size of

our datasets, leave-one-out is feasible and cost-effective.

D. Classification with a Deep Neural Network

Using Hamming distance for HDC classification has yielded

classification performance metrics that matches or beats other

ML approaches in other domains [21], [39], [41]–[44]. How-

ever, using hybrid approach, where the distance metric is

replaced by an ML model, has the potential of yielding

improved results. For this purpose we built two sequential

neural networks (Sequential NN) [45], one with the original

features as input (8 for Pima and 16 for Syhlet) and the other

with hypervectors as input (10k). Both networks consist of two

dense layers with 32 nodes and a ReLu activation function and

binary output layer with a sigmoid activation function.

For validation purposes, the data is split 70/15/15 (70% is

used for training, 15% for validation and 15% for testing).

We ran each network for 1000 epochs with an early stopping

condition (if the loss function doesn’t improve across 20

consecutive epochs, the training stops). We repeated the exper-

iment 10 times and reported on the average testing accuracy

(Table II)

III. RESULTS

A. Classification with various models

The Table II shows the testing accuracy of the Hamming

and Sequential Neural Network models. The latter comparing

the model built with the original features to the one that

used hypervectors. For both versions of the Pima dataset,

the Sequential NN model saw a considerable improvement

when using hypervectors. However, with the Syhlet dataset

there was no improvement. One reason for this could be
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Model Pima R Pima M Syhlet
Features Hypervectors Features Hypervectors Features Hypervectors

Hamming - 70.7% - 78.8% - 95.9%
Sequential NN 71.2% 79.6% 75.9% 88.8% 97.4% 97.4%

TABLE II
TESTING ACCURACY FOR THE HD COMPUTING BASED MODEL USING HAMMING DISTANCE AND THE SEQUENTIAL NEURAL NETWORK TRAINED ON

RAW FEATURES AND ON HYPERVECTORS.

due to the added dimensionality of Syhlet’s features and that

Syhlet is a more balanced dataset than Pima. The Hamming

distance model, as most distance-based models, will suffer if

there aren’t enough examples of each class to populate the

space. We believe that this is why both models did better

with Syhlet. The work of Artem [38] provides a comparison

across popular ML models using the Pima dataset and with a

focus on accuracy. We created our own models using the same

ML algorithms implemented by Artem and other works [46],

[47]. We evaluated the impact of adding hypervectors to these

models and used them to classify each of the three datasets:

Pima with missing values removed (Pima R), Pima with

median values replacing the missing values (Pima M), and the

Syhlet dataset. In order to normalize the results, we used the

same hyper-tuning variables used in the mentioned references

and modified the input for using hypervectors. Following

the original validation methodology, we used 10-fold cross

validation. For the ML models we ran two experiments per

dataset, one with the original feature values and the second

using hypervectors. Before looking at the testing performance

metrics we analyzed how the training accuracy was impacted

by the addition of hypervectors. Table III shows the training

accuracy for each experiment.

Combining hypervectors with other models sometimes

translates into a dramatic improvement (over 10% higher

accuracy in the case of SGD) or reduces the accuracy of the

model by 4% in the worse case. On average, hypervectors

improved the training accuracy of models by 1.3%. We didn’t

fine-tune any of the ML models to adapt for hypervectors,

therefore there is potential for further improvement.

We looked closer at the models for the Syhlet and the Pima

M datasets. Table IV has the testing performance metrics for

the Pima M datasets. We used a sample of 10% of the dataset

for testing, training on the other 90%. While we still observed

inconsistencies in how much improvement was obtained from

using hypervectors, the combination of hypervectors with

Random Forest and SVC produced the strongest performing

models.

The metrics for the Syhlet dataset using the same approach

are in Table V. Random Forest with hypervectors once again

outperformed every other model. We include the Hamming

model for reference, however the metrics for it are from

leave-one-out validation. Hamming distance alone results in a

relatively high accuracy. This was surprising to us since this is

the most cost-effective approach among the models presented

in this work.

Regarding running time, we observed that the performance

of the Sequential Neural Network was similar (10 msec per

epoch) using the original feature values or the hypervectors as

input. On the other hand, LGBM, XGBoost and CatBoost see

a major increase in computing time when using hypervectors

(over 10x). We didn’t observe a significant performance differ-

ence for the remaining models. We do not account for the time

it takes to build the hypervectors. Maximizing performance of

HDC is beyond the scope of this work.

It seems that the amount of data and number of available

features has an influence on whether hypervectors will improve

a classification model or not. With lesser amounts of data, deep

learning strategies struggle to perform well, a phenomenon that

has been seen in other data-constraint problems [48]. But when

more data is available, as is the case with the Syhlet, the added

dimensionality from the hypervectors doesn’t contribute much

towards improved accuracy. We cannot say the same about the

Pima M datset since the synthetic features could be adding bias

to the data. Further evaluation is needed.

In the end, the decision of using hypervectors would depend

on the application’s constraints such as the amount of data

available, the computing requirements, and the ML model

being used. The performance of Random Forest was sur-

prising. An explanation for its performance could be due to

Random Forest being an ensemble algorithm. The bagging

step that happens within the model might benefit by the added

dimensionality of the hypervectors.

B. Significance for Medicine

Clinicians diagnose type 2 diabetes through a combination

of two abnormal laboratory results and symptoms of high

blood sugar. Hemoglobin A1C (HbA1c) is a test that measures

blood sugar levels on average from the past 3 months through

determining the amount of red blood cells that have sugar

attached to their hemoglobin. Clinicians diagnose diabetes at

a HbA1c level of greater than or equal to 6.5%. Fasting plasma

glucose levels of greater than or equal to 126 mg/dl or random

plasma glucose levels of greater than or equal to 200 mg/dl are

also diagnostic of diabetes. Lastly, an oral glucose tolerance

test (OGTT), a test that shows how the body processes sugar,

of greater than or equal to 200 mg/dl is indicative of diabetes

[49].

Clinicians can also predict onset of diabetes using these

tools. HbA1c between 5.7% and 6.4%, fasting plasma glucose

levels between 100 mg/dl and 125 mg/dl, or OGTT of 149

mg/dl and 199 mg/dl are all indicative of prediabetes. How-

ever, health care providers examine risk factors and genetic

predispositions in warning their patients of developing dia-

betes. A variety of risk factors contribute to type 2 diabetes

including being 45 years or older, having a BMI of or equal
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Model Pima R Pima M Syhlet
Features Hypervectors Features Hypervectors Features Hypervectors

Random Forest 78.4% 78.5% 92.0% 88.6% 98.0% 97.8%
KNN 75.9% 78.1% 91.4% 85.8% 92.9% 95.6%
Decision Tree 77.4% 76.6% 87.7% 84.5% 97.5% 96.7%
XGBoost 78.8% 77.0% 91.6% 88.8% 96.9% 97.8%
CatBoost 78.4% 77.4% 92.6% 88.8% 98.3% 97.5%
SGD 67.1% 77.7% 74.4% 87.7% 90.9% 96.7%
Logistic Regression 78.5% 77.0% 78.3% 87.5% 93.1% 96.4%
SVC 77.4% 78.1% 86.2% 87.7% 92.9% 97.5%
LGBM 78.1% 76.3% 91.1% 88.8% 96.1% 96.4%

TABLE III
TRAINING ACCURACY FOR EACH MACHINE LEARNING MODEL WITH ORIGINAL FEATURE VALUES AND WITH HYPERVECTORS

Precission Recall Specificity F1 Score Testing Accuracy
Model Features HD Features HD Features HD Features HD Features HD
Random Forest 0.829 0.866 0.872 0.888 0.650 0.711 0.850 0.877 79.66% 83.05%
KNN 0.793 0.817 0.855 0.827 0.595 0.595 0.823 0.822 76.27% 75.42%
Decision Tree 0.817 0.768 0.870 0.840 0.634 0.558 0.843 0.803 78.81% 73.73%
XGBoost 0.829 0.829 0.895 0.883 0.667 0.659 0.861 0.855 81.36% 80.51%
CatBoost 0.805 0.793 0.868 0.855 0.619 0.595 0.835 0.823 77.97% 76.27%
SGD 0.561 0.695 0.868 0.934 0.446 0.561 0.681 0.797 63.56% 75.42%
Logistic Regression 0.866 0.817 0.877 0.827 0.703 0.595 0.871 0.822 82.20% 75.42%
SVC 0.854 0.866 0.886 0.888 0.692 0.711 0.870 0.877 82.20% 83.05%
LGBM 0.817 0.841 0.870 0.863 0.634 0.658 0.843 0.852 78.81% 79.66%

TABLE IV
PERFORMANCE OF MACHINE LEARNING MODELS USING THE PIMA M DATASET. THE NUMBERS IN BOLD ARE THE VERSIONS OF THE MODEL (FEATURE

BASED OR HD COMPUTING BASED) THAT HAD THE BEST PERFORMANCE IN THE RESPECTIVE METRIC.

Precission Recall Specificity F1 Score Testing Accuracy
Model Features HD Features HD Features HD Features HD Features HD
Random Forest 0.957 0.957 0.967 0.989 0.938 0.938 0.962 0.973 95.51% 96.79%
KNN 0.943 0.956 0.901 0.956 0.923 0.938 0.921 0.956 91.03% 94.87%
Decision Tree 0.947 0.946 0.978 0.956 0.923 0.923 0.962 0.951 95.51% 94.23%
XGBoost 0.947 0.918 0.989 0.978 0.923 0.877 0.968 0.947 96.15% 93.59%
CatBoost 0.957 0.947 0.967 0.978 0.938 0.923 0.962 0.962 95.51% 95.51%
SGD 0.954 0.880 0.729 0.967 0.958 0.815 0.827 0.921 83.33% 90.38%
Logistic Regression 0.869 0.936 0.945 0.967 0.800 0.908 0.905 0.951 88.46% 94.23%
SVC 0.914 0.938 0.934 0.989 0.877 0.908 0.924 0.963 91.03% 95.51%
LGBM 0.938 0.936 0.989 0.967 0.908 0.908 0.963 0.951 95.51% 94.23%
Hamming - 0.984 - 0.950 - 0.975 - 0.967 - 95.96%

TABLE V
PERFORMANCE OF MACHINE LEARNING MODELS USING THE SYHLET DATASET. THE NUMBERS IN BOLD ARE THE VERSIONS OF THE MODEL (FEATURE

BASED OR HD COMPUTING BASED) THAT HAD THE BEST PERFORMANCE IN THE RESPECTIVE METRIC.

to 25 kg/m2, a waist circumference of greater than 40 inches

in males and greater than 35 inches in females, and lack of

physical activity [3]. Other factors examined are high risk

ethnic populations, family history of diabetes, history of ges-

tational diabetes, hypertension, atherosclerotic cardiovascular

disease, use of certain antipsychotics and glucocorticoids, and

conditions associated with insulin resistance [50]. Healthcare

providers can advise patients to modify their lifestyles and

manage the severity of conditions to prevent the development

of type 2 diabetes.

A clear application of our model can be in informing

clinicians of the presence of diabetes in their patients, ulti-

mately aiding in diagnosing diabetes. We can warn doctors

of high-risk diabetic patients. The data can be directly fed

from electronic health records, and then present a score to

inform clinicians so they can manage the trajectory of their

patients. This predictive score could guide preventative efforts

of controlling incidence of diabetes such as weight loss,

physical activity, and pharmacologic intervention for blood

pressure or lipid management [51].

A flexible model, such as ours that uses HDC, can be

incorporated into regular follow up visits. The model can

help assess if the risk of developing diabetes has increased,

decreased, or remained unchanged and inform doctors on

how effective their management or intervention was in their

patients. In order to explore this further we will need to

collect data form individual patients and observe. Since HDC

performs well with small datasets we believe that it can adapt

well to tailored predictions.

IV. CONCLUSION

In this work we described a Hyperdimensional Computing

approach to feature extraction that has the potential of improv-

ing ML models towards the prediction of type 2 diabetes. Our

experiments included two datasets, the Pima and the Syhlet

dataset. We evaluated our approach using 10 different ML

154

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 25,2023 at 15:40:31 UTC from IEEE Xplore.  Restrictions apply. 



models and observed that using hypervectors instead of regular

features sometimes improves classification accuracy, in some

cases without adding significant computational overhead. We

observed that when data is scarce, our approach has the largest

positive impact in classification accuracy. We showed that a

computationally efficient approach using Hamming distance

was able to achieve accuracy that rivaled iterative approaches

(95.9% for the Syhlet dataset compared to 97.8% from Deep

Learning approaches). We also show that Random Forest using

hypervectors as input produced the strongest classification

model based on performance metrics during testing. For easy

comparison, we used the same hyper-parameters reported

in other papers that use these datasets. Further tuning and

exploration needs to be done to fully understand the potential

of this approach.

Future work will be centered on exploring real-life applica-

tions of an HDC approach to predicting diabetes. We believe

that an HDC-based model could help in the early and in-situ

detection of diabetes that could aid efforts where big data

processing is not feasible nor appropriate. However, the Pima

and Syhlet datasets are not representative of the data that is

available in modern electronic health records. A proper study

is required through appropriate data access.
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