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Abstract—Hyperdimensional Computing (HDC) is a computation
framework based on random vector spaces, particularly useful for
machine learning in resource-constrained environments. The encoding
of information to the hyperspace is the most important stage in HDC.
At its heart are basis-hypervectors, responsible for representing atomic
information. We present a detailed study on basis-hypervectors, leading
to broad contributions to HDC: 1) an improvement for level-hypervectors,
used to encode real numbers; 2) a method to learn from circular data, an
important type of information never before addressed in HDC. Results
indicate that these contributions lead to considerably more accurate
models for classification and regression.

Index Terms—hyperdimensional computing, basis-hypervectors, circu-
lar data, machine learning, information theory

I. INTRODUCTION

For some time now, machine learning has largely dictated not
just academic research and industrial applications, but aspects of
modern society in general. Such aspects range from the widespread
recommendation systems, which influence the way we consume
products, news and entertainment, to social networks that impact the
way we behave and relate. Given such broad importance, the demand
for devices capable of learning has spread to resource constrained
platforms such as embedded systems and Internet of Things (IoT)
devices [1]. Such scenarios present obstacles to established methods,
designed primarily to operate on powerful servers.

The most notable class of such methods is Deep Learning, which
has achieved superhuman performance on certain tasks [2]. Although
initially inspired by the remarkably efficient animal brain, Deep
Learning owes much of its high energy and computational cost to
neurally implausible design choices [3]–[5]. The dilemma is that these
choices, especially error back-propagation and large depth, are also
key drivers of its success [6]. Given this, the search for alternatives
has received significant attention from the scientific community [7],
[8].

One emerging alternative is Hyperdimensional Computing
(HDC) [9]. Like Deep Learning, HDC is also inspired by neuro-
science, but the central observation is that large circuits are funda-
mental to the brain’s computation. Therefore, information in HDC
is represented using hypervectors, typically 10,000-bit words where
each bit is independently and identically distributed (i.i.d). This i.i.d
relationship, also known as holographic information representation,
provides inherent robustness since each bit carries exactly the same
amount of information. Furthermore, the arithmetic in HDC, as
detailed in Section II, is generally dimension-independent, which
opens up the opportunity for massive parallelism, providing the
efficiency sought in HDC.

HDC has already proven to be useful in several applications,
including both learning problems, such as classification [10] and
regression [11], and classical problems, such as consistent hash-
ing [12]. Regardless of the application, the most fundamental step
in HDC is mapping objects in the input space to the hyperspace, a
process called encoding. Encoding functions have been proposed for

several different types of data, such as time series [13], text [14],
images [15] and graphs [16]. All these encodings have one thing
in common: they start by encoding simple information (e.g. pixel
values, vertices and edges, letters, amplitudes of a signal), which
are then combined to represent something complex. In this work we
study basis-hypervectors, also called seed-hypervectors, the encoding
of these atomic pieces of information.

Basis-hypervectors are a cornerstone of HDC and directly effect the
accuracy of learned HDC models as we show in Section VI. We start
with a study of the two existing types of basis-hypervectors, random
and level-hypervectors, used respectively to represent uncorrelated
and linearly-correlated data. Inspired by information theory, our first
contribution is an improved method to create level-hypervectors.

Based on the improved level-hypervectors, our main contribution
is a basis-hypervector set for circular data. Circular data are derived
from the measurement of directions, usually expressed as an angle
from a fixed reference direction. In addition, it is common to convert
time measurements, such as the hours of a day, to angles. As we
will discuss in more detail in Section V, circular data is present in
many fields of research, including astronomy, medicine, engineering,
biology, geology and meteorology [17]–[19]. Embedded systems
and IoT also deal with a wide variety of circular data, such as in
robotics where the joints generate angular data [20], and satellites
that fly in elliptical orbits [21]. The importance is such that the study
and interpretation of this type of data gave rise to a subdiscipline
of statistics called directional statistics (also known as circular or
spherical statistics) [19]. Despite this great relevance, our work is the
first to address learning from circular data in HDC.

To assess the practical impact of these contributions, we conducted
experiments with publicly available datasets that contain circular
data relevant to real-world applications. We compared the circular-
hypervector set with the two existing basis sets in regression and
classification tasks. Circular-hypervectors, like level-hypervectors,
add no additional runtime overhead as they are generated once before
training. We obtained an improvement of 7.2% in the classification
of 15 types of surgical gestures. In regression, the error is reduced
by 67.7% in temperature and power level prediction tasks.

II. HYPERDIMENSIONAL COMPUTING

Hyperdimensional Computing (HDC) is a computation model that
relies on high dimensionality and randomness. Inspired by neuro-
science, it seeks to mimic important characteristics of the animal
brain while balancing accuracy, efficiency and robustness [9]. The
central idea is to represent inputs x ∈ X by projecting them onto a
hyperspace H = {0, 1}d, with d ≈ 10,000 dimensions. This mapping
ϕ : X → H is called encoding, and the resulting representations ϕ(x)
are named hypervectors.

The intuitive principle that guides the design of encoding functions
is that similar objects in input space need to be mapped to similar
hypervectors in H. We use the normalized Hamming distance as
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a measure of distance between hypervectors, which takes the form
δ : H × H → {σ ∈ R | 0 ≤ σ ≤ 1}, and define the hypervector
similarity to be 1 − δ. All cognitive tasks in HDC are ultimately
based on similarity. Predictions or decisions are inferred from a model
which is created by transforming and combining information using
HDC arithmetic.

A. Operations

The arithmetic in HDC is based on a simple set of three element-
wise operations [9], illustrated in Figure 1.

a) Binding: Operation used to “associate” information. The
function ⊗ : H × H → H multiplies two input hypervectors
to produce a third vector dissimilar to both operands. Binding is
commutative and distributive over bundling and serves at its own
inverse, i.e., A⊗ (A⊗B) = B. The binding operation is efficiently
implemented as element-wise XOR.

b) Bundling: Operation is used to aggregate information. The
function ⊕ : H×H → H performs addition on its inputs to produce
a hypervector that is similar to its operands. Bundling is implemented
as an element-wise majority operation. The output then represents the
mean-vector of its inputs.

c) Permuting: The operator Π : H → H is often used to
differentiate permutations of a sequence. The exact input can be
retrieved with the inverse operation. The most used permutation is the
cyclic shift, and with Πi(A) we denote a cyclic shift of the elements
of A by i coordinates.

. . . M M . . . M

. . .

. . .

A1 A2 AdB1 B2 Bd A1 A2 AdB1 B2 Bd A1 A2 Ad−1Ad

C1 C2 Cd C1 C2 Cd C1 C2 C3 Cd

Fig. 1. Binding, bundling, and cyclic shift permutation operations illustrated
on binary hypervectors A and B where the superscript denotes the element
index of the hypervector. The logical gates in bundling are majority gates.

Much of HDC’s ability to learn comes from the fact that the very
high dimension of the H-space allows combining information with
these operations while preserving the information of the operands
with high probability, due to the existence of a huge number of quasi-
orthogonal vectors in the space [22].

B. Classification

An overview of the HDC classification framework is illustrated
in Figure 2. For each class i ∈ {1, . . . , k} in the training set, we
construct a hypervector Mi as follows:

Mi =
⊕

j:ℓ(xj)=i

ϕ(xj)

where each xj ∈ X is a training sample and ℓ(xj) ∈ {1, . . . , k}
its respective label. The

⊕
symbol represents the bundling of

hypervectors. The resulting Mi is named class-vector, and is used
as a “prototype” of class i. A trained HDC classification model is
therefore denoted by M = {Mi, . . . ,Mk}, and consists of a class-
vector for each class.

Given an unlabeled input x̂ ∈ X , i.e., a test sample, and a trained
model M, we can compare ϕ(x̂), the query-vector, with each class-
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Fig. 2. Overview of the Hyperdimensional Computing classification frame-
work. Solid lines indicate training steps, dashed lines indicate inference steps.

vector and infer that the label of x̂ is the one that corresponds to the
most similar class-vector:

ℓ⋆(x̂) = argmin
i∈{1,...,k}

δ (ϕ(x̂),Mi)

where ℓ⋆(x̂) ∈ {1, . . . , k} is the predicted class for x̂.

C. Regression

In a regression setting, an invertible encoding function ϕℓ is used
to map labels to hypervectors in a set L = {L1, . . . , Lk}, whose
generation is discussed in Section IV. The model M consists of a
single hypervector, which memorizes training samples x ∈ X with
their associated label ℓ(x) ∈ R:

M =
⊕
i

ϕ(xi)⊗ ϕℓ(ℓ(xi))

A prediction can be made given a trained model M and an
unlabeled input x̂ ∈ X . First the approximate label hypervector is
obtained by binding the model with the encoded sample M⊗ϕ(x̂) ≈
ϕℓ(ℓ(x̂)) [9], [22]. The precise label hypervector is then the most
similar label hypervector Ll, where:

l = argmin
i∈{1,...,k}

δ (M⊗ ϕ(x̂), Li)

Finally, the label is obtained by decoding the label hypervector:

ℓ⋆(x̂) = ϕ−1
ℓ (Ll)

The encoding functions ϕ and ϕℓ, are domain specific and use
the HDC operations to encode complex information (e.g., a word)
by combining simpler, atomic pieces of information (e.g., the letters
of a word). An example is discussed in Section III-A. The first
important decision in designing an HDC encoding is how to represent
atomic information as hypervectors. These hypervectors represent
the smallest pieces of meaningful information and are referred to
as basis-hypervectors, the central subject in this paper. Our main
goal is to show that a special set of basis-hypervectors (described in
Section V) is more appropriate for dealing with circular data.

III. BASIS-HYPERVECTORS

In this section we describe the two existing basis-hypervector sets
used to encode unitary of information. Their main feature is the
pairwise distances as illustrated in Figure 3.

A. Encoding symbols

Early applications in HDC focused on sequences of symbols such
as text data [14]. The units of information, in this case characters,
were mapped (one-to-one) to hypervectors R = {R1, . . . , Rm}
sampled uniformly at random from the hyperspace H, called random-
hypervectors. From this, a word w = {α1, . . . , αn} is typically
encoded as:

ϕ(w) =

n⊕
i=1

Πi(ϕR(αi)
)
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Fig. 3. Pairwise similarity of each i-th and j-th hypervector in different basis-
hypervector sets of size 12.

where ϕR(αi) ∈ R maps the character αi to its corresponding
random-hypervector Ri, and Π is the permutation operator. In gen-
eral, any sequence or set comprised of symbolic or categorical data
can be encoded using random-hypervectors.

Because of the high dimensionality of H, each pair of random-
hypervectors is quasi-orthogonal with high probability [8], i.e., they
are not correlated. While this seems suitable for encoding symbols,
clearly it is not as adequate for other kinds of unitary information,
such as real numbers.

B. Encoding real numbers

Many domains use real numbers to represent information such as
distance and time. We encode real values to H with the function
ϕL, which maps them to a discrete set of hypervectors L =
{L1, . . . , Lm}. First, we place m points {ξ1, . . . , ξm} evenly over
the real interval [a, b]. Any real number x is then represented in the
hyperspace by ϕL(x) = Ll, where:

l = argmin
i∈{1,...,m}

|x− ξi|

The central question here is how to construct the set of hyper-
vectors L. There is clearly a stronger relation between neighboring
points when compared to ξ1 and ξm due to the distance between
them. Encoding strategies capable of capturing such relationships
lead to better models (see Secs. VI and V). In the next section, we
present how hypervectors with this relationship have been created
thus far. Then, we propose an improved method that yields more
representational power.

IV. GENERATING LEVEL-HYPERVECTORS

A method for representing real numbers with linearly correlated
hypervectors was first described by Rahimi et al. [13] and Wid-
dows and Cohen [23]. These sets are widely used in HDC and
are generally referred to as level-hypervectors. The generation of
L = {L1, . . . , Lm} starts by assigning a uniform random vector
to L1. Each subsequent vector is obtained by flipping d/2/m bits.
Flipped bits are never unflipped and, therefore, the vectors L1 and
Lm share exactly d/2 bits, making them precisely orthogonal. In this
section, we argue that if the precise distance constraint is relaxed, a
set with greater representation power can be created.

A. The importance of quasi-orthogonality

From an information theory perspective, the amount of information
conveyed in the outcome of a random trial is a function of the
probability of that outcome. More formally, for a given random vari-
able with possible outcomes ε1, . . . , εn, which occur with probability

P(ε1), . . . ,P(εn), the Shannon information content I of an outcome
εi is defined as [24]:

I (εi) = log2
1

P(εi)

If we think of a random-hypervector set as a random sample, the
probability of each realization is extremely low. Thus the entropy, or
information content, is very high. This is one of the main theoretical
foundations of HDC.

Note that random-hypervectors are independently and uniformly
sampled, resulting in quasi-orthogonal vectors. These vectors are
simple to create, but more importantly, they have greater represen-
tational power than precisely-orthogonal vectors. In mathematical
terms, while the number of orthogonal vectors in H is d, the number
of quasi-orthogonal vectors is almost 2d [8]. Given that each set is
sampled uniformly, a much larger sample space implies a much lower
probability of occurrence per outcome. By the definition above, this
results in greater information content.

B. Level-hypervectors revisited: applying the notion of “quasi”

As discussed above, the key to the representational power of
random-hypervectors—and more generally of HDC—comes from the
relaxed notion of distance: quasi-orthogonality. In contrast, the level-
hypervectors created with the existing method have a fixed distance
between each pair of hypervectors. This limits the number of possible
outcomes of their generation which is equivalent to constraining their
representation power. Instead, we want the distance between two
hypervectors Li and Lj in L, with i < j, to be proportional to
j − i in expectation. If we denote by ∆i,j the desired value for
E [δ(Li, Lj)], then:

∆i,j =
j − i

2(m− 1)

To achieve this goal, we propose the Algorithm 1 presented below.
The method starts by assigning two uniformly random hypervectors
to L1 and Lm, and a d-dimensional vector whose elements are
sampled uniformly from [0,1] to Φ. Then, for each remaining level
Ll an interpolation threshold value τl is set and Φ acts as a filter to
determine each bit, copied either from L1 or from Lm. Proposition 1
establishes that the obtained set of level-hypervectors meets the
previously motivated property.

Algorithm 1: Level-hypervectors using interpolation filter
Input : Two positive integers m and d

Output: A set of m d-dimensional level-hypervectors
L = {L1, . . . , Lm}

1 L1 ← uniform sample({0, 1}d)
2 Lm ← uniform sample({0, 1}d)
3 Φ← uniform sample([0, 1]d)
4 for each remaining level l ∈ {2, . . . ,m− 1} do
5 τl ← m−l

m−1

6 for each dimension ∂ ∈ {1, . . . , d} do
7 if Φ(∂) < τl then
8 L

(∂)
l ← L

(∂)
1

9 else
10 L

(∂)
l ← L

(∂)
m

11 return {L1, . . . , Lm}

Proposition 1. Let L = {L1, . . . Lm} denote a set of hypervectors
generated by Algorithm 1. For all i and j > i in {1, . . . ,m}, we
have E [δ(Li, Lj)] = ∆i,j .
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Fig. 4. Illustration of the circuit for creating the proposed basis-hypervector
sets: (A) shows the “Select” building block responsible for creating each level-
hypervector and (B) shows how they are interconnected to generate the set
of size m. These are the same steps as for creating the “forward path” of
circular-hypervectors, but then it is necessary to create the “backward path,”
whose circuit is illustrated in part (C).

Proof. First, from the definition of the normalized Hamming distance,
we have:

δ (Li, Lj) =
1

d

d∑
∂=1

1

(
L∂

i ̸= L∂
j

)
where 1 is the indicator function. By applying the linearity of
expectation property, the i.i.d. property for all dimensions of Li, and
considering that the expectation of an indicator function equals the
probability of the event, we get:

E [δ(Li, Lj)] = P
(
L∂̄

i ̸= L∂̄
j

)
(1)

where ∂̄ ∈ {1, . . . , d} indicates that the probability is dimension
independent. Then, from Algorithm 1 we have:

P(L∂̄
i = L∂̄

j ) = P(Φ∂̄ < τi)

(
P(Φ∂̄<τj |Φ∂̄<τi)P(L∂̄

1=L∂̄
1 )

+P(Φ∂̄≥τj |Φ∂̄<τi)P(L∂̄
1=L∂̄

m)

)
+P(Φ∂̄ ≥ τi)

(
P(Φ∂̄≥τj |Φ∂̄≥τi)P(L∂̄

1=L∂̄
1 )

+P(Φ∂̄<τj |Φ∂̄≥τi)P(L∂̄
1=L∂̄

m)

)
Given that Φ∂̄ is uniform in [0, 1] and τi = m−i

m−1
according to the

algorithm, we can calculate this probability to be:

P
(
L∂̄

i = L∂̄
j

)
= 1− j − i

2(m− 1)
(2)

Considering that the event is binary, from Equations 1 and 2, we get:
E [δ (Li, Lj)] = ∆i,j .

In Figure 4 we illustrate how this algorithm can be implemented
using a simple circuit. Part (A) shows that, for each level Ll, the
output dimensions are the result of a 2-to-1 multiplexer between L1

and Lm, whose select line is the result of a comparator between
the filter Φ and the threshold τl. The filter and threshold value
can be represented as random integers instead of floating points for
efficiency. We call each of these blocks a Select. In part (B), we show
how the vector corresponding to each level is obtained as the output
of a Select block by changing only one of the inputs which is the
corresponding τl threshold.

Note that creating basis-hypervectors is an offline process that runs
before any training or inference steps, and once created, they can
be reused in different applications. We emphasize that their creation,
with the proposed method or with the existing one, does not introduce
any concrete overhead.

V. ENCODING CIRCULAR DATA

Symbols and real numbers can be represented in the hyperspace
with random and level-hypervector sets. However, not every type of
data falls into these two categories. Consider, for instance, angular
data in Θ = [0, 2π]. The distance ρ ∈ [0, 1] between two angles α
and β in Θ is defined as [25]:

ρ(α, β) =
1

2
(1− cos(α− β))

If we use level-hypervectors to encode the Θ-interval, the distances
between the hypervectors would not be proportional to the distance
between the angles. Notice that the endpoints of an interval rep-
resented with level-hypervectors are completely dissimilar, while a
circle has no endpoints.

Angles are widely used to represent information in meteorol-
ogy [26], ecology [27], medicine [20], [28], astronomy [29] and
engineering [30]. Moreover, many natural and social phenomena have
circular-linear correlation on some time scale. Consider for example
the seasonal temperature variations over a year or the behavior of
fish with respect to the tides in a day. In these cases, it makes sense
to represent the time intervals (e.g., Jan 1st - Dec 31st) as cyclic
intervals [25], [27].

Given the multitude of applications using circular data, unsurpris-
ingly there has been great scientific effort to adapt statistical and
learning methodologies to handle it appropriately [18]. This gave
rise to a branch of statistical methodology known as directional
statistics [19]. Despite all this effort, to the best of our knowledge,
our work is the first to address the adaptation in the context of HDC
learning.

A. Circular-hypervectors

We propose a method for creating a basis-hypervector set, called
circular-hypervectors, suitable for learning from circular data in HDC.
Our method is based on Heddes et al. [12], which proposes the use
of hypervectors for a dynamic hashing system. The algorithm for
generating equidistant vectors on the circle is improved and extended
for the learning context through our analysis of level-hypervectors and
the information content control mechanism presented in section V-B.

We want to build a set of hypervectors C = {C1, . . . , Cm}1 such
that for all Ci and Cj in C their distance δ in H is proportional to
the distance between the angles they represent:

E [δ(Ci, Cj)] =
1

2
ρ

(
(i− 1)

2π

m
, (j − 1)

2π

m

)
This relationship is in terms of expected value to improve the
information content as discussed in Section IV.

The creation of circular-hypervectors, shown in Figures 5 and 4,
is divided into two phases, one for each half of the circle. The first
half is simply a set of m/2 + 1 level-hypervectors, with C1 and
Cm/2+1 quasi-orthogonal. The second half is created by applying
the transitions between the levels of the first half, in order, from the
last hypervector:

Ci = Ci−1 ⊗ Ti−m/2−1, for i ∈ {m/2 + 2, . . . ,m} (3)

where the transition Ti = Ci ⊗ Ci+1 are the flipped bits between
levels i and i + 1. The circuit for this process is provided in

1We assume m to be even to simplify discussions. Sets of odd cardinality
can be generated as subsets {C1, C3, C5, . . . , C2m−1} of a set of size 2m.
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Phase 1

Phase 2

C1 C2 · · · Cm/2+1
T1 T2 Tm/2

Cm/2+2Cm/2+3· · ·Cm

T1

T2T3Tm/2−1

Tm/2

Fig. 5. Diagram of the creation of circular-hypervectors. Phase 1 shows the
level-hypervectors and the transformations between them. Phase 2 shows the
use of transformations for the second half of the circle.

Figure 4 (C). The combined transitions {T1, . . . , Tm/2} are equal
to the transition from C1 to Cm/2+1 such that:

Cm/2+1 = C1 ⊗
m/2⊗
i=1

Ti

Since binding is its own inverse, the transition bound to Ci−1 in
Equation 3 makes the new hypervector Ci closer to C1. Moreover, the
transitions {T1, . . . , Tm/2} occur in any half of the circle, ensuring
that the hypervector at the opposite side from any hypervector is
always quasi-orthogonal to it.

B. Controlling the trade-off between correlation preservation and
information content

The discussion in Section IV-A illustrated the benefit of relaxing
the distance between generated hypervectors, resulting in greater
information content. Another concern is that, while level and circular-
hypervectors have the ability to translate important correlations
into hyperspace, from the perspective of information content this
diminishes their representational power: by forcing the vectors to
be correlated, the probability distribution over the possible outcomes
becomes more concentrated, decreasing the entropy. We argue that
more powerful models can be created if this constraint is relaxed as
well.

The random-hypervectors are the most capable at representation
as they are sampled uniformly, without any restriction. However, for
this very reason they are unable to map existing correlations in the
input space to the hyperspace. The level and circular sets preserve
correlation but are restricted in information content. The ideal basis
set is then expected to have a balance between its ability to preserve
correlation and its information content.

To address this trade-off, we introduce a hyperparameter r ∈
[0, 1] that interpolates between level or circular-hypervectors and
the random set. As shown in Figure 6, the parameter changes the
similarity of neighboring nodes. Intermediate values of r enable
higher information content while preserving local correlation.

r = 0
Circular

r = 0.5 r = 1
Random

0.5

1.0

Fig. 6. Effect of the r-hyperparameter on the similarities between each node
and the bottom reference node in a circular set of 10 hypervectors.

To interpolate, we concatenate multiple level-hypervector sets
created with Algorithm 1. The last hypervector of one set becomes
the first hypervector of the next set. The number of transitions n per
level-hypervector set is given by n = r+ (1− r)(m− 1), where m

TABLE I
CLASSIFICATION ACCURACY RESULTS

Dataset Random Level Circular

Knot Tying 76.6% 75.9% 84.0%
Needle Passing 76.0% 76.0% 83.6%
Suturing 73.0% 60.4% 78.7%

is the total number of hypervectors. Levels in the concatenated set
are obtained by using the threshold value:

τl = 1− (l − 1) mod n

n

When r = 1, each level set contains only two hypervectors, resulting
in a set identical to a random-hypervectors. For circular-hypervectors
the change only applies to phase 1.

VI. EXPERIMENTS

We evaluated circular-hypervectors in classification and regression
settings where they are compared to random and level-hypervectors.
The r-hyperparameter is evaluated by observing its effect on the
same two settings. The data was randomly split in 70% for training
and 30% for testing in all experiments. The experiments were
implemented using Torchhd [31], a high-performance python library
for HDC research.

A. Classification

To evaluate the performance of circular-hypervectors in a classifi-
cation setting we used JIGSAWS [20], a dataset containing kinematic
data from surgeons operating the da Vinci robot. We consider 18
kinematic variables of the rotation matrices of the tool manipulators
and three different surgical tasks: Knot Tying, Needle Passing and
Suturing. Each sample has a label which indicates one out of 15
surgical gestures and the task is to classify which gesture is being
performed. For this, we used the standard classification framework
presented in Section II-B. A sample is encoded as

⊕18
i=1 Ki ⊗ Vi,

where the key Ki is a random-hypervector that represents the index i,
and the value Vi is encoded as a random, level or circular-hypervector.
The circular-hypervectors have r = 0.1.

The results comparing each basis-hypervector set in each surgical
task are shown in Table I. The circular-hypervectors perform 7.2%
better, on average, than random-hypervectors, which in-turn slightly
outperform level-hypervectors. The execution times are practically
equivalent because the one-time hypervector generation cost is linear
in the number of hypervectors for all basis sets. Moreover, the
majority of the execution time is spent on training steps which are
equivalent once the hypervectors are generated.

B. Regression

We also evaluated circular-hypervectors on two regression tasks.
The first contains temperature data measured at the Aotizhongxin
station, Beijing, available on the UCI ML Repository [32]. We
hypothesize that the circular-hypervectors are better for representing
the days and hours because their cyclic nature and high correlation
with temperature. Each model was trained on the using the regression
framework described in Section II-C. The samples were encoded as
Y ⊗D⊗H with the year Y , day D, and hour H hypervectors. The
year is encoded as a level-hypervector. The day and hour hypervectors
changed between random, level, and circular.

The second dataset contains power level measurements from the
Mars Express satellite, provided by the European Space Agency [33].
A training sample consists of the elapsed fraction of Mars’ orbit
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TABLE II
REGRESSION MEAN SQUARED ERROR RESULTS

Dataset Random Level Circular

Beijing 441.1 126.8 21.9
Mars Express 1294.1 715.6 339.1

around the sun, called the mean anomaly. The encoding of the mean
anomaly changes between random, level, and circular-hypervectors.
The label is the power level at a given time, encoded as a level-
hypervector.

The mean squared error for both regression tasks are presented in
Table II. Circular-hypervectors reduce the error by 67.7% and 84.4%
on average compared to level and random-hypervectors, respectively.
These results, combined with those for classification, indicate that
circular-hypervectors are indeed more suitable for encoding circular
data.

C. r-value

We evaluated separately the effect of the r parameter on the
tasks above by varying its value to interpolate between circular and
random-hypervectors. We use the normalized mean squared error for
the regression tasks and the normalized accuracy error, defined as
1−α
1−ᾱ

where α is the accuracy and ᾱ the reference accuracy, for
classification. The reference for all tasks is set to the performance
of random-hypervectors.

Figure 7 shows that better performance can be achieved when r >
0, as is inline with the theoretical analysis presented in Section IV-A.
These results indicate the importance of considering the information
content of a basis-hypervector set as we propose. In addition, it shows
the value of the proposed r parameter to control the trade-off between
representation power and the ability to preserve correlations in the
hyperspace.
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Fig. 7. Error of the circular-hypervectors with varying r-hyperparameter,
normalized against the random-hypervectors performance.

VII. CONCLUSION

We study basis-hypervectors: stochastically created vectors used to
represent atomic information in HDC. Taking inspiration from infor-
mation theory, we propose a method for creating level-hypervectors
with greater representational power. Furthermore, we introduce a
method to handle circular data in HDC. This method, which uses the
improved level-hypervectors, is the first approach to learning from
circular data in HDC. We believe that these contributions have the
potential to benefit HDC in general, as they improve the accuracy
of models based on circular and real data, present in most learning
applications.
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