A hybrid approach for core-based system-level power modeling

Tony D. Givargis, Frank Vahid

Department of Computer Science and Engineering

University of California, Riverside, CA 92521

{givargis,vahid} @cs.ucr.edu

Abstract

Reducing power consumption has become a key goal for system-
on-a-chip (SOC) designs. Fast and accurate power estimation is
needed early in the design process, since power reduction methods
tend to have greater impact at higher abstraction levels. Unfortu-
nately, current approaches to power estimation, which concentrate
on register-transfer-level models or lower, are quite slow. Higher-
level approaches, while faster, may suffer from inaccuracy. How-
ever, the advent of cores enables a hybrid approach, described in
this paper, yielding both fast and accurate estimates from high-level
models. In particular, we use power estimation data obtained from
the gate-level for a core’s representative input stimuli data (instruc-
tions), and we propagate this data to a higher (object-oriented)
system-level model, which is parameterizable and executable. De-
pending on the kind of cores, various parameterizable equation or
look-up table based techniques are used, resulting in self-analyzing
core models. We have applied our technique to several cores of a
digital camera SOC and have achieved simulation speedups of over
1000 with accuracies suitable for making reliable power-related
system-level design decisions. Although we focus on power estima-
tion, our approach can be used for estimating other metrics as well,
such as performance and size.

1 Introduction

As chip capacities continue to grow, enabling systems-on-a-chip,
the need for early simulation of system-level models increases. A
system-level model describes desired behavior without describing
detailed structural or timing information, and such models are of-
ten specified in executable languages like C++ or Java, eliminating
the need for a separate simulation tool. Such models thus simu-
late many orders of magnitude faster than lower-level models like
register-transfer or gate-level HDL (hardware description language)
models, turning otherwise week or month-long simulations into just
minutes or hours {13, 3]. Such models are useful for early observa-
tion of system behavior and perhaps high-level performance infor-
mation, and thus designers taking a top-down approach often build
and simulate such models before developing lower-level models.
However, system-level models have the disadvantage of not provid-
ing sufficiently accurate information on detailed design metrics like
power consumption and size, so architectural design decisions must
often be postponed until later in the design process when lower-
levels models are available.

We present an approach that shows that the advent of cores may
result in the elimination of this disadvantage, enabling accurate
design metric estimation from system-level models. A core is a
reusable system-level component, such as a microprocessor, copro-
cessor or peripheral component, designed to become part of a SOC.
Cores may be soft (synthesizable HDL), firm (HDL structure), or
hard (technology-specific netlist). By many estimates, SOCs will
consist mostly of cores, perhaps 90% [7], with custom synthesized
logic comprising the small remaining portion. Because cores are
often parameterized and their interconnecting bus structure may be
flexible, core-based designs still involve a large design space and
hence many architectural design decisions.

The Virtual Socket Interface Alliance (VSIA) is an industry con-
sortium developing core-related standards. Those standards include
the development of system-level models for all cores (whether soft,
firm or hard). The situation of system-level models representing
already-designed components provides a unique opportunity. In
particular, we can expect the developer of a core’s system-level

141

J 6r§ Henkel
C&C Research Laboratories, NEC USA
4 Independence Way, Princeton, NJ 08540
henkel @ ccrl.nj.nec.com

model to have information on the core’s power, performance and
size metrics (unlike the case when the model was created by a de-
signer following the top-down approach), since a low-level model
does exist for cores. Since the core developer wants the core to be
re-used, we can expect the developer to spend effort incorporating
such metric information into the core’s system-level model. This
opportunity can be used to overcome the earlier-stated disadvantage
of inaccurate estimates from system-level models, and thus can en-
able extensive design space exploration at the system level.

In this paper, we define an approach for obtaining accurate es-
timates from system-level core models, applicable to both soft and
hard cores. We use an object-oriented system-level model. We fo-
cus on parameterized cores, where power, performance, and size
metrics vary depending on the chosen parameter values. Some ex-
amples of parameters include buffer sizes in a UART, block sizes in
a DMA, and compression algorithms in a CODEC - because cores
are designed to be general, parameters are quite abundant in them.
Because a parameter’s setting affects other parameters’ impact on
design metrics (e.g., a smaller cache means less bus traffic, thus in-
creasing the impact of bus parameters on power and performance),
the usefulness of typical power tables in a core’s datasheet is greatly
reduced.

We first discuss related work. We then summarize the system-
level modeling approach that we follow. Next, we describe how ac-
curate power estimation can be incorporated into the modeling ap-
proach. We then describe the development process of a core model,
and also describe the process whereby a designer would use such
a core model. Finally, we provide experiments demonstrating the
speed and accuracy of the approach, and describe future work and
conclusions.

2 Related work

Work on estimating, optimizing and modeling for low power de-
sign of digital circuits has been conducted at different levels of ab-
straction. Here, we focus only on work that deals with high-level
approaches, i.e., RTL-level or higher, since this is most relevant to
our work.

As for the RTL~level approaches, in [14], a power optimiza-
tion method is introduced that minimizes power at the architec-
tural level (RTL-level) by using a macro model scheme. Hyper—
LP [1] belongs to the same group. It is a framework that optimizes
power consumption of data—dominated systems through architec-
tural transformations. Recently, a behavioral-level power optimiza-
tion method has been introduced in [10]. So called common cases
are exploited in order to synthesize a compact data—path such that
power reductions of up to around 92% become possible.

As for high-level modeling, much recent research [8] [12] (18]
has emphasized object—oriented models, mainly based on Java, that
enable hardware description at a behavioral abstraction level. In
addition to providing models for capture and simulation of digital
systems, these contributions provide solutions to problems such as:
ease of conversion from high-level description to hardware descrip-
tion for synthesis, modeling of reactive systems, and deterministic
modeling of digital systems with bounded resource allocation. To
the best of our knowledge, these contributions do not provide means
for power and area and performance estimation at the system level.

Vahid and Givargis {16] have proposed specification of more ab-
stract components, i.e., SOC cores, that communicate via method-
calling or message-passing. Their high-level model and func-
tional communication allows for exploration of SOC busses for low

0-7803-5973-9/00/$10.00 ©2000 IEEE.

power [5]. Other work by Givargis et al. [6] has extended this ex-
ploration with power and performance results obtained from CPU,
mterface and cache simulations.

Our work capitalizes on cores to obtain sufficiently accurate es-
timates using system-level models. The aim was to combine the ac-
curacy of lower~level power estimation approaches with the conve-
nient facility of a parameterizable and fast system-level approach.
Therefore, we deployed power data collected from gate-level sim-
ulations to estimate the power and performance of a core using
object—oriented models. It is important to notice that the gate—level
simulations have to be done only once for a characteristic set of
instructions® of acore and that this data can be used at the OO-level
using a facility of a parameterizable look-up or equation mecha-
nism. As a result, our approach is orders of magnitudes faster than
approaches proposed so far, but at a accuracy that is relatively close
to low-level obtained power estimations.

3 State—of-the—-art in power estimation

Current methods for power estimation/optimization deployed

during the design phase of SOC designs can be summarized as fol-
lows. (1) Gate-level methods are deployed after high-level deci-
sions like defining a hardware/software partition or an appropriate
hardware architecture have already been made, i.e. after RTL syn-
thesis and logic synthesis have been performed. Gate-level power
estimation is cycle-accurate and therefore may require prohibitive
simulation times when applied to entire SOCs.
(2) RTL-level power estimation tools represent the current state—of—
the—art in SOC design for low power. Those tools typically perform
an RTL~level simulation that is attached to a technology library of
sub—blocks ? containing toggle data and effective capacitances in
order to calculate the consumed energy clock cycle by clock cy-
cle. The accuracy of those methods can be quite good [14] though
simulation times are still quite lengthy for entire SOCs. Further-
more, the approach is applicable for hardware parts of a system
only, thus not supporting comprehensive system-level design space
explorations. (3) Less sophisticated approaches for system-level
power estimation use an average power consumption of a core (as
available in a data book of a hard core, for example) and sum up
the power numbers of all cores of a SOC to obtain a rough esti-
mate. Such average-based approaches have two main drawbacks
that may make them very inaccurate. First, they do not consider
the particular system application’s functionality, and second, they
do not consider the impact of one core’s parameters on other cores
(e.g., the impact of cache size on bus traffic).

As opposed to the existing methods desribed above, our novel
hybrid approach uses an executable specification in conjunction
with (one-time) obtained low-level power data, and has the follow-
ing unique features:

1. The granularity of power estimation approach is based on an
entire core (i.e. block) and not just a sub—block, thus support-
ing core-based design techniques.

2. The abstraction level where the compiete system simulation
takes place is the system-level. The most important advan-
tages here are the speed as well as the simplicity to modify
the functionality for the purpose of design space explorations.

3. Our approach is not limited to hardware parts only. Instead,
hardware and software are treated in the same way, thus ac-
counting for hardware/software interdependencies. In previ-
ous work [15] the importance of software in terms of power
consumption has been demonstrated.

4 System-level modeling: an overview

We briefly
describe two system-level modeling approaches, namely, method-
calling objects and message-passing processes [16]. The major dis-
tinction between these two approaches is the way in which cores
communicate and synchronize with each other, as described next.

1 We use a relaxed definition of the term instruction: whereas in case of
a processor core an instruction might denote operations like add or shift, for
example, an instruction in the context of a UA%;T might denote a writing to
or reading from its register.

2we use the term sub-block for an RTL component like multiplexer, reg-
ister, adder, shifter, etc. whereas a block or core is a larger system part that
facilitates a comprehensive functionality like an MPEG encoder. Blocks are
composed of sug’-blodcs. See also [7].

142

HL/system-
model

estimation

tables/eq.

tech. data

estimates
estimator
self simulate
estimation
| . tool
estimation tool mL.erm-

ediate
data

@ (b)

Figure 1: (a) Previous and (b) our system-level estimation ap-
proaches.

In method-calling objects, each core is represented as an object,
which communicate with each other via method calls. Parameter
passing is used to exchange data between cores. The objects may
be active objects, meaning each has its own thread of control. Call-
ing a method may be used to transfer control from one core to an-
other, and provides a means for synchronization. The high-level
implementation of the core is entirely divided up among the meth-
ods of the high-level object. Method-calling objects provides for
a very high-level encapsulation of cores with a functional interface
allowing for early exploration of system-on-chip busses and encod-
ing schemes. Method-calling objects can be converted to message-
passing processes by converting all objects to active ones, and re-
placing method calls by message passes.

In message-passing processes, each core is represented as a pro-
cess (perhaps using active objects). Communication is accom-
plished by passing messages from one object to another. Sending of
a message blocks the sender until the reception of the message by
the receiving object, hence providing synchronization via message
passing. This model is based on Hoare’s model of communicating
sequential processes. Here, the high-level implementation of the
core resides in an infinitely running loop, e.g., the “run” method.
A model based on message passing objects can be automatically
refined into a lower level implementation [16]. For example, each
object’s “run” method is converted into a process in a low-level
HDL. Likewise, the “sends” and ‘“receives” are converted to bus
structures, i.e., ports and signals.

The former approach is more abstract and hence may be easier to
work with and may also execute faster. The latter approach involves
more communication detail and so may be slower but is closer to
a hardware implementation. Both approaches, however, are stiil
extremely fast. Our estimation approach can be incorporated into
either of these modeling approaches.

5 Estimation

Previous (non-core-based) system-level estimation approaches
have been developed to work with designs that are intended to be
fully described, and then synthesized. Such estimation tools re-
quire a system-level model of a design as input. This input is sub-
sequently synthesized, in a rough manner, to gather low-level in-
formation about the design. In addition, the designer is required to
provide constraints and technology specific information, e.g., clock
frequency, to the estimation tool. This kind of system-level esti-
mation is depicted in Figure 1(a). Constraints and technology in-
formation, combined with simulation of the model and information
obtained from synthesis, are then used to provide power, area, and
performance estimates.

Core-based design provides us with a unique opportunity to de-
velop estimation tools that can estimate power, area and perfor-
mance with better accuracy. This is because for pre-designed cores,
alow-level model is already available, e.g., RT-synthesizeable HDL
for soft cores, netlist for firm cores and layout for hard cores. An
estimation tool can use this low-level knowledge to better estimate
system metrics. As an example, consider a UART (universal asyn-
chronous reciever/transmitter) core implemented by a core-supplier
in synthesizable HDL, having its buffer size as a parameter. By per-

class UART {
unsigned toggle_count = 0;
public Reset() {
data_txbuf =0, data_rxbuf = 0;
toggle_count += TOGGLE_TABLE[RESET);

public EnableTx() {

for(int i=0; i<8; i++)

s_out = (data_txbuf >> i) & 0x01;

toggle_count += TOGGLE_TABLE[ENABLETX];
}
public WriteTxBuf(unsigned char x) {

data_txbuf =x;

toggle_count += TOGGLE_TABLE[WRITEBUF};
}
public ReadRxBuf(unsigned & %) {

// implementation...

toggle_count += TOGGLE_TABLE[READBUF];
}

i3

Figure 2: UART model using method-calling objects

forming gate-level simulation of UARTS with different buffer sizes,
one can obtain area and toggle switch information for different pa-
rameter settings; we performed such simulations for a particular
UART and provided the toggle and size data in Table 1. Note that
this is a simple example, and in more complex, multiple-parameter,
cores, an equation or even a function may be necessary rather than
simply a table. With such data (or equations or functions) available
for all cores, the area (hardware effort) of a core-based system for
given settings of parameter values can be estimated by summing the
area of the individual cores for those settings. Likewise, after simu-
lation of a core-based design at system-level, one can use low-level
toggle data to accumulate total toggle counts and estimate power
consumption of the design for a given technology.

Figure 1(b) depicts an approach for a system-level model of a
core based design. In this approach, the high-level model wiil
contain lookup—tables, equations, or functions, obtained from low—
level simulations. Thus, after simulation, intermediate data is col-
lected, e.g., toggle—~count, to be combined with technology data in
subsequent estimation. We will next outline the application of this
approach using method-calling objects.

Bulter-Size(byie) | Area(iransistors) | 1oggle-count
2 353 203

4 7360 232

8 1576 238

16 22600 249

Table 1: Data obtained from gate-level simulation of the UART
core. Toggle-count is the average transistor state-transitions when
sending a random byte of data.

In method-calling objects, each method is augmented with a
section of code that accumulates data during simulation. An ex-
ample of this is given in Figure 2. Here, we assume that TOG-
GLE_TABLE is obtained from gate-level simulation. Hence, each
time the core is “reset” or “enabled”, the appropriate toggle count
is added to the total toggle-count. At the end of the simulation,
toggle-count is used to estimate the power usage of the UART core.

6 Model developement

In this section we outline steps necessary to create a self simu-
lating and analyzing model of a core as illustrated in Figure 3(a).
In brief, these steps involve design and capture of a core in some
hardware description language (HDL), simulation at gate-level, and
design of the object oriented model using data acquired from the
gate-level, or lower-levels for hard-cores, simulations.

A core developer will start by designing and capturing the func-
tionality of the core, say a UART, using some HDL, say VHDL.
Then, the core developer will identify a set of instructions describ-
ing the functionality of this core. In the case of the UART core, the

143

design parametrixed cores ! select cores &
(soft/firm/hard) H set parameters
| VHDL/Layout l
identify instructions execute model
covering core’s functionality
set of instr. l
simulate and obtain toggle .' apply estimation and bus
inf. for each instruction analysis tool
l tables/eq. l/
design high-level model {_| power, area and performance
using lookup or eq estimates
() (b)

Figure 3: Design (left) and use (right) flow for modeling/using a
cores for high-level simulation

following instructions can be identified: “write-reg” (writing a byte
to the transmit hold register), “enable-tx”’ (enabling of the transmit-
ter to serially transmit the content of the transmit hold register), and
others such as “reset”, etc..

The next step is to acquire gate-level simulation data to be used in
high-level estimation. Given an HDL description of a core and a set
of instruction, the core developer will create specialized testbench
programs for each instruction in order to measure design metrics
such as performance or power. For example, given the UART core,
we create a testbench that performs a write to the transmit hold
registers, i.e., executes the “write-reg” instruction. Then, we syn-
thesize the HDL description of the UART and simulate the UART
using the testbench, accumulating toggle switch information. We
repeat this process for all other instructions and create a table of tog-
gle switches per instructions. If a core is parameterizable, multiple
tables for different parameter values must be obtained, or estimated
via equations.

The next step is the design of the high-level model of the core.
The core developer can now model the core, using one of the ap-
proaches given in the system-level modeling section, in any object
oriented language. The object representing the core will provide
methods corresponding to the instructions identified in the earlier
step.

Figure 4 shows a simplified flow—diagram of the functionality
of a generic object-oriented self-analyzing core model: If the core
is Busy, i.e., another core claimed this core for a particular time in
order to accomplish its own task, this core cannot be claimed by
any other core. The core model can either be called by another
core model (Core Call) or it is called by a control object that takes
care of the interplay of all cores which together model the whole
SOC behavior. In the first case the following actions are performed:
The according core is put into the busy state, the energy counter is
initialized and the clock counter is set to the number of clock cycles
it takes to execute the specified action , i.e., instruction, assuming
that no delay (e.g. no waiting for other resources like a bus) occurs.
Then, it is asked whether the resources that will be used by this core
are available or not. If yes then those resources are claimed for the
time they are needed (and at this time they are unavailable to other
cores). If no then the execution of this core is delayed costing some
energy for the idle state (retrieved from a look—up table). The two
leftmost branches of the flowdiagram belong to the case the OO
core model is not called by another core model but by an object
instead that initializes the according actions of this core after each
clock cycle. Therefore, first the clock cycle counter is decremented,
then, when it is counted down to zero, the actual action (instruction)
is executed.®

For our UART example, the object will have methods (imple-
menting the instructions) “write-reg” and “‘enable-tx” and a vari-
able called toggle-count, initialized to zero by the constructor, say.
When “write-reg” or “enable-tx” are called, toggle-count will be

3 Assigning the actual action to only one clock cycle is a strong simplifi-
cation and might possibly cause conflicts. This is the price we have to pay
for using the high abstraction level that does not allow for a cycle accurate
execution.

Energy
look-up table

I Claim used
Energy resources
{ook-up table

Figure 4: Simplified flow—diagram of the functionality of a generic
object—oriented self-analyzing core model

incremented by looking up the toggle switch amount for these in-
struction in the tables.

7 Model use

In the previous section, we described the steps a core-designer
could use to build a core’s system-level model in a manner support-
ing estimation. In this section, we outline steps necessary for a core
user to use such a core model to build an SOC and perform esti-
mations, summarized in Figure 3(b). In brief, these steps involve
creating a high-level model of the system, simulating it to obtain
simulation data, and analyzing the results to obtain power and other
estimates.

The user of cores will select a set of objects representing the
cores of the system under design. These cores will be integrated
together using one of the methods described in the system-level
modeling section. Then, this model of the system will be simulated.
At the end of the simulation, each core in the model will output
power and performance data, say toggle count. Multiple simulation
runs can be carried out to obtain power and performance data for
different core parameter values and configurations.

The data outputted by the cores will be subsequently used in an
analysis tool. At the minimum, the analysis tool will apply proper
technology specific metrics, e.g., capacitance, clock frequency, etc.,
to the data obtained from simulation in order to produce power and
performance estimates. For example, the analysis tool will multi-
ply the square of the supply voltage and the average cell capacitance
with the toggle switch data to obtain power estimates. The analysis
tool may examine other simulation data, such as ¥/o frequency to
and from different cores, to also perform estimates of power con-
sumed by on-chip busses [5].

8 Experiments

To illustrate the concepts presented in this paper, we modeled a
Digital-Camera using method calling objects as well as using RT-
synthesizable VHDL. Figure 5 illustrates the four main cores, CCD-
PP, MIPS, CODEC and UART that capture, process and output dig-
itized pictures. We will next detail the Digital-Camera’s functions,
the object-oriented model of it, and the simulation, analysis and es-
timation of power and performance results.

The heart of the Digital-Camera is a simplified MIPS proces-
sor and on-chip cache bounded together via a high-speed bus and
surrounded by a number of peripheral devices, i.e., cores, com-
municating over a peripheral bus, designed for layout on a single
chip. The application running on the MIPS issues a “capture” com-
mand to the CCD-PP (charged coupled device - pre-processor) core
which in turn uses a CCD to capture and process a single frame
and stores it into internal memory. The application then clocks out
the image, one pixel at a time, and stores it into memory to be en-
coded/decoded by the CODEC, displayed and serially transmitted
via a UART core. The UART core can be synthesized to have an
internal buffer size of 2, 4, 8, or 16. The CCD-PP can be synthe-
sized for use with 8x8, 16x16 and 32x32 CCDs, the CODEC can
be synthesized with one of four different compression algorithms.

The high-level Digital-Camera model is composed of four C++
objects representing the simplified MIPS, CCD-PP, UART and
CODEQC, totalling about 600 lines of code. Figure 6 depicts the

144

to cache
and mem.

I—"’estim.

analysis tool

toggle, i/o, data

Figure 6: Object-oriented model of the Digital-Camera

objects, and their relationship to each other. Each one of these ob-
jects provides member functions, a.k.a., methods, that functionally
describe the core it represents. The CCD-PP, UART and CODEC
can be instantiated with different parameter values. This allows
for estimates for different core parameters configurations. We de-
fined three instructions that abstractly model the CCD-PP, namely,
“reset”, “capture” and “read pixel”. The corresponding methods,
when invoked, add to a member variable (initialized to zero on start
of the simulation) some number of toggle switches obtained from
gate-level simulation. Similarly, the UART is broken into four in-
structions, “reset”, “‘enable”, “‘disable” and “write buffer”. These
toggle switch counters are outputted by each object at the end of the
simulation, along with i/o and timing information from the MIPS
object to be used in a subsequent power/performance and bus anal-
ysis tool as described next.

The analysis tool reads the toggle switch data from simulation
and computes power using technology specific metrics such as
wire/gate capacitance [2] [17], and supply voltage. In addition,
i/o (frequency of method calls) is used to explore peripheral bus
configurations such as width and encoding for low power and ac-
ceptable performance [5].

The low-level Digital-Camera model, used to validate the
accuracy of our system-level approach, consists of Synopsys-
synthesizable RT models of the four cores, totalling about 4500
lines of code, written as part of UCR’s Dalton project. To obtain
actual power values to compare with, we synthesized the models
to gates and then used the Synopsys power estimation tool to get
gate-level accurate power and performance results.

We simulated the low-level and the high-level models of the
Digital-Camera for 8 different sets of core parameters. Each sim-
ulation was long enough to capture, process and serially transmit
a single frame, i.e., digital image. Table 2 summarizes our results.
The number in the UART column is the buffer size (in this case, the
same values for all sets), that under CCD-PP is the image size, that
under the CODEC is the compression algorithm. The next column
gives the peripheral data bus width. The next two columns give the

UART T CCD-PP [CODEC [BUS T System-Tevel time | Gate-level time | System-level power | Gate-level power | Power error
2 T6xT6 1 J2 0.07 35 0.02137 0.02560 16%
2 16x16 4 32 0.06 58 0.01511 0.01776 13%
2 8x8 1 32 0.01 20 0.00912 0.00692 31%
2 8x8 4 32 0.01 4 0.00567 0.00455 25%
2 16x16 1 8 0.09 147 0.01953 0.02198 11%
2 16x16 4 8 0.06 90 0.01189 0.01349 12%
2 8x8 1 8 0.01 30 0.00684 0.00553 24%
2 8x8 4 8 0.01 7 0.00443 0.00342 30%

Table 2: Time and power comparison between system-level and gate-level time (minutes) and power {(micro-Joules).

CPU-time it took to run the simulations for the system and gate-
level models. On the average, the system-level model simulated
thousands of times faster than the gate-level model. The next two
columns give estimated system-level and actual gate-level power.
Estimated power was between 11% and 31% accurate. More impor-
tantly, the magnitude relations among the estimated power values
match the magnitude relations among the gate-level values, mean-
ing that architectural decisions can be made correctly from the es-
timated values. For example, the last row represents the lowest
power solution, as indicated by both the estimated and actual power
numbers, corresponding to a small CCD and a simple compression
scheme.

9 Future work

One limitation of our approach is that simulation must be per-
formed for every configuration of core parameters that we wish
to consider. While such simulation is many orders of magnitude
faster than gate-level simulations, it still requires several seconds
and hence prohibits exploration of hundreds or even millions of
configurations. Thus, further techniques should be developed that
allows one to simulate the system just once, and then rapidly ex-
plore different core parameter values (as has already been done
for on-chip bus exploration {S]). Work must also be performed to
perform estimation for microprocessors and memory cores, which
are highly-specialized components requiring specialized estimation
techniques. Another avenue of future work may investigate the im-
pact of particular sequences of core instructions, whereas in this
paper we treated each instruction independently.

10 Conclusion

Power estimation from high-level models early in the system de-
sign process previously suffered from much inaccuracy, while very-
accurate estimation from lower-level models (e.g., RTL-level or
gate—level) suffer from unacceptably long computing times. How-
ever, the advent of cores means that accurate low-level power infor-
mation can now be incorporated into high-level models. We defined
such a hybrid approach and conducted experiments, with an em-
phasis on parameterized cores, resulting in extremely fast system
simulations on the order of milliseconds, as well as sufficiently ac-
curate estimations. The approach is applicable to other design met-
rics also, such as size and performance. The result is that designers
of core-based systems using this approach can make power—related
architectural design and parameter selection decisions early in the
design process, where impact is large, under the guidance of fast
and accurate estimations.

11 Acknowledgement

A Design Automation Conference Graduate Scholarship and a
NSF grant supported this research. We are grateful for their sup-
port.

References

[1] A.Chandrakasan, M.Potkonjak, J.Rabaey, R.Brodersen, Hyper-LP:
A System for Power Minimization using Arhcitectural Transforma-
tions, IEEE Proc. of Int'l Conf. on Computer—Aided Design (IC-
CAD92), pp. 300-303, 1992.

J.Chern, J.Huang, L.Arledge, P.Li, P.Yang, Multilevel Metal Capac-
itance Models for CAD Design synthesis Systems, IEEE Electron
Device Letters, vol. 13, no. 1, pp.32-34, January 1992.

A.Evans et al., Functional Verification of Large ASICs, Design Au-
tomation Conference, 1998.

‘W.Fornaciari, D.Sciuto, C.Silvano, Power Estimation for Archi-
tectural Explorations of HW/SW Communication on System~Level
Buses, To be published at HW/SW Codesign Workshop, Rome, May
1999.

(2]

3

145

(51

(6]

N
(8]

9

{10]

(11]

{12]

{13]

{14]

[15]
[16]

[17]
(18]

[19]

T.Givargis, F.Vahid, Interface Exploration for Reduced Power in
Core-Based Systems, International Symposium on System Synthe-
sts, December 1998.

T.Givargis, J.Henkel, E.Vahid, Interface and Cache Power Explo-
ration for Core-Based Embedded System Design, Submitted to Inter-
national Conference on Computer Aided Design, November 1999.
R.Gupta and Y. Zorian, Introducing Core-Based System Design,
IEEE Design and Test, Vol. 14, No. 4, Oct-Dec 1997, pp. 15-25.
T.Xuhn, W.Rosenstiel, U.XKebschull, Object Oriented Hardware
Modeling and Simulation Based on Java, International Workshoy
on IP Based Synthesis and System Design, Grenoble, France, 1998,
S.Kumar, J.Aylor, B.Johnson, W.Wulf, Object-Oriented Techniques
in Hardware Design, IEEE Computer, vol. 27, pp. 64-70, June 1994.
G.Lakshminarayana, A.Raghunathan, K.S.Khouri, N.K.Jha, Com-
mon Case Computation: A High-Level Power-Optimizing Tech-
nique, IEEE Proc. of Design Automation Conference (DAC99),
June 1999.

F.Mallet, FBoeri, and J.F.Duboc, Hardware Architecture Modelin
Using an Object-Oriented Method, Proceedings of the 24th EUg
ROMICRO Conference, August 1998.

C.Passerone, R.Passerone, C.Sansoe, J.Martin, A.Sangiovanni-
Vincentelli, R.McGeer, Modeling Reactive Systems in Java, Pro-
ceedings of the Sixth International Workshop on Hardware/Software
Codesign, March 1998.

B.Payne, Rapid Silicon Prototyping: Paradigm for Custom System-
on-a-Chip Design, http://www.vlsi.com/velocity, 1998.
A.Raghunathan, S.Dey, N.K.Jha, Glitch analysis, and reduction in
register—transfer-level power optimization, E Proc. of Design
Automation Conference (DAC96), pp.331-336, 1996.

V.Tiwari, Logic and system design for low power consumption, PhD
thesis, Princeton University, Nov. 1996.

F.Vahid, T.Givargis, Incorporating Cores into System-Level Speci-
ﬁca%ion. International Symposium on System Synthesis, December
1998.

N.H.E.Weste, K Eshraghian, Principles of CMOS VLSI Design, Ad-
dison Wesley, 1998.

J.S.Young, J.MacDonald, M.Shilman, A.Tabbara, PHilfinger,
A.R Newton Design and S[:eczﬁcation of Embedded Systems in Java
Using Successive, Forma Rejﬁnemem, Proceedings of the Design
and Automation Conference, June 1998.

National Technology Roadmap for Semiconductors, Semiconductor
Industry Association, 1997.

