
Cache Optimization for Embedded Processor
Cores: An Analytical Approach

ARIJIT GHOSH and TONY GIVARGIS
University of California, Irvine

Embedded microprocessor cores are increasingly being used in embedded and mobile devices. The
software running on these embedded microprocessor cores is often a priori known; thus, there is
an opportunity for customizing the cache subsystem for improved performance. In this work, we
propose an efficient algorithm to directly compute cache parameters satisfying desired performance
criteria. Our approach avoids simulation and exhaustive exploration, and, instead, relies on an
exact algorithmic approach. We demonstrate the feasibility of our algorithm by applying it to a
large number of embedded system benchmarks.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories;
C.3 [Special-Purpose and Application-Based Systems]: Real-time and embedded systems

General Terms: Algorithm, Design

Additional Key Words and Phrases: Cache optimization, core-based design, design space explo-
ration, system-on-a-chip

1. INTRODUCTION

The growing demand for embedded computing platforms, mobile systems,
general-purpose handheld devices, and dedicated servers coupled with shrink-
ing time-to-market windows are leading to new core based system-on-a-chip
(SOC) architectures [International Technology Roadmap for Semiconductors;
Kozyrakis and Patterson 1998; Vahid and Givargis 1999]. Specifically, micro-
processor cores (a.k.a., embedded processors) are playing an increasing role in
such systems design [Malik et al. 2000; Petrov and Orailoglu 2001; Suzuki et al.
1998]. This is primarily due to the fact that microprocessors are easy to program
using well-evolved programming languages and compiler tool chains, provide
high degree of functional flexibility, allow for short product design cycles, and
ultimately result in low engineering and unit costs. However, due to continued
increase in complexity of these systems and devices, the performance of such
embedded processors is becoming a vital design concern.

This work was supported in part by a National Science Foundation Award (No. 0205712).
Authors’ address: 444 Computer Science Building, University of California, Irvine, CA 92697-3430;
email: {arijitg,givargis}@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1084-4309/04/1000-0419 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004, Pages 419–440.

420 • A. Ghosh and T. Givargis

The use of data and instruction caches has been a major factor in improv-
ing processing speed of todays microprocessors. Generally, a well-tuned cache
hierarchy and organization would eliminate the time overhead of fetching in-
struction and data words from the main memory, which, in most cases, reside off
chip and require power costly communication over the system bus that crosses
chip boundaries.

Particularly, in embedded, mobile, and handheld systems, optimizing of the
processor cache hierarchy has received a lot of attention from the research com-
munity [Petrov and Orailoglu 2001; Su and Despain 1995; Balasubramonian
et al. 2000]. This is in part due to the large performance gained by tuning
caches to the application set of these systems. The kinds of cache parameters
explored by researchers include deciding the size of a cache line (a.k.a., cache
block), selecting the degree of associativity, adjusting the total cache size, and
selecting appropriate control policies such as write-back and replacement pro-
cedures. These techniques, typically, improve cache performance, in terms of
miss reduction, at the expense of silicon area, clock latency, or energy.

The remainder of this article is organized as follows: In Section 2, we sum-
marized related work. In Section 3, we outline our technical approach and
introduce our data structures and algorithm. In Section 4, we present our ex-
periments and show our results. In Section 5, we outline our future work. In
Section 6, we conclude with some final remarks

2. PREVIOUS WORK

Traditionally, a design-simulate-analyze methodology is used to achieve op-
timal cache performance [Li and Henkel 1998; Shiue and Chakrabarti 1999;
Wilton and Jouppi 1996; Sato 2000]. In one approach, all possible cache con-
figurations are exhaustively simulated, using a cache simulator, to find the
optimal solution. When the design space is too large, an iterative heuristic is
used instead. Here, to bootstrap the process, arbitrary cache parameters are
selected, the cache subsystem is simulated using a cache simulator, cache pa-
rameters are tuned based on performance results, and the process is repeated
until an acceptable design is obtained.

Central to the design-simulate-analyze methodology is the ability to quickly
simulate the cache. Specifically, cache simulation takes as input a trace of mem-
ory references generated by the application. In some of the efforts, speedup is
achieved by stripping the original trace to a provably identical (from a perfor-
mance point of view) but shorter trace [Wu and Wolf 1999; Lajolo et al. 1999].
In some of the other efforts, one-pass techniques are used in which numer-
ous cache configurations are evaluated simultaneously during a single simu-
lation run [Kirovski et al. 1998; Mattson et al. 1970]. While these techniques
reduce the time taken to obtain cache performance metrics for a given cache
configuration, they do not solve the problem of design space exploration in gen-
eral. This is primarily due to the fact that the cache design space is too large.
Figure 1(a) depicts the traditional approach to cache design space exploration.
Our approach uses an analytical model of the cache combined with an algorithm
to directly and efficiently compute a cache configuration meeting designers

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 421

Fig. 1. Design space exploration of caches: (a) traditional approach, (b) proposed approach.

performance constraints. Figure 1(b) depicts our proposed analytical approach
to cache design space exploration. In our approach, we consider a design space
that is formed by varying cache size, degree of associativity and the block size.
In addition to the time-ordered trace file, our algorithm takes as input the de-
sign constraint in the form of the number of desired cache misses. The output
of the algorithm is a set of cache instances that meet the constraint.

The strength of our analytical approach is the ability to quickly search an
exponentially large solution space to obtain optimal cache design instances.
Our analytical approach is limited by the capacity of the host main memory to
accommodate the number of unique references in the application trace. Since in
embedded software the number of unique references is usually far less than the
actual trace size, our approach is extremely practical. Specifically, we recognize
that in most embedded systems, one can identify one or more small compu-
tational cores (e.g., signal processing engines, control loops, database query,
etc.), whose memory reference trace is sufficiently small to be processed by our
algorithms. Here, the design challenge is to enable these computational cores
to execute on limited processor/memory resources, meet stringent performance
(i.e., execution time) constraints, and achieve optimal design objectives (e.g.,
area, power, etc.). Our analytical approach is ideal for these types of constraint
driven design.

Another distinguishing characteristic of our approach is the fact that it treats
performance (i.e., execution time) as a design constraint and other metrics (e.g.,
area, power, etc.) as design objectives. Specifically, our algorithm generates each
and every cache design instance (always a very small set) that meets the per-
formance constraint. Subsequent analysis of this small set of design instances,
using appropriate models (e.g., power and area models, etc.) can be used to ob-
tain a final design instance. In a large class of applications (e.g., multimedia,
control systems, target recognition, etc.), performance of software is a hard de-
sign constraint. In other words, timeliness of task completion defines, in part,
the correctness of the application. Our approach is directly applicable in design
of such applications.

In other related work, researchers have defined cache inclusion proper-
ties in order to link miss/hit rates of one cache organization in terms of

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

422 • A. Ghosh and T. Givargis

another [Hill 1987; Baer and Wang 1998]. Specifically, in Hill [1987], the au-
thors use algorithms forest-simulation (to simulate direct-mapped caches) and
all-associativity-simulation (to simulate set associative caches) by relying on
inclusion, a property that all larger caches contain a superset of the data in
smaller caches. In other words, inclusion property is used to avoid multiple
passes of simulation. However, in the broader search (i.e., one that includes
associativity) the algorithm is slightly less efficient than a one pass simulation
as the inclusion property does not always hold. In Baer and Wang [1998], the
authors have defined cache inclusion properties to determine cache coherency
policies in a multiprocessor system utilizing multiple levels of cache hierarchy.
Here, down a chain of caches in a hierarchy, cache inclusion properties are used
to determine where and when a data write by a particular processor will in-
validate cache entries. We note that cache inclusion based analysis techniques
are limited to a subspace of all possible cache combinations in terms of size
and associativity.

Brehob and Enbody [1996] and Harper et al. [1999] have proposed analyti-
cal models for computing cache performance. Brehob and Enbody [1996] have
introduced a model based on stack distance for measure of locality. They have
proposed a stack-distance based quantitative model for measuring cache per-
formance. Harper et al. [1999] introduced novel analytical models for cache be-
havior. Their models, applicable to numerical codes consisting mostly of array
operations, predict the overall hit/miss ratio of set-associative caches through
an extensive hierarchy of cache reuse and interference effects, including nu-
merous forms of temporal and spatial locality.

Our approach differs from previous approaches in three important aspects.
First, the difference between the approach presented in this article and previ-
ous techniques, including the cache-inclusion-based techniques, is that our ap-
proach is one of analytical design space exploration while previous work focuses
on performance estimation. Specifically, full simulation, partial simulation, or
cache inclusion techniques compute a miss/hit value given a benchmark and a
cache configuration, while in our approach, we arrive at a set of cache configura-
tions that meet a target miss/hit rate (i.e., finding cache instances with certain
performance characteristics). Secondly, our algorithm explores an exponential
design space in polynomial time. Exploration of an exponential set of cache con-
figurations using simulation, even using a fast cache estimator, as in the case
of cache inclusion, can be impractical based on the time it could take. Finally,
while the design space can be pruned by heuristics like hill-climbing and sim-
ulated annealing to obtain near-optimal results, our approach produces exact
results. Thus, our approach is optimal, considering all possible configurations
and producing the ones that meet the desired design constraints.

3. TECHNICAL APPROACH

3.1 Overview

In the following approach, we consider a design space that is obtained by varying
cache depth D, the degree of associativity A and the block size B. Cache depth

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 423

Fig. 2. Block diagram of proposed algorithm.

D gives the number of rows in the cache. In other words, log2(D) gives the
bit width of the index portion of the memory address. Degree of associativity
A is the amount of storage available to accommodate data/instruction words
mapping to the same cache row (a.k.a., cache block). Block size B is the number
of words that can be stored in a single cache line. Our objective is to obtain a set
of optimal cache triples (D, A, B) for a given number K of desired cache misses.
Note that by using the cache depth D, degree of associativity A, and block size
B, we obtain the total cache size by computing D × A × B. Also, note that the K
desired caches misses are assumed to be those beyond the cold misses, as cold
misses cannot be avoided. Finally, we have assumed fixed least recently used
(LRU) replacement and write-back policies. The LRU replacement policy is the
most common and often optimal choice [Intel Pentium IV; Motorola MPC500;
Motorola MPC5200; Motorola MPC823]. Write-back policies affect the memory
traffic between the cache and the main memory and have no effect on the traffic
between the CPU and the cache. As such, choice of write back policies is not
going to have an effect on our algorithm.

Our approach can be divided into three phases, the preprocessing phase, the
main processing phase and the post-processing phase. During the preprocess-
ing phase, we read the time-ordered trace file and construct a binary tree data
structure, called the Binary Cache Allocation Tree BCAT. In the main process-
ing phase, we compute the Miss Table MT during a depth-first traversal of the
BCAT. In the post-processing phase, we generate the optimal cache triples (D,
A, B), which are guaranteed to result in a miss rate of less than K. A block
diagram of our analytical approach is shown in Figure 2. We next describe in
detail the three phases of our algorithm and the associated data structures.

3.2 Preprocessing Phase

Recall that a time-ordered original trace of N instruction/data memory ref-
erences (R1· · · R N) is obtained after simulating the target application on a

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

424 • A. Ghosh and T. Givargis

Table I. The Original Trace

Ri B3 B2 B1 B0
R1 1 0 1 1
R2 1 1 0 0
R3 0 1 1 0
R4 0 0 1 1
R5 1 0 1 1
R6 0 1 0 0
R7 1 1 0 0
R8 0 0 1 1
R9 1 0 1 1
R10 0 1 1 0

Table II. The Stripped Trace

Uj B3 B2 B1 B0
U1 1 0 1 1
U2 1 1 0 0
U3 0 1 1 0
U4 0 0 1 1
U5 0 1 0 0

processor whose cache is being optimized. We reduce this trace into a unique
set of N ′ unique references (U1 · · ·UN ′), where N ′ ≤ N . Every reference Ri is
the kth (k∈{1 · · · N}) occurrence of a unique reference Uj. As part of a running
example, consider the trace shown in Table I and the stripped version shown
in Table II.

In this example, the trace contains N = 10 4-bit references (R1 · · · R10). Of
those, there are N ′ = 5 unique references (U1· · · U5). Thus reference R2 is
the 1st occurrence of unique reference U2, and R7 is the 2nd occurrence of
U2. Similarly, references R1, R5 and R9 are the 1st, 2nd and 3rd occurrences
respectively of U1. Next we describe the BCAT data structure.

A BCAT data structure fully captures how references are mapped onto a
cache of any possible organization. Prior to computing the BCAT data structure,
we transform the unique set into an array of zero/one sets. The array of zero/one
sets contains a pair of sets for each address bit. Specifically, for index bit Bi, we
compute a pair of sets called zero Zi and one Oi. The set Zi contains all Uk that
have a bit value of 0 at Bi. Likewise, the set Oi contains all Uk that have a bit
value of 1 at Bi. For the running example, shown in Table I, the zero/one sets
are given in Table III.

Next, the zero/one sets are used to construct the BCAT tree. We use these
sets because the set intersection operation nicely defines how references are
allocated to each cache location. For an example, in a cache of depth 4 (i.e., 4
rows), using B0 and B1 as the index bits, we can compute the following cross
intersections:

L00 = Z0 ∩ Z1 = {2, 5}
L01 = Z0 ∩ O1 = {3}
L10 = O0 ∩ Z1 = {}
L11 = O0 ∩ O1 = {1, 4}

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 425

Table III. The Zero/One Sets

Z O
B0 {U2, U3, U5} {U1, U4}
B1 {U2, U5} {U1, U3, U4}
B2 {U1, U4} {U2, U3, U5}
B3 {U3, U4, U5} {U1, U2}

Input: U0, U1 · · · UN ′−1 (unique set)
Output: BCAT
for each i ∈ [M−1 · · · 0] do // assume M-bit references

Zi := Oi := ∅
for each U j do

if ith bit of U j is 0 then
Zi := Zi ∪ {U j }

else
Oi := Oi ∪ {U j }

BCAT.root ⇐ Z0 ∪ O0
BCAT := Recursive-Build-BCAT(BCAT.root, Z, O, 1)

Fig. 3. Algorithm 1: Builds the BCAT data structure.

Input: BCAT, η (tree node), Z/O (sets), L (tree level)
Output: BCAT
if | η | ≥ 2 then

η.left ⇐ η ∩ ZL
BCAT := Recursive-Build-BCAT(η.left, Z, O, L + 1)
η.right ⇐ η ∩ OL
BCAT := Recursive-Build-BCAT(η.right, Z, O, L + 1)

Fig. 4. Algorithm 2: Builds (recursively) the BCAT data structure.

Here sets L00, L01, L10, and L11 contain the reference identifiers mapped onto
the 4 cache slots. Likewise, for a cache of depth 8, using an additional index
bit B2, we cross intersect each of these 4 sets with Z2 and O2 to obtain the 8
new sets and so on. The new sets form the nodes of our binary tree. We stop
growing the tree further down when we reach a set with cardinality less than
2. Algorithm 1 (Figure 3) and Algorithm 2 (Figure 4) recursively build a BCAT
data structure as described here. The complete BCAT data structure of the
running example is shown in Figure 5.

Associated with each node, we maintain a trace, called the Relevant Trace
Set RTS. The RTS of a node is a subset of the RTS of its parent node containing
only the references mapped onto the current node. For the root, RTS is the
original trace. For other nodes, RTS is created dynamically during the main
processing phase. (See Algorithm 7.)

3.3 Main Processing Phase

In the main processing phase, we build up the Miss Table MT data structure
by processing each node η, as it is encountered in a depth first traversal of the
BCAT tree.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

426 • A. Ghosh and T. Givargis

Fig. 5. BCAT data structure corresponding to application trace shown in Table I.

Table IV. The MT Data Structure

(Assoc., Block) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)
⇒

Level
0 5 4 4 2 0
1 5 2 0 0 0
2 4 0 0 0 0
3 4 0 0 0 0
4 0 0 0 0 0

The MT data structure maintains, for each level L of the BCAT, the number
of misses for every associativity being considered, that is, A = 1 to A = Amax
and for a range of block size Bmin to Bmax. The block size is bounded by the
product of Amax and the maximum depth Dmax of the BCAT. Note that each
level of the tree corresponds to a particular cache depth D = 2L. For ex-
ample, level one of the tree (root being level zero) corresponds to a cache of
depth two. Also, the maximum associativity at a given level, which results
in no misses, can be calculated by setting A to the maximum cardinality of
all nodes in the BCAT at that level. An entry MTL, A,B gives the number of
misses at level L (i.e., depth D = 2L) for associativity A and block size B.
For example, MT 3,2,4 = 15 means a cache of depth D = 23 = 8 with as-
sociativity A = 2 and B = 4 will result in 15 misses. The complete MT
data structure for our running example is shown in Table IV. For simplicity,
we just illustrate the case in which the cache line size is equal to the word
size, i.e., B = 1.

The MT data structure is built using Algorithm 3 (Figure 6).
Processing of each node involves traversing the RTS and for each of its el-

ement, updating the MT data structure (explained later), creating the Count
Vector CV (explained next) and creating the children RTS (explained earlier)
for the children nodes, as shown in Algorithm 4 (Figure 7).

The CV data structure is an array of integer counters (C1· · · CN) correspond-
ing to the unique references (U1· · · UN). For every Ri in the original trace, and
for all unique references Uj , the value i-CV[U j]-1 gives a count of the unique

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 427

Input: T (original trace), K (desired misses)
Input: BCAT, B (block size)
Output: MT
MT := ∅; BCAT.root.RTS = T
for each node η ∈ BCAT (depth first) do

(MT, η) := Process-Node(MT, η, K, B)

Fig. 6. Algorithm 3: Builds the MT data structure.

Input: MT, η (tree node), K (desired misses)
Output: MT, η (tree node)
CV[1 · · · N] = 0
for each reference Ri in η.RTS do

U j := Unique-Reference-Type(Ri)
MT := Update-MT(CV[U j],K,MT, η.level, Ri , B)
CV := Update-CV(CV, U j , Ri)
η := Create-Children-RTS(η, Ri)

Fig. 7. Algorithm 4: Processes a tree node while building the MT data structure.

references that have occurred since the last occurrence of Uj in the original
trace.

The CV can be populated by using the sequence number i of a reference Ri
in the original trace. Specifically, if a given reference Ri is an occurrence of
a unique reference Uj, then CV[Uj] is set to i. However, at this point, there
could be Uk (k∈{1 · · · N ′}, k �= j) unique references whose last occurrence was
before the last occurrence of Uj. To prevent Uj being counted more than once
for each of those Uk unique references, we increment CV[Uk] by 1 for all k. To
illustrate, when unique reference “0110” (j = 3) is encountered for the first
time in original trace, CV[3] is set to the then current i (=3). At i = 8, reference
“0011” is encountered for the 2nd time since the last occurrence of “0110”. Hence
CV[3] is incremented by 1 (to 4). Similarly, at i = 9, CV[3] is again incremented
(to 5) due to repetition of “1011” (Table V, Table VI).

The final issue is to identify all the k unique references for which CV[Uk]
need to be incremented when a unique reference Uj occurs in the original trace.
From our earlier observations, it is obvious that Uk should have occurred before
the last occurrence of Uj. Thus, all k for which CV[Uk] is less than the previous
value of CV[Uj] are the references that occurred before the last occurrence
of Uj.

Incorporating block size is important in the analysis as it contributes to
calculating memory access time which is an important metric in evaluating
cache performance. Blocks belonging to the same cache line are simultaneously
fetched from the main memory and replaced from the cache subsystem, and
are never in conflict with each other. For a cache line with block size B, the
B references being mapped onto different blocks of the same cache line will
differ only in the lower log2(B) bits. By assigning the same numeric identifier
to each of these B references, we maintain a single position in the CV and
avoid them being counted as different references. This eliminates all conflicts
they have with each other but accounts for all conflicts that any of the B ref-
erences could have with other references. A simple way of achieving this is to

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

428 • A. Ghosh and T. Givargis

Table V. CV, After Processing i = 7

ID CV[ID]
1 5
2 7
3 3
4 4
5 6

Table VI. CV, After Processing i = 9

ID CV[ID]
1 9
2 7
3 5
4 8
5 6

ignore the lower log2(B) bits of the bit patterns while stripping the original
trace.

Algorithm 5 (Figure 8) updates the CV data structure as described above.
The MT is updated for every reference Ri in the RTS. Specifically, the objec-

tive is to identify all the associativities for which Ri will be a miss. If Ri is the
kth occurrence of unique reference Uj, then the number of unique references
between the (k − 1)th occurrence and kth occurrence of Uj is given by the value
i − CV[Uj] − 1. This value provides the upper bound on the degree of associa-
tivity, for which kth occurrence of unique reference Uj will result in a miss. To
illustrate, let us look at Table VI. If the next reference (i = 10) is an occurrence
of Uj = 1, then number of unique references between the last and the current
occurrence of Uj is equal to 10 − 9 − 1 = 0. This is indeed the case as the imme-
diately preceding reference was an occurrence of Uj = 1. However, if instead the
next reference is an occurrence of Uj = 5, then the number of unique references
is equal to 10−6−1 = 3. This is again true as unique references 1, 4 and 2 have
occurred since the last occurrence of 5. Note that a miss count is associated with
each degree of associativity A under consideration (i.e., 1, 2 · · · Amax) and block
size B. We stop to consider a particular degree of associativity A and block size
B when its miss count goes beyond the desired number of desired misses K, as
shown in Algorithm 6 (Figure 9).

Finally, to build the RTS of the children, we follow the steps outlined in
Algorithm 7 (Figure 10).

3.4 Post-Processing Phase

During the last phase of the algorithm, we read the MT data structure and
output a set of triples consisting of cache depth, associativity and block size
that satisfy the desired performance in terms of the number of cache misses,
as shown in Algorithm 8.

In Algorithm 8 (Figure 11), for depths (number of rows) equal to 1, 2, 4, etc.,
we print the optimal caches having the smallest degree of associativity and
block size to guarantee no more misses than the desired value K.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 429

Input: CV, U j , Ri
Output: CV
for Uk ∈ CV, k �= j do

if (CV[Uk] < CV[U j])
CV[Uk] = CV[Uk] + 1

CV[U j] = i

Fig. 8. Algorithm 5: Updates the CV data structure.

Input: CV[U j], K (desired misses), Ri , B
Input: MT, L (tree level)
Output: MT
amax = i − CV[U j] − 1;
for A ∈ [1· · · amax] do

if (MT[L][A][B] ! = −1) && (MT[L][A][B] > K)
MT[L][A][B] := −1 and break

MT[L][A][B] := MT[L][A][B] + 1

Fig. 9. Algorithm 6: Updates the MT data structure.

The number of optimal cache instances is no less than the minimum cache
depth for which associativity is equal to 1 and is no more than the width of
the bus. This small set of cache instances can be further pruned by using
appropriate power, timing and/or area models to yield one final cache instance
that satisfies all design constraints.

3.5 Time Complexity

For time complexity analysis, we use the size of the trace N and the number
of unique references N ′ as the input parameters. We note that in most cases,
N ′ is much smaller than N. Moreover, log2(N ′) is bounded by the width of the
memory references (i.e., processor data-path), which is typically 32 or 64. We
have shown the time complexity of each part of the algorithm in Figure 2, as
explained next.

The time taken to strip the trace amounts to sorting the references and thus
is O(N × log2(N ′)).

The time taken to build the BCAT data structure is O(N ′ × log2(N ′)). At
the root, we processes one node by looking at the N ′ unique references at a
cost of O(1 × N ′), at level one, we process two nodes by looking at N ′/2 unique
references at a cost of O(2 × N ′/2), at level two, we process four nodes by looking
at N ′/4 unique references at a cost of O(4 × N ′/4), etc. In general, at each level
of the tree, the computation is bounded by O(N ′). Since the number of nodes
in the tree is O(N ′) it follows that the depth of the is O(log2(N ′)). Combining
these, we obtain O(N ′log2(N ′)).

The time taken to build the MT data structure at each level of the BCAT is
O(N × N ′) which is dominated by the computation involved in building the CVs
of each node in BCAT. At the root, we process each reference (O(N)) by setting its
value in the CV and including it in the RTS of either the left or the right child.
In addition, the entire length of CV needs to be traversed to account for repe-
tition which takes O(N ′) time. The overall time at this level is thus O(N × N ′).

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

430 • A. Ghosh and T. Givargis

Input: η (tree node), Ri
Output: η (tree node)
if Ri ∈ η.left-child then

η.left-child.RTS := η.left-child.RTS ∪ Ri
else

η.right-child.RTS := η.right-child.RTS ∪ Ri

Fig. 10. Algorithm 7: Generates children RTS data structures.

Input: MT Data Structure
Print: A triple of (D, A, B) Cache Instances
for each level L ∈ MT

for each block B do
A := 0
while MT[L][A][B] = −1 do

A++;
if (A × B) < (amin × bmin)

amin := A
bmin := B

A := amin
B := bmin
print cache instance (2L, A, B)

Fig. 11. Algorithm 8: Outputs cache instances.

At the next level, we process two nodes for which we compute the CV data struc-
ture (taking O(2 × N ′/2)) followed by the RTS of its children for each reference
(O(2 × N/2)), taking O(N × N ′), and so on for the remaining levels. In general, at
each level of the tree, the computation is bounded by O(N × N ′). Since the num-
ber of nodes in the tree is O(N ′) it follows that the depth of the is O(log2(N ′)).
Combining these, we obtain O(N × N ′ × log2(N ′)) for the entire BCAT.

Finally, the post-processing phase of the algorithm takes constant time to
output the cache instances.

Overall, the presented technique takes O(N × N ′ × log2(N ′)) step to execute.
In the best-case scenario, all references are repetitions of a single reference,

(i.e., N ′ = 1). Thus, the best case time complexity of our algorithm becomes
O(N). In the worst-case scenario, all references are unique (i.e., N ′ = N). Thus,
the worst-case time complexity of our algorithm becomes O(N2 × log2(N)). In
our experiments, the average case is closer to the best-case scenario, as the size
of a memory trace is usually very large with respect to the working set of the
corresponding application.

3.6 Space Complexity

The original trace of size N is processed by reading one reference Ri at a time.
As such, there is no need to store the trace in the main memory and hence this
requires O(1) space.

Processing of a reference Ri, involves building the BCAT, updating the CV
and updating the MT.

The BCAT, as might be recalled, stores for each level of the tree, the number
of unique references N ′, that are mapped onto different nodes. Thus, at any

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 431

given level, the worst-case memory requirement is O(N ′). If W is the bit-width
of the bus, then the number of levels in the tree is no more than W. As such,
the worst-case memory requirement is O(W × N ′). However, as explained in the
next section, the BCAT is traversed in a depth-first fashion and no more than
one node per level is stored in the main memory at any given time. As such, the
worst-case memory requirements is actually O(N ′).

The CV is an array of size N ′, and has thus a space complexity of O(N ′).
Finally, the MT data structure has one entry for each possible cache depth. If

W is the bit-width of the bus, then this data structure requires a space of O(W).
Since N ′ is considerably lesser than N and since W is typically equal to 32,

the space complexity of our algorithm is dominated by O(N ′).

3.7 Final Remarks

The data structure and algorithms described above are presented in a manner
to illustrate the logic and intuition behind our analytical cache optimization
technique. Here, we comment on issues to be considered in an actual imple-
mentation (such as the one used to obtain the results in our experiments).

Stripping of a trace can be improved substantially by using a hash-table
structure to keep track of unique reference. Moreover, the building of the MRCT
data structure can be performed during the stripping of the trace with no ad-
ditional added time complexity if a hash-table is used.

The extensive use of sets in our technique is due to the fact that sets are
efficient to represent, store, and manipulate on a computer system using bit
vectors. In addition, the use of sets allows for execution of the algorithm on a
cluster of machines by utilizing a distributed set library, enabling the processing
of very large trace files.

The implementation of Algorithm 1 and Algorithm 7 can be combined. Specif-
ically, the BCAT does not need to be calculated in its entirety. Instead, a depth
first traversal of the tree can be performed to reduce memory usage. Further,
the data structures associated with each node can be deleted, after the node
has been processed.

The advantage of our approach lies in the fact that the entire design space,
obtained by varying the cache depth and associativity, can be exhaustively
explored in O(N × N ′ × log2(N ′)) time. Simulation of a single cache con-
figuration requires O(N) time. As such, our approach is better suited for
an exhaustive exploration of the complete design space. However, if the de-
sign space is restricted by the limited values commonly used today for the
cache parameters, then traditional simulation could be equally efficient for
exploration.

4. EXPERIMENTS

For our experiments, we have used 16 typical embedded system applications
that are part of the PowerStone [Vahid and Givargis 1999] and the Media-
Bench [Lee et al. 1997] benchmark applications. The applications include a
JPEG decoder called jpeg, a modem decoder called v42, a Unix compression

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

432 • A. Ghosh and T. Givargis

Table VII. Data Trace Statistics

Total Unique Time
Benchmark Refs. N Refs. N′ (sec)
adpcm 18431 381 2.7
bcnt 456 162 0.11
blit 4088 2027 6.879
compress 58250 8906 466.87
crc 2826 603 0.43
des 20162 2241 19.268
engine 211106 225 10.786
fir 5608 146 0.39
g3fax 229512 3781 221.098
jpeg 1311693 39302 100576
pocsag 13467 515 1.582
qurt 503 84 0.07
ucbqsort 61939 1144 17.516
v42 649168 23942 15628
toast 884700 1548 3942.92
G723 1016262 173 281.77

utility called compress, a CRC checksum algorithm called crc, an encryption
algorithm called des, an engine controller called engine, an FIR filter called
fir, a group three fax decoder called g3fax, a sorting algorithm called ucbqsort,
an image rendering algorithm called blit, a POCSAG communication proto-
col for paging applications called pocsag, an implementation of the European
GSM 06.10 provisional standard for full-rate speech transcoding called toast, an
implementation of the International Telegraph and Telephone Consultative
Committee (CCITT) G.723 voice compression called G723, and a few other em-
bedded applications.

We first compiled and executed the benchmark applications on a MIPS R3000
simulator. Our processor simulator is instrumented to output instruction/data
memory reference traces. The size of the traces N, the number of unique ref-
erences N ′, and the execution time of our algorithm are reported for data and
instruction traces in Table VII and Table VIII, respectively.

We have ran these traces through our analytical algorithm for various values
of desired number of cache misses K. Specifically, we have set K to one of 1%, 2%,
3%, and 4% cache misses. For brevity, in Tables IX– XVIII, we have presented
the optimal cache instances of the data and instruction traces for only five of the
benchmarks, namely des (Table IX, Table X), jpeg (Table XI, Table XII), g3fax
(Table XIII, Table XIV), toast (Table XV, Table XVI), and g723 (Table XVII,
Table XVIII). The correctness of the proposed approach has been verified by
subsequent cache simulation.

In these tables, the inner entries are the degree of associativity A and block
size B necessary to ensure the desired number of cache misses. For example, if
4% cache misses are allowed for the data trace of des, a eleven-way set associa-
tive cache of block size 4 and depth 512 would suffice.

Our algorithm ran on a Pentium IV processor running at 2.8 GHz with 512
MB of memory. The time taken to produce results for data/instruction traces is
shown in the last columns of Table VII and Table VIII.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 433

Table VIII. Instruction Trace Statistics

Total Unique Time
Benchmark Refs. N Refs. N′ (sec)
adpcm 63255 611 12.689
bcnt 1337 115 0.12
blit 22244 149 0.781
compress 137832 731 23.044
crc 37084 176 1.653
des 121648 570 22.954
engine 409936 244 34.47
fir 15645 327 1.60
g3fax 1127387 220 67.73
jpeg 4594120 623 693.876
pocsag 47840 560 5.988
qurt 1044 179 0.151
ucbqsort 219710 321 17.165
v42 2441985 656 389.856
toast 3526594 7208 212501
G723 4153844 71202 14575.8

Table IX. Optimal Instruction Cache Instances for des

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (541, 2) (541, 2) (541, 2) (541, 2)
4 (271, 2) (271, 2) (271, 2) (271, 2)
8 (136, 2) (136, 2) (136, 4) (136, 2)

16 (69, 2) (69, 2) (68, 2) (68, 2)
32 (35, 2) (34, 2) (34, 2) (34, 2)
64 (18, 2) (18, 2) (18, 2) (18, 2)

128 (10, 2) (10, 2) (10, 2) (9, 2)
256 (5, 2) (5, 2) (5, 2) (5, 2)
512 (3, 2) (3, 2) (3, 2) (3, 2)

1024 (2, 2) (2, 2) (2, 2) (2, 2)
2048 (1, 2) (1, 2) (1, 2) (1, 2)

Table X. Optimal Data Cache Instances for des

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (1396, 2) (1300, 2) (1236, 2) (1179, 2)
4 (1191, 2) (1124, 2) (1070, 2) (1035, 2)
8 (1098, 2) (1043, 2) (1006, 2) (972, 2)

16 (352, 4) (326, 4) (309, 4) (296, 4)
32 (176, 4) (163, 4) (155, 4) (148, 4)
64 (88, 4) (82, 4) (78, 4) (75, 4)

128 (45, 4) (42, 4) (39, 4) (38, 4)
256 (23, 4) (21, 4) (20, 4) (19, 4)
512 (12, 4) (12, 4) (12, 4) (11, 4)

1024 (9, 4) (9, 4) (9, 2) (7, 2)
2048 (5, 2) (5, 2) (5, 2) (4, 2)
4096 (3, 2) (3, 2) (3, 2) (2, 2)
8192 (2, 2) (2, 2) (2, 2) (1, 2)

16384 (1, 2) (1, 2) (1, 2) (1, 2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

434 • A. Ghosh and T. Givargis

Table XI. Optimal Instruction Cache Instances for jpeg

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (246, 2) (246, 2) (246, 2) (227, 2)
4 (124, 2) (122, 2) (122, 2) (114, 2)
8 (62, 2) (61, 2) (61, 2) (58, 2)

16 (31, 2) (31, 2) (30, 2) (30, 2)
32 (17, 2) (15, 2) (15, 2) (15, 2)
64 (8, 2) (8, 2) (8, 2) (8, 2)

128 (4, 2) (4, 2) (4, 2) (4, 2)
256 (2, 2) (2, 2) (2, 2) (2, 2)
512 (1, 2) (1, 2) (1, 2) (1, 2)

Table XII. Optimal Data Cache Instances for jpeg

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (38628, 2) (38615, 2) (38574, 2) (38493, 2)
4 (38461, 2) (38461, 2) (38461, 2) (38430, 2)
8 (19307, 2) (19245, 2) (19245, 2) (19216, 2)

16 (9654, 2) (9623, 2) (9622, 2) (9616, 2)
32 (4828, 2) (4812, 2) (4811, 2) (4809, 16)
64 (2414, 2) (2406, 2) (2405, 2) (2405, 2)

128 (1207, 2) (1203, 2) (1203, 2) (1202, 2)
256 (603, 2) (602, 2) (601, 2) (601, 2)
512 (302, 2) (301, 2) (301, 2) (301, 2)

1024 (151, 2) (151, 2) (150, 2) (150, 2)
2048 (76, 2) (75, 2) (75, 2) (75, 2)
4096 (38, 2) (38, 2) (38, 2) (38, 2)
8192 (19, 2) (19, 2) (19, 2) (19, 2)

16384 (10, 2) (10, 2) (10, 2) (10, 2)
32768 (5, 2) (5, 2) (5, 2) (5, 2)
65536 (3, 2) (3, 2) (3, 2) (3, 2)

131072 (2, 2) (2, 2) (1, 2) (1, 2)
262144 (1, 2) (1, 2) — —

Table XIII. Optimal Instruction Cache Instances for g3fax

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (87, 2) (87, 2) (87, 2) (83, 2)
4 (44, 2) (43, 2) (43, 2) (41, 2)
8 (24, 2) (22, 2) (21, 2) (21, 2)

16 (13, 2) (11, 2) (11, 2) (10, 2)
32 (7, 2) (7, 2) (6, 2) (6, 2)
64 (4, 2) (4, 2) (3, 2) (3, 2)

128 (3, 2) (2, 2) (2, 2) (2, 2)
256 (2, 2) (2, 2) (2, 2) (2, 2)
512 (1, 2) (1, 2) (1, 2) (1, 2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 435

Table XIV. Optimal Data Cache Instances for g3fax

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (1927, 2) (1920, 2) (1912, 2) (1902, 2)
4 (965, 2) (961, 2) (955, 2) (950, 2)
8 (485, 2) (481, 2) (478, 2) (476, 2)

16 (244, 2) (242, 2) (240, 2) (239, 2)
32 (124, 2) (122, 2) (121, 2) (120, 2)
64 (64, 2) (63, 2) (62, 2) (61, 2)

128 (35, 2) (33, 2) (32, 2) (31, 2)
256 (19, 2) (17, 2) (17, 2) (16, 2)
512 (10, 2) (9, 2) (8, 2) (8, 2)

1024 (5, 2) (5, 2) (5, 2) (4, 2)
2048 (3, 2) (3, 2) (3, 2) (2, 2)
4096 (2, 2) (2, 2) (2, 2) (1, 2)
8192 (2, 2) (1, 2) (1, 2) —

16384 (1, 2) — — —

Table XV. Optimal Data Cache Instances for toast

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (5924, 2) (2283, 2) (2246, 2) (446, 2)
4 (5924, 2) (2283, 2) (2246, 2) (446, 2)
8 (5924, 2) (2283, 2) (2246, 2) (446, 2)

16 (5924, 2) (2283, 2) (2246, 2) (446, 2)
32 (5924, 2) (2283, 2) (2246, 2) (446, 2)
64 (5924, 2) (2283, 2) (2246, 2) (446, 2)

128 (5924, 2) (2283, 2) (2246, 2) (446, 2)
256 (5924, 2) (2283, 2) (2246, 2) (446, 2)
512 (5924, 2) (2283, 2) (2246, 2) (446, 2)

1024 (5924, 2) (2283, 2) (2246, 2) (446, 2)
2048 (5924, 2) (2283, 2) (2246, 2) (446, 2)
4096 (5924, 2) (2283, 2) (2246, 2) (446, 2)
8192 (5924, 2) (2283, 2) (2246, 2) (446, 2)

16384 (5924, 2) (2283, 2) (2246, 2) (446, 2)
32768 (5924, 2) (2283, 2) (2246, 2) (446, 2)
65536 (2858, 2) (1203, 2) (1065, 2) (256, 2)

131072 (1447, 8) (615, 2) (514, 2) (256, 2)
262144 (742, 8) (360, 8) (256, 16) (256, 2)
524288 (379, 8) (313, 4) (256, 8) (256, 2)

1048576 (256, 8) (256, 4) (256, 8) (256, 2)
2097152 (256, 4) (256, 2) (256, 4) (256, 2)
4194304 (256, 4) (256, 2) (256, 4) (256, 2)
8388608 (256, 2) (256, 2) (256, 2) (256, 2)

16777216 (128, 2) (128, 2) (128, 2) (128, 2)
33554432 (64, 8) (64, 2) (64, 2) (64, 2)
67108864 (32, 8) (32, 8) (32, 8) (32, 8)

134217728 (16, 8) (16, 8) (16, 8) (16, 8)
268435456 (8, 8) (8, 8) (8, 8) (8, 8)
536870912 (4, 8) (4, 8) (4, 8) (4, 8)

1073741824 (2, 8) (2, 8) (2, 8) (2, 8)
2147483648 (1, 8) (1, 8) (1, 8) (1, 8)

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

436 • A. Ghosh and T. Givargis

Table XVI. Optimal Instruction Cache Instances for toast

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (1143, 2) (703, 2) (386, 2) (294, 2)
4 (1143, 2) (703, 2) (386, 2) (294, 2)
8 (1143, 2) (703, 2) (386, 2) (294, 2)

16 (1143, 2) (703, 2) (386, 2) (294, 2)
32 (1143, 2) (703, 2) (386, 2) (294, 2)
64 (1143, 2) (703, 2) (386, 2) (294, 2)

128 (1143, 2) (703, 2) (386, 2) (294, 2)
256 (573, 2) (343, 4) (219, 2) (174, 2)
512 (573, 2) (343, 4) (219, 2) (174, 2)

1024 (573, 2) (343, 2) (219, 2) (174, 2)
2048 (573, 2) (343, 2) (219, 2) (174, 2)
4096 (573, 2) (343, 2) (219, 2) (174, 2)
8192 (573, 2) (343, 2) (219, 2) (174, 2)

16384 (573, 2) (343, 2) (219, 2) (174, 2)
32768 (573, 2) (343, 2) (219, 2) (174, 2)
65536 (278, 2) (170, 4) (128, 2) (104, 2)

131072 (162, 2) (112, 4) (98, 2) (75, 2)
262144 (129, 8) (108, 2) (93, 2) (71, 2)
524288 (128, 4) (108, 2) (89, 2) (61, 2)

1048576 (128, 4) (108, 2) (89, 2) (61, 2)
2097152 (128, 2) (108, 2) (89, 2) (61, 2)
4194304 (128, 2) (108, 2) (89, 2) (61, 2)
8388608 (127, 2) (108, 2) (88, 2) (60, 2)

16777216 (108, 2) (94, 2) (77, 2) (59, 2)
33554432 (54, 2) (51, 2) (41, 2) (33, 2)
67108864 (27, 8) (26, 8) (21, 2) (16, 8)

134217728 (14, 8) (13, 8) (10, 16) (8, 8)
268435456 (7, 8) (6, 8) (5, 8) (4, 8)
536870912 (4, 8) (3, 8) (3, 8) (2, 8)

1073741824 (2, 8) (2, 8) (2, 8) (1, 8)
2147483648 (1, 8) (1, 8) (1, 8) —

In Figure 12, we have plotted the average measured time taken to produce
results along with the analytical time complexity computed as N ×N ′×log2(N ′)
on a logarithmic scale. As expected, the plots are consistent, with the actual
time taken asymptotically equal to the estimated time complexity.

As has been mentioned earlier, our approach is exact and in that respect, it
is much faster compared to other exact methods like simulation. Our approach
explores a design space S that is exponential in size (where size is the size of
the address space.) In other words, given a 32-bit address space, S contains
cache instances obtained by varying depth and associativity in every possible
way and block size from 2 to 32. Using existing cache simulation approaches
in an exhaustive search algorithm will not terminate in reasonable amount
of time. In order for us to provide comparison results, we limited the design
space (cache depth D from 64 to 1024, associativity A from 1 to 8 and block size
B from 2 to 32 in powers of 2) and obtained the results for three benchmark
programs(des, g3fax, blit), shown in Table XIX. Our approach still outperformed
existing approaches.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 437

Table XVII. Optimal Data Cache Instances for G723

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (837, 2) (824, 2) (815, 2) (809, 2)
4 (837, 2) (824, 2) (815, 2) (809, 2)
8 (837, 2) (824, 2) (815, 2) (809, 2)

16 (837, 2) (824, 2) (815, 2) (809, 2)
32 (837, 2) (824, 2) (815, 2) (809, 2)
64 (837, 2) (824, 2) (815, 2) (809, 2)

128 (837, 2) (824, 2) (815, 2) (809, 2)
256 (837, 2) (824, 2) (815, 2) (809, 2)
512 (837, 2) (824, 2) (815, 2) (809, 2)

1024 (837, 2) (824, 2) (815, 2) (809, 2)
2048 (837, 2) (824, 2) (815, 2) (809, 2)
4096 (837, 2) (824, 2) (815, 2) (809, 2)
8192 (837, 2) (824, 2) (815, 2) (809, 2)

16384 (837, 2) (824, 2) (815, 2) (809, 2)
32768 (837, 2) (824, 2) (815, 2) (809, 2)
65536 (429, 2) (415, 2) (409, 2) (409, 2)

131072 (272, 4) (262, 2) (258, 4) (259, 2)
262144 (210, 4) (196, 4) (193, 4) (191, 4)
524288 (210, 2) (196, 2) (193, 2) (191, 2)

1048576 (210, 2) (196, 2) (193, 2) (191, 2)
2097152 (210, 2) (196, 2) (193, 2) (191, 2)
4194304 (210, 2) (196, 2) (193, 2) (191, 2)
8388608 (210, 2) (196, 2) (193, 2) (191, 2)

16777216 (105, 2) (98, 2) (96, 2) (95, 2)
33554432 (53, 2) (50, 2) (48, 2) (48, 2)
67108864 (26, 8) (25, 8) (25, 2) (24, 8)

134217728 (14, 8) (13, 8) (12, 8) (12, 8)
268435456 (7, 8) (7, 8) (7, 8) (6, 8)
536870912 (4, 8) (4, 8) (4, 8) (3, 8)

1073741824 (2, 8) (2, 8) (2, 8) (2, 8)
2147483648 (1, 8) (1, 8) (1, 8) (1, 8)

5. FUTURE WORK

The focus of our current work is on core-based system-on-chip design, where
the processor core, main memory controller core etc are assumed to be fixed. As
such, we explore the design space parameterized by associativity, block size and
cache size. In order to provide an analytical framework that encompasses more
design parameters, in the future we intend to incorporate such design param-
eters as different replacement policies, multilevel caches, and bus architecture
effects.

6. CONCLUSION

We have proposed an efficient algorithm to directly compute cache parameters
satisfying desired performance criteria. The proposed approach avoids simu-
lation and exhaustive exploration. Here, we consider a design space that is
formed by varying cache size, degree of associativity and block size. For a given

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

438 • A. Ghosh and T. Givargis

Table XVIII. Optimal Instruction Cache Instances for G723

Cache (Degree of Associativity)
Depth (Desired Cache Misses K as a Percentage

D 1% 2% 3% 4%
2 (103, 2) (100, 2) (99, 2) (98, 2)
4 (103, 2) (100, 2) (99, 2) (98, 2)
8 (103, 2) (100, 2) (99, 2) (98, 2)

16 (103, 2) (100, 2) (99, 2) (98, 2)
32 (103, 2) (100, 2) (99, 2) (98, 2)
64 (103, 2) (100, 2) (99, 2) (98, 2)

128 (103, 2) (100, 2) (99, 2) (98, 2)
256 (77, 2) (76, 2) (75, 2) (75, 2)
512 (77, 2) (76, 2) (75, 2) (75, 2)

1024 (77, 2) (76, 2) (75, 2) (75, 2)
2048 (77, 2) (76, 2) (75, 2) (75, 2)
4096 (77, 2) (76, 2) (75, 2) (75, 2)
8192 (77, 2) (76, 2) (75, 2) (75, 2)

16384 (77, 2) (76, 2) (75, 2) (75, 2)
32768 (77, 2) (76, 2) (75, 2) (75, 2)
65536 (65, 2) (64, 2) (63, 2) (63, 2)

131072 (65, 2) (64, 2) (63, 2) (63, 2)
262144 (65, 4) (64, 2) (63, 2) (63, 4)
524288 (65, 4) (64, 4) (63, 2) (63, 4)

1048576 (65, 4) (64, 4) (63, 4) (63, 4)
2097152 (65, 4) (64, 2) (63, 4) (63, 2)
4194304 (65, 2) (64, 2) (63, 2) (63, 2)
8388608 (65, 2) (64, 2) (63, 2) (63, 2)

16777216 (64, 2) (64, 2) (63, 2) (63, 2)
33554432 (45, 2) (45, 2) (45, 2) (43, 2)
67108864 (24, 8) (23, 8) (21, 8) (21, 2)

134217728 (12, 8) (12, 8) (11, 8) (11, 8)
268435456 (7, 8) (6, 8) (6, 8) (5, 8)
536870912 (3, 8) (3, 8) (3, 8) (3, 8)

1073741824 (2, 8) (2, 8) (2, 8) (2, 8)
2147483648 (1, 8) (18, 8) (1, 8) (1, 8)

Fig. 12. Analytical time complexity vs. actual run times.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

Cache Optimization for Embedded Processor Cores • 439

Table XIX. Comparison with Simulation

Analytical
Approach Simulation

(sec) (sec)
des 0.02 100
g3fax 2 900
blit 0.004 20

memory reference trace, our algorithm takes as input the design constraint
in the form of the number of desired cache misses and outputs a set of opti-
mal cache instances that meet the constraint. The feasibility of the proposed
approach has been verified experimentally using the PowerStone and Media-
bench benchmarks.

REFERENCES

BAER, J. AND WANG, W. 1998. On the inclusion properties for multi-level cache hierarchies. In
Proceedings of the International Conference on Computer Architecture.

BALASUBRAMONIAN, R., ALBONESI, D., BUYUKTOSUNOGLU, A., AND DWARKADAS, S. 2000. Memory hier-
archy reconfiguration for energy and performance in general-purpose processor architectures. In
Proceedings of the International Symposium on Microarchitecture.

HARPER, J., KERBYSON, D., AND NUDD, G. 1999. Analytical modeling of set-associative cache behav-
ior. IEEE Trans. Comput. 48, 10 (Oct.), 1009–1024.

HILL, M. 1987. Aspects of cache memory and instruction buffer performance. Ph.D. dissertation.
University of California, Berkeley, Berkeley, Calif.

INTEL PENTIUM IV. ftp://download.intel.com/design/Pentium4/manuals/24896609.pdf.
INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS. public.itrs.net.
KIROVSKI, D., LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1998. Synthesis of power efficient

systems-on-silicon. In Proceedings of Asian South Pacific Design Automation Conference.
KOZYRAKIS, C. AND PATTERSON, D. 1998. A new direction for computer architecture research. IEEE

Comput. 31, 11 (Nov.), 24–32.
LAJOLO, M., RAGHUNATHAN, A., DEY, S., LAVAGNO, L., AND SANGIOVANNI-VINCENTELLI, A. 1999. Effi-

cient power estimation techniques for HW/SW systems. In Proceedings of IEEE Alessandro Volta
Memorial Workshop on Low-Power Design. IEEE Computer Society Press, Los Alamitos, Calif.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. MediaBench: A tool for evaluating and
synthesizing multimedia and communications systems. In Proceedings of the International Sym-
posium on Microarchitecture.

LI, Y. AND HENKEL, J. 1998. A framework for estimating and minimizing energy dissipation of
embedded HW/SW systems. In Proceedings of the Design Automation Conference.

BREHOB, M. AND ENBODY, R. J. 1996. An analytical model of locality and caching. Tech. rep.,
Michigan State University.

MALIK, A., MOYER, B., AND CERMAK, D. 2000. A lower power unified cache architecture providing
power and performance flexibility. In Proceedings of the International Symposium on Low Power
Electronics and Design.

MATTSON, R., GECSEI, J., SLUTZ, D., AND TRAIGER, I. 1970. Evaluation techniques for storage hier-
archies. IBM Syst. J. 9, 2.

MOTOROLA MPC500. http://e www.motorola.com/files/platforms/doc/ref manual/MGT560RM.pdf.
MOTOROLA MPC5200. http://e www.motorola.com/files/32bit/doc/ref manual/G2CORERM.pdf.
MOTOROLA MPC823. http://e-www.motorola.com/files/if/cnb/MPC823UM.pdf.
PETROV, P. AND ORAILOGLU, A. 2001. Towards effective embedded processors in codesigns: Cus-

tomizable partitioned caches. In Proceedings of the International Workshop on HW/SW Codesign.
SATO, T. 2000. Evaluating trace cache on moderate-scale processors. IEEE Comput. 147, 6 (Nov),

369–374.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

440 • A. Ghosh and T. Givargis

SHIUE, W. AND CHAKRABARTI, C. 1999. Memory exploration for low power embedded systems. In
Proceedings of the Design Automation Conference.

SU, C. AND DESPAIN, A. 1995. Cache design trade-offs for power and performance optimization: A
case study. In Proceedings of the International Symposium on Low Power Electronics and Design.

SUZUKI, K., ARAI, T., AND KOUHEI, N. 1998. V830R/AV: Embedded multimedia superscalar RISC
processor. IEEE Micro 18, 2 (Mar.), 36–47.

VAHID, F., AND GIVARGIS, T. 1999. The case for a configure-and-execute paradigm. In Proceedings
of the International Symposium on Low Power Electronics and Design.

WILTON, S. AND JOUPPI, N. 1996. CACTI: An enhanced cache access and cycle time model. IEEE
J. Solid State Circ. 31, 5 (May), 677–688.

WU, Z. AND WOLF, W. 1999. Iterative cache simulation of embedded CPUs with trace stripping.
In Proceedings of International Workshop on HW/SW Codesign.

Received April 2003; revised January 2004 and May 2004; accepted June 2004

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, October 2004.

