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Abstract

Switching activity on 1/0 pins of a chip is a measurable contributor to the total energy consumption of the chip. In this work, we present an
encoding mechanism that reduces switching activity of external address buses by combining 2 memory reference caching mechanism with
Unit Distance Redundant Codes (UDRC). UDRC are codes that guarantee a Hamming distance of at most one between any pair of encoded
symbols. Memory reference caching exploits the fact that memory references are likely to be made up of an interleaved set of sequential
streams. Memory reference caching isolates these, otherwise interleaved, streams and {imits the communication to an UDRC encoded
message that identifies the particular stream, at the cost of at most a single bit-transition. Experiments with 18 embedded system as well as
general applications show an average of 58% reduction in switching activity, with the best and worse cases being 86 and 36%, respectively.
The maximum performance penalty (i.e. critical-path delay) for a proposed encoder and decoder is 16 and 14 gates, respectively. The area

overhead for a proposed encoder and decoder is equivalent to 2033 and 18358 2-input NAND gates, respectively.

Published by Elsevier B.V,
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1. Introduction

The energy consumption of electronic devices is
becoming an increasingly essential concern when designing
cmbedded systems, especially mebile computing devices
[19] such as cell-phones and personal digital assistants
(PDA). This is because such handheld devices draw their
current from batteries that place a limited amount of energy
at the system’s disposal. Consequently, the lower the
average power consumption of such devices, the longer
they can operate between two recharge phases. Hence, their
mobility is higher and this is a strong argument for
preferring such devices to competitive devices.

Off-chip I/O and the associated buses have been shown to
be a major contributor to a system’s total energy consump-
tion [20]. I/O power consumpticn is in direct proportion to
the product of the switching activity present at the I/O (i.e.
pins and attached bus wires) with the average capacitive
loads of the switching elements. It has been shown that
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the capacitive load of off-chip I/O is orders of magnitude
larger than that of internal switching nodes (e.g. transistors)
[6.8,25], and this trend is likely to continue [19]. Thus, there
exists an opportunity for reducing overall energy consump-
tion by encoding/decoding the data prior/subsequent to
transmission, at a small added internal energy cost, for a
large saving in energy during off-chip transmission.

In this article, we present an encoding and decoding
scheme that reduces switching activity of external address
buses by combining an address reference caching mechan-
ism with Unit Distance Redundant Code.g (UDRC) to
exploit the otherwise concealed correlation that exists in
streams originated beyond the multilevel on-chip caches.

We introduce a general construction for UDRC, which
provide multiple redundant encoding of each possible
symbol, in such a way that any arbitrary value can be
encoded by a value at Hamming distance at most one from
each previous codeword. Our construction uses an optimal
number of bits for a given set of symbols. The UDRC
encoder and decoder will serve as a component in the design
of our memory reference caching encoder and decoder.

Address reference caching exploits the fact that address
references are likely to be made up of an interleaved set of
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short sequential address bursts. Reference caching isolates
these streams and limits the communication to an UDRC
encoded message that identifies the particular reference, at
the cost of at most a single bit-transition. Isolation of
streams is done on cach end of the address bus via a small
cache that is used to record the tail of N recent references.

The remainder of this article is organized as follows.
In Section 2, we summarize related previous work. In
Section 3, we describe our proposed approach. Int Section 4,
we describe our experimental setup and show results. In
Section 5, we state our conclusion.

2. Previous work

Numerous approaches for reducing /O energy consump-
tion have been presented in the past. These approaches fall
under two categories. The first category consists of
techniques that optimize the memory hierarchy and data
organization in order to eliminate the need for I/O in the first
place. The second category comsists of techmiques that
reduce the switching activity on buses by exploiting
correlations present in streams carried by these buses.
Here, we summarize related work in the latter category, as
our approach is one of encoding. Furthermore, the former
category of approaches can often be combined with suitable
encoding approaches for added reduction in overall /O
energy. In our experimental section, we compare our results
with those obtained by applying previous schemes surveyed
in this section.

Stan and Burleson have introduced a scheme based on
bus-invert codes to minimize switching activity of com-
munication buses [17]. Their approach computes the
Hamming distance between the current value and pre-
viously transmitted value and inverts (bit wise ncgates) the
current value if the distance is greater than 1/2 of the
bit-width of the bus. Here, an additional bit (i.e. bus wire} is
used to signal the inversion to the receiver. Their approach
works well when the stream exhibits randomness, as in data
buses. Stan and Burleson have introduced a scheme based
on lmited weight codes, which are a generalization of the
bus-invert codes [18]. Here, their approach uses two or more
additional wires to achieve further reduction in the average
Hamming distance between consecutive pairs of transmitted
values. Stan and Burleson have further combined their
above findings into a more general framework that allows
for activity reduction via spatial redundancy (added wires),
temporal redundancy (added cycles), or reduced supply
voltage [5].

When the stream on a bus is made up of sequential values
(e.g. address buses) Gray encoding [13,23] can be used to
reduce the switching activity to exactly one bit-transition per
transmitted value. To improve upon this, when the stream on
a bus is made up of sequential values, TO encoding [2] can
be used to reduce the switching activity to exactly zero
bit-transition per transmitted value. However, in general,

as buses exhibit lesser amounts of sequential behavior
{e.g. off-chip buses in the present of on-chip caches), the
overall effectiveness of Gray and TO fades away.

A number of new techniques have been developed to
improve upon the existing bus-invert, Gray, and TO
encoding schemes. Most of these new techniques
(e.g. TO-BI[11], INC-XOR [20], and T0-XOR [7]} combine
a number of basic encoding schemes into a single encoder.
For exampie, TO-BI, encodes consecutive memory refer-
ences using TO and non-consecutive memory references
using bus-invert. Most of these techniques achieve signifi-
cant savings in switching activity reduction by taking into
account the current and previous reference seen thus far.
The approach proposed in the work achieves even further
reduction in switching activity by taking into consideration
a stream of references.

Musoll et al. have proposed a scheme, called working
zone encoding, where a very small set of centerline values
that are recently observed on the bus are cached on the
encoder/decoder ends [14,15]. Subsequently, if the current
value to be transmitted is within a small range of one of the
cached values, than, the offset and cache index is
transmitted. Their approach exploits the locality of
reference that is associated with locality of reference
present at the application level, especially those that access
multiple arrays. However, in the presence of on~chip caches,
especially multi-level caches, address streams tend to be
composed of a large number of highly sequential and short
(corresponding to a cache line) but scattered bursts, which
exhaust the small set of cashed centerlines.

Benini et al. have proposed an encoding scheme, called
the beach solution, which is application dependent [1].
Here, the address stream of an application is statistically
analyzed and consequently a custom encoder and a custom
decoder are synthesized that would minimize switching
activity when that application is executed. In a more recent
contribution, Benini et al. have also proposed an optimal
technique for synthesizing custom bus encoders/decoders
for a given application [3]. Their approaches yield good
results at the expense of being application specific and not
well suited for dynamic application sets.

Mamidipaka et al. have proposed an adaptive encoding
scheme that significantly reduces bit-transition activity on
address buses [10]. Their approach does not add redundancy
in space (e.g. wires) or time (e.g. cycles). Here, an adaptive
technique is used that is based on self-organizing lists to
achieve reduction in bit-transition activity by exploring the
spatial and temporal locality of the addresses.

3. Approach overview

3.1. System architecture

A system level architecture of the proposed technique is
depicted in Fig. 1. Here, a processor and one or more levels
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Fig. 1. System architecture.

of caches reside on a single chip. In our target architecture,
separate instruction and data L1 caches are connected to a
unified L2 cache. In turn, the address bus of the lowest level
cache is connected to an off-chip memory via the encoder
and decoder. The encoder/decoder transparently send/
receive the address values generated by the cache controller
with the objective of reducing bit switching activity on the
off-chip pins and associated wires.

Given our systern assumption, we note that caches serve
as filters that impose certain structure to the address stream
as seen externally. Based on experiments and stream
analysis we can summarize the following behavior:

1. Repeated consecutive access to the same memory
location by an application appears as a single transaction
on the bus. An initial memory access fills the instruction
cache with the referenced data and subsequent accesses
are carried out between the cache and processor.

2. The address stream is composed of interleaved bursts of
consecutive references. Moreover, the distance between
consecutive accesses is that of the processor’s machine-
word size (typically 4-bytes). The length of these bursts
is that of the line size of the lowest level cache.

3. Consecutive references are either exactly one machine-
word apart or very far away, but seldom otherwise.

4. At any given time, there exist a working set of these
bursts that are interleaved. These burst often are
continuation of a recently seen burst.

5. The interleaving behavior is a result of cache lines being
written back to make room for new lines, which
interrupts the application level sequentially that may
exist (e.g. in accessing a large array).

Based on these observations, we propose reference
caching to ecliminate bus activity during short burst, and
separate multiple interleaved streams comprising the
current working set.

3.2. Reference caching

Reference caching works as follows. We maintain two
small identical N-element address caches one each on the
encoder and decoder ends. When transmitting a new address
value, the encoder compares the new address value to each
of the N elements in its address cache. More specifically, the
encoder adds a constant offset {e.g. the machine-word size
of processor) to each cached element prior to the
comparison. On a match (i.e. hit), the encoder asserts a
special contro]l signal and sends an index, a number in

the range of O ... N—1, corresponding to the matched
address cache location. The special control signal is an
additional wire that is used solely amongst the encoder and
decoder. On a miss, the encoder de-asserts the special

“control signal, sends the actual address value verbatim, and

stores the new address value into its least recently used
address cache location,

On the decoder end, when the special control signal is
seen asserted, the received index, a number in the range of
0 ... N—1, is used to fetch the corresponding address value
from the address cache. This value is then incremented by
the same constant offset used in the encoder and passed to
the memory controller. If the special control signal is seen
de-asserted, the received address value is stored into the
address cache at the least recently used location, and passed
verbatim to the memory controller.

For the above scheme to work, both the. encoder and
decoder must use the same algorithm to track the least
recently used element. Moreover, the two address caches
must reset to arbitrary but identical states (i.e. cache values).
To further reduce the switching activity, the transmission of
the index, a number in the range of 0 ... N—1, is performed
in an encoded fashion. We use UDRC encoding to
accomplish this. These codes are further described in
Section 3.3.

3.3. Unit distance redundant codes

UDRC provide multiple redundant encoding for each
possible symbol, in such a way that any arbitrary value can
be encoded by a value at Hamming distance at most one
from each previous codeword. For example, consider the
four symbols 0, 1, 2, and 3 that would normally be encoded
in binary as 00, 01, 10, and 11. Here, the Hamming distances
between pairs are: .

The total switching is 16 and there are 16 pairs, thus, the
average switching is 16/16=1, as expected. Now consider
the following redundant codes for the same four symbols.
We encode the symbol 0 as any of {000, 111}, 1 as any of
{100, 011}, 2 as any of {010, 101}, and 3 as any of
{001, 110}. Here, the minimum Hamming distance between
pairs of codes, from any set representing our symbols, are:

Here, the total switching is 12, thus, the average
switching is 12/16=10.75, a reduction of 25%.

Let us now consider the encoder and decoder circuits for
the same example. Given a 3-bit UDRC encoding X, we can
decode it into a 2-bit binary symbol ¥, as shown in Fig. 2
(Table 1). Encoding is slightly more complex. Here, we
need to consider the last symbol that was encoded,
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21X Xy Table 2
. Hamming distance between four UDRC symbols
Yy | o—)Dl(D
X Xo_ {000,111} {100,011} {010,101} {001,110}
Yo | o ED‘Y : {000,111} I 1 1
X, ] Yo {100,011 1 0 L 1
o= X D {010,101) 1 1 0 1
@‘ Decoder {001,110} 1 1 I 0
This produces a 3-bit bipary symbol for each 7-bit

Encoder

Fig. 2. UDRC encoder and UDRC decoder circuits.

Table 1
Hamming distance betwezn four binary symbols

00 ]| 10 11
00 0 1 1 2
01 1 0 2 1
10 1 2 ] 1
11 2 1 1 ¢

and encode the new symbol such that to preserve the unit
Hamming distance property (Table 2). Given the most
recently encoded binary symbol Y’ into X', and the binary
symbol ¥, we can compute X as shown in Fig. 2.

We can show that UDRC encoding exist for any
number of symbols. The proof is by construction. If we
have 2* binary symbols (i.e. k-bit binary values), we use
(2¥—1)-bit UDRC encoding. Clearly, when the number
of symbols is a power of two, we cannot do any better
than that, since each encoding must have 2¢—1 distinct
neighbors, If the number of symbols is not a power of
two, we round up to the next power of two, and are at
most a factor of two away {rom the optimal number of
bits needed to encode a given set of symbols.

Let us first consider the construction of the decoder.
Suppose that we want to decode the 7-bit UDRC
encoding XgXsX4X3XoX Xy back to the 3-bit binary
symbol Y,¥;Y,., We compute over the two-element
Galois field GF2'

S
X
1 X, Y,
1 xlxl=|n
1 Xy Yo
X5
Xe

_— S O
[om I R =
—_ = O
o Qo o=
—_ O e
o = =

! GF2 is a finite field of integers (modulo 2) standing for the Galots filed
of order 2 [24].

UDRC encoding. More generally, in the case of k-bit
binary symbols, the first matrix would have (2%—1)
columns, k rows, and its elements would be 1, 2,....k—1
in binary down each column. This matrix muitiplied by
the UDRC (2" —1)-bit encoding X would yield the k-bit
binary symbol ¥.

Now we consider the encoder. To get a one-bit change
from an UDRC encoding X' representing the binary symbol
Y’ to another UDRC encoding X representing the new binary
symbol ¥, we invert the (¥ ® Y)™ bit in X' if (Y @ 1) 07
For example, for the UDRC encoding X=0001001, the
binary symbol is ¥=101 as computed over GF2

e
0
0001 111 0 1
011001 1(Xjl]=]0
10101 01 0 1
0
L0

Now suppose we like to encode a new binary symbol
Y=110. We compute 101© 110=011. Thus, we invert the
third bit in X"=0001001 to get X=0001101. Table 3 gives
short stream of values in binary and UDRC, along with
associated Hamming distances.

3.4. Hardware architecture

The hardware circuit for the proposed refgrence caching
encoder and decoder is relatively simple and efficient in
terms of size and critical-path delay. The block diagram of
an encoder and the corresponding decoder with a 4-clement
address caches are depicted in Fig. 3. Note that the UDRC
encoder and decoder circuits are used as building blocks in
our reference caching encoder and deceder. The UDRC
encoder and decoder circuits were previously explained and
shown in Fig. 2.

We are omitting the hardware necessary to implement
the replacement policy. For this, schemes commonly used in
cache design can be adopted [21]. Also, in our design,

2 Note that, here, the Jeast significant bit is the first bit, and the most
significant is the seventh bit.
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Table 3 The decoder algorithm is given next:
A stream of binary/UDRC encoded symbols and corresponding Hamming
distances Algorithm 2 {decoder)
- — State: R, R, R; ... Ry cache elements
Symbol Binary UDRC Hamming Hamming Input: 4,, address inpit to decoder
binary UDRC Input: Control control signal input to decoder
5 101 0C0L001 _ - Qutput: Aot address ontput by decoder
if Control then
6 110 000110 2 1 -
2 010 000Kl I 1 mask = 2N - 1
i 1= UDRC_decode(A;, & mask)
5 101 1000101 3 1 R, 1= R, + 4
1 001 1001101 l 1 A, i= R
T 111 1101101 2 1 else
4 100 1101001 2 1 i t= LRU(R;, Rz, Rj3 .. Ry
Rz - Ai.n
end if

the address caches are accessed in parallel for added
performance. Furthermore, the cache elements are pre-
incremented by the offset value eliminating the adders from
residing on the critical-path,

We also provide an algorithmic specification of the
reference caching encoder and decoder that are
presented in this work. The encoder algorithm is given
first:

Algorithm 1 (encoder)

State: Ry, Rz, Ry ... Ry cache elements

State: X previous UDRC code
Input: 4,, address input to encoder
Output: 4., address output by encoder

Qutput: Control
for i in 1 to N do

control signal output by encoder

if (Ry + 4) = A;, then
Contrel 1= 1
Ry = Ay
X := UDRC eanccde(i, Xj
mask = ~{2N - 1)
Agyr = {(Bour & mask} | X
return
end if
end for
i := LRU(R;, Rz, R; .. RN)
Ry = A,
Addr.

In

Conir.
Out

Addr.

Out
(@

4. Experiments

For our experiments, we have used 14 typical embedded
system applications that are part of the PowerStone bench-
mark [12] (Table 4). The applications include a JPEG image
decoder called jpeg, a modem protocol processor cailed v42,
a Unix compression utility called compress, a CRC
checksum algorithm called cre, an encryption algorithm
called des, an engine controller called engine, an FIR filter
called fir, a group 3 fax decoder called g3fax, a sorting
algorithm called ucbgsort, an image rendering algorithm
called bliz, a POCSAG communication protocol for paging
applications called pocsag, and a few other embedded
applications. In additicn, we have experimented with four
(vortex, gce, crafty, mcf) very large applications from the
integer SPEC CPU 2000 benchmark applications [22].

For bus stream generation, we have used a simulation
model [9] of a chip based on the system architecture
depicted in Fig. 1. The target processor of this simulator is
a 32-bit MIPS R3000. The caches are organized into

(b)

Fig. 3. Reference caching hardware architecture: (a) encoder, (b) decoder.
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Table 4
PowerStone/SPEC benchmarks, address stream lengths, and bit transition statistics
Application Stream length  Bit-transitions/reference
Binary Proposed Bus invert Gray TO TO-BI INC-XOR
(32-bit bus) (33-bit bus) (33-bit bus) (32-bit bus) (33-bit bus) (32-but bus) {32-bit bus)
adpcm 1076 2.499 0.749 2.420 2.078 1.587 1.583 1.484
bent 300 2.523 0.760 2.360 2.080 1.703 1.624 1.621
blit 2196 2.486 0.343 2.452 2.079 1.727 1.641 1.522
des 1968 2.517 1.294 2.440 2079 1.736 1.605 1.574
compress 7872 2.180 1.135 2,164 2.080 1.365 1.236 1.183
cre 444 2.624 1.074 2.44] 2019 1.921 1.855 1.791
engine 412 2.444 1.563 2422 2078 1.976 1.958 1.930
Jpeg 157,700 1.798 0.525 1.651 1.636 L.O11 0.952 0.905
Sir 520 2.437 1.192 2.327 2.079 1.692 1.576 1.516
g3fax 1336 2.257 0.590 2.222 2.079 0.833 0.820 0.747
pocsag 884 2,373 1.249 2314 2.079 1.756 1.700 1.681
qurt 304 2.605 1.497 2.582 2.079 2.099 1.920 1.897
uchgsort 764 2.408 1.175 2.384 2.080 1.580 1.485 1.432
v42 24,348 2.436 0.858 2.336 2.080 1.458 1.381 1.350
vortex 048,526 2.531 0.758 2.215 2.058 1.332 1.312 1.238
goc 526,356 2.435 0.860 2.154 2.121 1.652 1.515 1.464
crafty 1,254,856 1.985 1.002 1.856 1.956 1.544 1.528 1.468
mef 758,652 2.553 1.548 2512 2.125 1.982 1.974 1.816
Average 73,8251 2.394 1.010 2.292 2.051 1.609 1.537 1.479
Switching Activity Reduction
100
B Proposed

_5 W Businvert

it

g OGray

E ETo

=2 B TO-Bi

B INC-XOR

Fig. 4. Switching activity reduction of a number of bus encoding schemes.

an 8K byte, 2-way, 16-bytes/line instruction cache, a 16K
byte, 2-way, 16-bytes/line data cache, and a 32K, 2-way,
16-byte/line unified cache. We have implemented models of
the proposed encoder and decoder and have simulated the
application traces to obtain the total switching activity. Our
encoder and decoder have address caches of size 4 and use
the least recently used (LRU) replacement policy. In
addition we have implemented bus-invert, Gray, TO,
TO-BI, and INC-XOR encoders and decoders for compari-
son purposes. A summary of the average number of
transitions per reference for various encoding schemes is
given in the following table.

The switching activity reduction, as a percentage, for a
number of encoding approaches is summarized in Fig. 4. As
shown, on the average, our approach reduced switching

activity by 58%, TO-XOR by 38%, TO-BI by 36%, TO by
33%, Gray by 14%, and bus-invert by 4%. On the average,
and based on published results®, the beach solution approach
reduced switching activity by 42% and the working zone
approach reduced switching activity by 30% [1].

In the case of blit, our approach reduced the switching
activity the most, namely, 86%. In the case of engine our
approach reduced the switching activity the least, namely
36%. The best and worse cases are explained as follows,
The engine example is not a memory intensive application.
Instead, it is highly control dominated with many branches

3 We note that these experiments were performed on a differsnt set of
benchmarks.
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Fig. 5. Switching activity reduction of proposed scheme with different address cache sizes.

and jumps, thus, much of the memory access is dominated
* by instruction fetches with little access pattern correlations.
.In contrast, biit is dominated by memory accesses that are
exploited by our approach.

In addition to measuring switching activity reduction, we
have measured, at system level, the power consumption of a
target platform implemented according to the architecture of
Fig. 1. We have incorporated processor, cache, memory,
and bus models based on CACTI [16] and WATCH [4] into
our simulation framework to estimate the power consump-
tion of the entire systems for the encoding/decoding scheme
presented in this work and described above. We have
modeled the encoder and decoder parts of the architecture at
the RTL level and have synthesized the models to a
gate-level description using the Synopsys synthesis tools.
Then, using the Synopsys gate-level power analysis tools,
we have measure the average encode/decode power using
the Synopsys gate-level power analyzer. Qur results are
compiled into Table 5. Here, we have provided the absolute

Delay Overhead —— Encoder
—-~ Decoder
100 o
o0
. ///‘
70 /
3 50 /
= 50
-]
9 40 //
30 ﬁ
20
10 -ﬁﬁ/
0 T T T
0 10 20 30 40
Cache Size

power consumption of the entire platform as well as the
percent power consumption breakdown for each component
of the platform. For our target platform, and on the average,
our proposed technique reduced the power consumption by
12%. This reduction takes into account the added power
consumpticn of the encoder and decoder circuits.

We have also experimented with encoder/decoder
architectures of varying address cache size. Our results are
shown in Fig. 5. The average switching activity
redoction with address cache size 2, 4, 8, and 16 are 40,
58, 69, and 75%, respectively. Note that as the address cache
size. becomes larger, the switching activity is
reduced. However, this reduction is not linear and a
diminishing return is observed as the address cache size is
increased. Moreover, the reduction in switching
activity must be weight against the increase in encoder/
decoder complexity and the resulting delay and area
overhead. We consider the delay and area overhead next
(Fig. 6).
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Fig. 6. Combined delay and area overhead of encoder/decoder architecture pairs.
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We have also created RTL models of the encoder and
decoder architectures depicted in Fig. 3. We have
synthesized these models using Synopsys synthesis tools
and measured the area as well as the critical-path delay. The
maximum performance penalty (i.e. critical-path delay) for
the encoder and decoder of Fig. 3 is 16 and 14 gates,
respectively. The area overhead for the encoder and decoder
of Fig. 3 is equivalent to 2033 and 1858 2-input NAND
gates, respectively. We have experimented with larger
address caches for the encoder and decoder architectures.
Our experiments show that the area and delay increase is
proportional to the encoder/decoder address cache size
(i.e. doubling the size of the address cache approximately
doubles the area and critical-path delay.} Error! Reference
source not found. gives the delay and area overhead for
encoders and decoders of address cache size 2. 4,8, 16, and
32. In our experiments, encoders and decoders with cache
size set to four performed optimally.

5. Conclusions

We have presented an encoding and decoding scheme for
address buses to minimize the switching activity at the VO
pins and associated off-chip wires. Our approach caches
memory references in order to isolate multiple intereaved
sequential streams that make up the majority of data
transmitted over an address bus of a system with on-chip
caches. Furthermore, UDRC encoding is used to reduce the
small amount of switching overhead necessary for reference
indexing. Experiments with 14 typical embedded system
applications show an average of 58% reduction in switching
activity, with the best and worse cases being 86% and 36%
respectively, using a 4-clement cache encoder and decoder.
The maximum performance penalty (i.e. critical-path delay)
for the 4-element encoder and decoder is 16 and 14 gates,
respectively. The area overhead for the 4-element cache
encoder and decoder is equivalent to 2033 and 1858 2-input
NAND gates, respectively,
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