
Synthesis of Time-Constrained Multitasking
Embedded Software

ANDRÉ C. NÁCUL and TONY GIVARGIS

University of California, Irvine

In modern embedded systems, software development plays a vital role. Many key functions are
being migrated to software, aiming at a shorter time to market and easier upgrades. Multitasking
is increasingly common in embedded software, and many of these tasks incorporate real-time
constraints. Although multitasking simplifies coding, it demands an operating system and imposes
significant overhead on the system. The use of serializing compilers, such as the Phantom compiler,
allows the synthesis of a monolithic code from a multitasking C application, eliminating the need
for an operating system. In this article, we introduce the synthesis of multitasking applications
that execute in a timely manner. We incorporate the notion of timing constraints into the Phantom
compiler, and show that our approach is effective in meeting such constraints, allowing fine-grained
concurrency among the tasks. As an additional case study, we present the implementation of a
software-based modem and show that real-time applications such as the modem have guaranteed
performance in the serialized code generated by the Phantom compiler.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms: Design

Additional Key Words and Phrases: Code serialization, multitasking, real-time embedded software,
software synthesis

1. INTRODUCTION

The complexity of embedded system designs is rising steadily and software
importance is growing significantly. Embedded devices incorporate multiple
functionalities, complex user interfaces, different protocols, and security mecha-
nisms. Many of these functionalities are implemented in software, which is more
flexible when compared to ASICs, provides higher reuse, and yields shorter time
to market.

Multitasking greatly simplifies the design of today’s complex embedded
systems. Embedded systems are inherently concurrent, and the concurrent

This work was supported by NSF award CCR-0205712 and Capes Foundation award 1054/01.5.
Authors’ address: Department of Computer Science—Center for Embedded Computer Sys-
tems, 444 Computer Science, University of California, Irvine, Irvine, CA 92697; email: {nacul,
givargis}@uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-4309/06/1000-0822 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006, Pages 822–847.



Synthesis of Time-Constrained Multitasking Embedded Software • 823

programming paradigm is a natural choice for embedded software design. Such
concurrency support is usually provided by an operating system (OS) layer, and
comes at the cost of memory and processing cycles to control the schedule and
execution of the tasks. A multitasking OS, however, is not available for every
processor type and its derivatives. The limited processing capability of some
processors, specially microcontrollers, restricts the possibilities of multitask-
ing. Moreover, porting operating systems to every variant of a processor is an
extenuous job.

Equally important in embedded software is adherence to timing constraints.
In embedded real-time systems, where correct timely execution is as important
as correct computation, multitasking is widely used. In such systems, it is im-
portant to provide guarantees about the timing behavior of the software. The
quality of the timing guarantees is what differentiates a system that can be
used in a hard real-time environment from a soft realtime environment.

To address the need for multitasking and timing constraints support in em-
bedded software, we have developed the Phantom serializing compiler. With
Phantom, we provide a fully automated tool to generate a single threaded, ANSI
C program (i.e., the output) from a C/POSIX program (i.e., the input). The in-
put is a C program, extended with POSIX to specify multitasking primitives.
The output is strict ANSI C code, without any POSIX or other multitasking
references. Phantom synthesized code serializes the execution of a multitask
application and embeds the scheduler and multitasking control into a single
monolithic program. The generated code is highly tuned for the input applica-
tion, and, since it is ANSI C, can be compiled with the processor’s native tool-
chain. Therefore, Phantom facilitates the multitasking programming model
at a lower cost and higher efficiency, providing a way to support concurrency
for resource constrained microcontrollers and for systems where an operating
system port is not available or possible. Due to the generic characteristics of
the input code, any multitasking C code can be transformed by the Phantom
compiler.

In our previous work, we have introduced the Phantom compiler, discussing
the partitioning problem [Nacul and Givargis 2004] and detailing the structure
of the synthesized code [Nacul and Givargis 2005a]. In the previous versions
of the compiler, there was no support for automatically specifying timing con-
straints, and therefore influence the timing behavior of the generated code
precisely. This article, introduces our framework to support timing constraints,
and incorporates timing guarantees in the Phantom synthesized code.

Timing constraints support in the Phantom compiler requires analysis of the
source code and estimates of the execution time of each scheduled block when
generating the serialized, monolithic program. In this work, timing estimates
are based on application profiling. Therefore, our approach is mainly targeted
at soft real-time applications, because profiling does not provide estimates that
are accurate enough for hard real-time systems. Nevertheless, our methodol-
ogy can be applied to hard real-time systems as well, replacing the profiling
phase by user-supplied WCET estimates for each segment of the application.
As discussed later in the article, WCET estimates are simpler in the Phantom
compiler. Specifically, in order to allow scheduling and context switching, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



824 • A. C. Nácul and T. Givargis

Fig. 1. Phantom compiler architecture.

original code is partitioned into smaller, simpler blocks of execution. Therefore,
WCET estimation is a less complex process.

This article is organized as follows. Section 2 introduces the phantom com-
piler. Section 3 discusses the partitioning in phantom and how code partition-
ing can be used to control timing behavior of the application. In Section 4, we
present the framework used to generate applications that meet timing con-
straints with the Phantom compiler. Experimental results are discussed in
Section 5. Related approaches are introduced in Section 6, and we conclude
in Section 7.

2. THE PHANTOM COMPILER

This section presents an overview of the Phantom compiler and its code syn-
thesis process. For a complete and detailed description, refer to the previously
published work Nacul and Givargis [2004]; Nacul and Givargis [2005a].

Input to Phantom is a multitasking program Pinput , written in C. The mul-
titasking is supported through the native Phantom API, which is a subset of
the standard POSIX interface (Go online to the POSIX Open Group Web site
http://www.opengroup.org). The POSIX primitives provide functions for task
creation and management as well as a set of synchronization variables. Output
of Phantom is a single-threaded strict ANSI C program Poutput that is equiv-
alent in functionality to Pinput. More specifically, Poutput does not require any
OS support and can be compiled by any ANSI C compiler into a self-sufficient
binary for a target embedded processor.

Figure 1 shows the block diagram of Phantom. The multitasking C applica-
tion is compiled with a generic front-end compiler to obtain the basic block (BB)
control flow graph (CFG) representation. This intermediate BB representation
is annotated, identifying Phantom primitives. The resulting structure is used
by a partitioning module to generate nonpreemptive blocks of code, which are
called atomic execution blocks (AEBs), to be executed by the scheduler. Every
task in the original code is partitioned into many AEBs, generating an AEB

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 825

graph. Then a live variable analysis is performed on the AEB graphs and the
result is fed back to the partitioning module to refine the partitions until ac-
ceptable preemption, timing, and latency are achieved. When a final partition
is achieved, the scheduling and context switching information is included for
each of the resulting AEBs in the AEB graphs. The resulting AEB graphs are
then passed to the code generator to output the corresponding ANSI C code for
each AEB node, resulting in the final ANSI C single-threaded code.

When compared to an RTOS kernel, the serialized code is very different, and
optimized in a number of ways. First, the serialized code has a more efficient
context switching, since it is possible to know which variables are live at the
context switch point, optimizing the data that needs to be saved. The code for
saving and restoring context is simplified, and embedded in the serialized code
for each context switching point. Additionally, the serialized code contains the
information of the next task to be executed, simplifying the scheduling decision.
Nevertheless, some drawbacks of multitasking are also present in the serial-
ized code. Whenever there is a context switch, a new task starts executing,
and cache, TLB and other architecture elements are affected. This is an inher-
ent characteristic of multitasking, and is not changed by Phantom. However,
the serialized code can be more efficient than the traditional RTOS. If tasks
are implemented as separate processes, which require more complex context
information, the serialized code presents a significant improvement.

2.1 Scheduling and Synchronization

We define the basic unit of execution, scheduled by the scheduler, an atomic
execution block (AEB). An AEB is a block of code that is executed in its entirety
prior to scheduling the next AEB. A task Ti is partitioned into an AEB graph
whose nodes are AEBs and edges represent control flow. Consider the example
Control flow graph (CFG) shown in Figure 2. Figure 2(a) shows the output of
the compiler front-end that is fed to the partitioning module, annotated with
the Phantom primitives. The partitioner adds two control basic blocks, setup
and cleanup, as shown in Figure 2(b), and subsequently divides the function
code into a number of AEBs, as shown in Figure 2(c), in a process we call
phantomization.

Figure 2(c) shows the AEB graph of the original CFG as being composed of
AEBs aeb 0, aeb 1, aeb 2, aeb 3, aeb 4, and aeb 5. We note that an AEB node
may be composed of one or more basic blocks. The termination of an AEB region
transfers the control back to the scheduler. The scheduler, then, has a chance
to activate the next AEB, from either the same task or from another task that
is ready to run.1

It may happen that a function f in the original input code is phantomized
(i.e., partitioned) into more than one AEB, each one of them being implemented
as a separate region of code. In that case, there is a need for a mechanism to

1An AEB is a structure similar to a hyperblock in trace scheduling [Fisher et al. 2002]. An AEB,
however, is able to cross loop boundaries, which is a limitation of hyperblock structures. Further-
more, the borders of AEB are determined by synchronization and timing constrains, instead of only
the control flow as in hyperblocks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



826 • A. C. Nácul and T. Givargis

Fig. 2. Example of CFG transformations.

save the variables that are live on transition from one AEB to the other, so
that the transfer of one AEB to another is transparent to the task. Also, every
task must maintain its own copy of local variables during the execution of f
as part of its context. Phantom solves this issue by storing the values of local
variables of f in a structure inside the task context, emulating the concept
of a function frame. The frame of a phantomized function f is created in the
fsetup block, and cleaned up in the last AEB of f . These operations are included
by the partitioner for every function that needs to be phantomized. They are
represented by the dark nodes in Figure 2(b).

During runtime, there is a need to maintain, among others, a reference to the
next AEB node that is to be executed some time in the future, called next aeb,
in the context information for each task that has been created. When a task
is created, the context is allocated, the next aeb field is initialized to the entry
AEB of the task, and the task context is pushed onto the queue of existing tasks
to be processed by the embedded scheduler.

The embedded scheduler is responsible for selecting and executing the next
task, by activating the corresponding AEB of the task to be executed. The
next aeb reference of a task Ti is used to resume the execution of Ti by jump-
ing to the region of code corresponding to the next AEB of Ti. At termination,
every AEB updates the next aeb of the currently running task to refer to the
successor AEB according to the tasks’s AEB graph.

The scheduling algorithm in Phantom is a priority-based scheme, as defined
by POSIX. The way priorities are assigned to tasks, as they are created, can

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 827

enforce alternative scheduling schemes, such as round-robin, in the case of all
tasks having equal priority, or earliest deadline first (EDF), in the case of tasks
having priority equal to the inverse of their deadline. Additionally, priorities can
also be changed at runtime, so that scheduling algorithms based on dynamic
priorities can be implemented.

Phantom implements the basic semaphore (sema t in POSIX) synchroniza-
tion primitive, upon which any other synchronization construct can be built.
To implement semaphores, there is a need to add to a task Ti ’s context an
additional field called status. Status is one of blocked or runnable and is set
appropriately when a task operates on a semaphore.

A semaphore operation, as well as a task creation and joining, is what is
called a synchronization point. Synchronization points are identified by a gray
node in Figure 2. At every synchronization point a modification in the state
of at least one task in the system might happen. Either the current task is
blocked, if a semaphore is not available, or a higher-priority task is released on
a semaphore signal, for example. Therefore, a function is always phantomized
when synchronization points are encountered, and a call to a synchronization
function is always the last statement in its AEB. At this point, the scheduler
must regain control and remove the current task from execution in case it
became blocked or is preempted by a higher priority task.

3. CODE PARTITIONING

The Phantom partitioning is central to the correctness and the performance
of the generated code [Nacul and Givargis 2004]. Boundaries of AEB represent
the points where tasks might be preempted or resumed for execution. Every ap-
plication has to be partitioned, so that context switching, synchronization, and
scheduling are possible. Partitioning at synchronization points is mandatory,
and is required to maintain correctness. Partitioning beyond synchronization
points impacts the timing response of the code. In general, partitioning will
determine the granularity level of the scheduling (i.e., the time quantum), as
well as the task latency, event response time, and the multitasking overhead.

The multitasking overhead accounts for the time spent executing code that
is not directly related to the original application. Instead, the code is executed
to control task scheduling and iteractions. Typically, the multitasking overhead
is due to runtime scheduling decisions, semaphores and mutexes checks, and
interrupt handling. Ideally, one wants to minimize the multitasking overhead
imposed on the application.

The response time can be characterized as the maximum amount of time be-
tween two scheduler activations. Response time is an important measurement
in real-time applications. It estimates the maximum amount of time until an
event, such as a communication from another task or an external input, is ser-
viced in the system. In a system with cyclic tasks and different task priorities,
the response time determines the wait time of the tasks until they are granted
access to the processor and put into running state. In a system like Phantom,
where tasks are preempted only at specific points in the code, a smaller re-
sponse time has an impact on the overall system performance. The smaller the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



828 • A. C. Nácul and T. Givargis

Fig. 3. Sample code segment.

AEBs, the more frequently the scheduler will be activated and events can be
checked, therefore resulting in a smaller response time. However, every sched-
uler activation increases the total execution time of the multitasking code, as
a result of the added overhead.

The timing behavior, and consequently the response time of the Phantom
code, is determined by the partitioning process. On one end, there is the so-
called cooperative schedule, where the code is partitioned only at the points
mandatory for synthesizing a functionally correct application. On the other
end, it is possible to generate a partition where every basic block is one AEB by
itself, and every basic block transition is interlocked by a scheduler invocation.
While this is the most responsive system possible, it carries a lot of overhead
due to the large number of context switches.

In between these two extremes, there are lots of partitioning schemes. Each
scheme partitions the application in different places, resulting in different tim-
ing behavior, AEB sizes, number of context switches, and so on. It is desirable
to obtain the partition that meets the required constraints while, at the same
time, minimizing the multitasking overhead imposed on the application. For
AEBs with a straight sequence of code, that is, with no loops, this is not diffi-
cult to do. If an AEB ai is too large, that is, if its execution time does not meet the
timing constraints, it is always possible to partition ai into ai1 and ai2, therefore
reducing the size of the original ai. In such case, there is an increase by one in
the number of context switches on every execution of ai, which is acceptable to
meet the timing constraints.

Nonetheless, partitioning AEBs which contain loops is more difficult. Meet-
ing timing constraints in such cases demands more complex partitioning and
code analysis. Assume the sample code segment for a task shown in Figure 3,
which contains a loop (lines 8–10) that executes an undetermined number of
times. Figure 4 shows one partitioning scheme possible with Phantom, where
a loop is entirely contained within an AEB that is activated by the scheduler.
A general diagram is shown in Figure 4(a), with dashed boxes illustrating the
AEB borders, and dotted lines illustrating scheduler invocation and return.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 829

Fig. 4. Single AEB with loop.

Continuous boxes represent actual application code. Figure 4(b) shows the code
of the AEB that is generated in this case by the Phantom compiler. The AEB
aeb1 is invoked by the scheduler and begins execution in lines 2 and 3, with the
loop initialization code. The loop condition and the loop body are shown in lines 5
and 6–9, respectively. Note that line 8 effectively implements the loop body iter-
ation. After the loop completes, it is followed by the postloop basic block of line 10
within the same AEB. Finally, control is returned to the scheduler in line 12, af-
ter saving the next AEB to be executed by this task in line 11. Note that lines 11
and 12 are additional code synthesized by the compiler to control multitasking.

The AEB shown in Figure 4 can execute for a long time, namely, until b is
randomly assigned a value larger than a. While the AEB executes, all other
tasks are waiting, as is the scheduler. Therefore, events cannot be checked, and
timely execution of other tasks is not guaranteed. Nevertheless, the multitask-
ing overhead is small, since the scheduler is activated only after the AEB (and
consequently the loop) completes.

The available alternative is to place the loop body in an AEB by it-
self. In this case, the scheduler runs between every loop iteration, and loop
repetition is effectively implemented by the scheduler. Such partition is de-
picted in Figure 5. Here, the loop initialization routine is in a separate AEB
(aeb1 in Figure 5(b)) than the loop condition and body (aeb2), and yet a separate
AEB holds the postloop basic blocks (aeb3). Note that the loop condition (line
7 in Figure 5(b)) is checked on every loop iteration. Also note that, once the
loop body (lines 8–9) is executed, the AEB returns to the scheduler (line 10)
without modifying the next AEB of the current task. Therefore, when the task
regains the processor, aeb2 will be executed again, effectively performing the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



830 • A. C. Nácul and T. Givargis

Fig. 5. Loop in multiple AEBs.

loop repetition. If the loop condition fails, the next AEB is updated (line 12)
and the loop body is no longer repeated. In this case, the AEB that contains the
basic blocks following the loop (line 14) will be scheduled.

With these current partitioning schemes, either the loop can be entirely
contained in the AEB, being executed completely in one scheduler activation
(shown in Figure 4), or the loop body is partitioned into AEBs, which are ac-
tivated by the scheduler as many times as necessary, depending on the loop
iteration conditions (shown in Figure 5). In the latter case, the response time of
the application is smaller, since the scheduler is invoked after every loop iter-
ation. Possibly the time between scheduler invocations is significantly smaller
than the timing constraints. However, the overhead imposed by such invoca-
tions is large, specially if the loop iterates many times.

It is possible that an AEB may contain a loop whose loop body is short and
significantly smaller than the timing constraint. However, the execution of the
complete loop without preemption can violate the constraints, or starve other
tasks in case of infinite loops. Therefore, it is possible for the loop body to iter-
ate N times before being preempted by the scheduler, while meeting the timing
constraints and not increasing the multitasking overhead excessively. In order
to accomplish such a solution, there is a need to modify the partitioning algo-
rithm of Phantom [Nacul and Givargis 2004]. In the modified version, the loop
body is enclosed within an external for loop, which repeats the loop body execu-
tion N times before preempting the loop and returning to the scheduler. Later
the scheduler activates the task again, the loop body is resumed and allowed
to execute another N times, if necessary. Figure 6 shows the new partition and
scheduler iterations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 831

Fig. 6. Preempting loops after N iterations.

Figure 6(b) shows the code synthesized by Phantom in the new partitioning
approach. Note the external loop in lines 7–15 enclosing the original loop, lines
8–12. It is important to emphasize that the original loop condition is always
tested in every loop iteration. Whenever the condition is false, the loop (and
the AEB) terminates, returning control to the scheduler (lines 13–14) with
the appropriate indication of the next AEB to be executed (line 13). Therefore,
regardless of the value of N , the execution of the modified code will always
be correct. Additionally, the proposed loop enclosing technique can be used in
loops with nontrivial indexing, because the original loop condition is tested in
every iteration.

Using the partitioning approach depicted in Figure 6, it is possible to control
the execution time of an AEB more precisely, with a finer granularity. With
such partition, there is a balance between multitasking overhead and timely
execution of tasks. In order to implement it, one needs to determine the value of
N , representing the number of consecutive loop iterations of the AEB before it
is preempted. In the following section, we introduce our framework to analyze
and generate code that meets timing constraints based on Phantom.

4. TIMING ANALYSIS

The synthesis of code that adheres to specified timing constraints, such as max-
imum response time of a task, requires an analysis of the application code, and
in case of the Phantom compiler, appropriate partitioning. Because an AEB
executes atomically, that is, there is no preemption during an AEB execution,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



832 • A. C. Nácul and T. Givargis

Fig. 7. Timing analysis framework.

reaching the right AEB size for all AEBs is crucial to obtain the desired tim-
ing behavior of an application. In this section, we present the timing analysis
framework developed to analyze AEBs and generate the appropriate code par-
tition for a given set of timing constraints.

Our partitioning exploration tool tries to reach a code partitioning that meets
all timings constrains. For that, it needs estimates of the execution time of
each AEB generated in the partition. Our exploration process gradually refines
AEBs, starting from the cooperative scheduler, where partitions are larger,
but context switching overhead is minimal. In each step, profiling is used to
estimate the execution time of each AEB. For those AEBs that do not meet the
constraints, the partitioning algorithm is run again, and a new set of AEB is
generated from the original. Profiling is obtained for the new AEBs, and the
process is repeated until an acceptable partition is obtained for each AEB. When
all the AEBs meet the timing constrains, no more partitioning is necessary, and
the final code is generated.

Our timing analysis framework is shown in Figure 7. The original C appli-
cation, extended with POSIX, is compiled by Phantom and partitioned with
the cooperative scheduling model, that is, only the partitions mandatory for
correct multithreading. The code generation process of Phantom instruments
the code with timing probes, which will generate profiling information for each
AEB executed. The Phantomized code is executed and the generated profile is
analyzed in the Timing Analyzer tool.

The Timing Analyzer checks for the constraints specified by the application
designer, and outputs a list of the AEBs that do not meet the timing constraints.
Each of these AEBs is processed by the Loop Partitioner, which searches for
loops in the AEB and appropriately partitions the AEB into multiple AEBs
with modified, and correct, new versions of the loop. The modified loops will
have the structure discussed previously, as shown in Figure 6.

The new partition is processed again by the Phantom compiler, which syn-
thesizes the corresponding C code for the new AEBs. The process is repeated

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 833

until all the AEBs meet the timing constraints. When all constraints are met,
the Phantom compiler synthesizes the final version of the code, without the
timing probes.

4.1 AEB Refinement

When refining the AEB partitioning, we focus on the loops contained in the
AEB. Loop handling is the most complex structure to manipulate in partition.
When refining, loops are restructured as discussed in Section 3.

The goal in the AEB partitioning refinement algorithm is to determine which
loops should be preempted while being executed. Additionally, our algorithm
also determines at which point during execution such preemption has to take
place. In other words, the algorithm decides how many loop iterations can be
performed before the AEB is preempted and execution returns to the scheduler,
so that timing constraints such as response time are met. In order to do that,
we will modify the structure of the AEB loops (as shown in Figure 6), so that
the loop has points where preemption is possible. The loop body will iterate as
many times as possible within an AEB. Therefore, timing constraints are met
while multitasking overheads are kept to a minimum.

For AEBs that contain single, nonnested loops, the algorithm determines the
value N of consecutive loop body iterations that can be performed without miss-
ing any timing constraint. N can be derived from the execution time of the loop
body and the required response time. For AEBs with nested loops, our loop parti-
tioning algorithm works from the outermost to the innermost loops in the AEB.
Intuitively, this is the method that minimizes the increase in context switches
and multitasking overhead. When an inner loop is preempted, all its enclosing
outer loops are also preempted, resulting in a higher multitasking overhead.
Therefore, we try to minimize the number of context switches, and consequently
the multitasking overhead, by preempting as few loops as possible.

When multiple, independent loops are available in the same AEB, our algo-
rithm selects the one with the longest running time to partition first. Intuitively,
preempting the longest loops is more likely to reduce the response time quicker
than partitioning the shorter loops.

After every modification in the task partitioning, the Phantom compiler syn-
thesizes the instrumented code again. The new code is executed and the profil-
ing information is checked against the constraints. This process repeats until
the constraints are met. Once an AEB meets the required timing constraints,
the preemption algorithm will analyze the partitioned loop bodies, determin-
ing the number of iterations N possible for each loop body before a scheduler
invocation. Although this is a greedy algorithm, it is the most likely to generate
the application with the minimum number of context switches while preempt-
ing the specified loops.

4.2 Estimation of AEB Execution Times

Estimating the execution time of an AEB in different partitions is fundamental
to obtaining partitions that meet the required timing constraints. In our cur-
rent framework, we use profiling to obtain execution time of each AEB. While

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



834 • A. C. Nácul and T. Givargis

profiling is not the most accurate tool for hard real-time systems, it is a good
approximation in soft real-time systems.

In case of hard real-time systems, our proposed partitioning and scheduling
still applies. However, in this case profiling is not the most appropriate tool for
estimating execution time of AEBs, since it contains an inherent imprecision.
Alternatively, the designer can provide estimates for WCET of each AEB, using
any method adequate to the application, replacing the profiling estimates. Our
flow still applies, only using the provided WCET estimates. It is not the purpose
of this work to provide tight bounded estimates for WCET. Various contribu-
tions have been made on WCET estimation, such as the works of Ermedahl
et al. [2005] and Theiling et al. [2000]. Kirner and Puschner [2005] presented
a study of different WCET analysis frameworks. If desired, WCET estimates
from external tools can be supplied to the partitioning module of the Phantom
compiler, which can perform partitioning based on these accurate estimates.

Nevertheless, the estimation of execution time of an AEB is likely to be sim-
pler than the estimation of WCET of the whole application. One reason is that
an AEB has much less code to be analyzed than the whole application. More-
over, the AEB code contains a well defined and simpler control flow, since there
are restrictions to the structure of the code allowed inside an AEB. Finally, even
if an unbounded loop is present (one of the most complex structures to handle
in WCET estimation), our loop transformation techniques can manipulate the
loop and transform it into a bounded loop that executes for a fixed number of
times each time it is activated. While our loop transformation technique won’t
facilitate estimating WCET of the whole application, it absolutely helps in esti-
mating other important real-time characteristics of an application, such as the
maximum jitter, maximum response time, and other similar statistics.

5. RESULTS

We have implemented the described algorithm for loop partitioning and pre-
emption. The timing analysis framework described on Figure 7 was also imple-
mented, so that the exploration of different partitions can be done automatically
for a given set of constraints. Additionally, we have implemented a tool that can
explore all the possible loop partitions of an application, so that it is possible to
compare the performance of our timing framework to the exhaustive approach
of loop partitioning. All tools related to Phantom, as well as the benchmarks
used in the experiments, are available in the Phantom Web site [Nacul and
Givargis 2005b]

Eight application benchmarks were used to test the performance of our pro-
posed framework for timing constraints. The applications were designed with
POSIX threads, and included multithreaded versions of traditional algorithms
such as quick sort, consumer producer, matrix multiplication, and dct. The
benchmarks also included a virtual machine simulator, a watch, and deep stack,
a recursive application that exhausts the system stack. Finally, the benchmarks
included a multithreaded software modem, which characterizes a real-time ap-
plication. The modem is capable of V.21 and V.23 protocols, and therefore can
transmit up to 1200 b/s. Table I summarizes the benchmarks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 835

Table I. Application Benchmarks

Response Exec. MT
Name Description Time Time Overhead
cons prod Classical consumer producer problem, 12.5 μs 4.50 s 50.2%

100 consumers and 100 producers.
Buffer with 1000 entries.

dct Multitask implementation of 31.2 μs 0.78 s 13.5%
8×8 dct. One task for each point
in the result matrix.

deep stack Multiple recursive tasks. Tests 9.3 μs 2.02 s 23.4%
the cost of recursive function calls
in the Phantom system.

matrix mul Multitask implementation of 6.25 μs 1.59 s 27.3%
matrix multiplication. Resulting
matrix is 150×150 elements.
One task per element in the result.

modem Multitask software modem 6.25 μs 4.00 s 27.7%
implementation supporting DTMF,
V.21, and V23 protocols.

quick sort Multitask implementation of 1.88 μs 0.04 s 2.3%
the traditional sorting algorithm.

vm Multitask simulator for a simple 31.2 μs 27.6 s 8.2%
processor.

watch Time-keeper application, used to 50 μs 67 s 1.6%
test timing behavior of the
generated code.

All experiments were conducted on a Celeron 1.6 GHz, with 256 Mb of RAM,
running Linux kernel 2.6.11. For code instrumentation and execution time
measurement, we used the time stamp register (TSR) built into the Pentium
processor. The TSR is incremented at every clock cycle and is accessible via an
assembly instruction. It provides an accurate measurement of the number of
cycles executed by the processor. The code instrumentation and measurement
process followed the recommendations from Intel [Intel Corp. 1997], which ac-
counts for the pipeline, cache, and instruction reordering effects of the proces-
sor. To avoid interference from other system processes in the measurements,
the Phantom code was executed in single-user mode, and its priority was set to
the maximum process priority.

5.1 General Experiments

We performed a set of experiments to evaluate the general performance of se-
rialized code generated by the Phantom compiler. The results are briefly pre-
sented on Table II. For a longer discussion on these results, please refer to our
previously published work [Nacul and Givargis 2004].

Here, we compared the performance of serialized code when compared to the
traditional OS-based approach using pthreads libraries, which are compliant
to the POSIX standard. Both versions were executed on the same platform,
running Linux kernel 2.6.11. On average, multitasking with Phantom achieved
a speedup of 2.07, with a maximum of 2.8, when compared to traditional POSIX-
based threads running on an OS (see Figure 8). These results come specially

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



836 • A. C. Nácul and T. Givargis

Table II. Performance Results

Application POSIX Phantom
consumer producer 7.23 s 3.54 s
dct 1.02 s 0.49 s
deep stack 2.05 s 0.84 s
matrix mul 1.10 s 0.55 s
quick sort 2.97 s 1.12 s
vm 2.83 s 5.35 s
watch 67.01 s 67.00 s

Fig. 8. Phantom speedup.

due to the lightweight implementation of Phantom [Nacul and Givargis 2005a],
and as a consequence of being able to, at compile time, generate specific code
for each different application.

Our previous experimental setups also evaluated the performance of the
overhead equivalent to context switching in Phantom serialized code, as well as
synchronization overheads, showing that serialization provides a very efficient
multitasking abstraction [Nacul and Givargis 2005a].

5.2 Embedded Platform Experiments

We conducted a set of experiments in a real embedded platform. In particular,
we used a Linksys WRT54G Wireless Router. The WRT54G contains a MIPS
processor running at 216 MHz. It has 4 MB of FLASH memory for storing
code and applications, and 16 MB of RAM, shared among all applications run-
ning on the hardware. The WRT54G firmware is an embedded version of Linux
[BusyBox 2005]. Support for standard C functions, usually supplied by libC,
were provided by μClib, a trimmed-down version of libC developed specially
for embedded devices. Additionally, pthread libraries are available for the
WRT54G, among other libraries, so that compiling and executing the applica-
tions using the traditional compile-execute paradigm with an operating system
was possible.

We instrumented the WRT54G, and used external equipment to measure
the execution time of each benchmark in the router. Using the high-frequency

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 837

Table III. Experimental Results

Application Number of Threads Context Switches Execution Time (s)
client server 5 2834 0.040

0.122
consumer producer 40 80201 0.286

2.127
dct 512 2711 23.440

22.150
deep stack 100 15601 0.122

0.122
matrix mul 225 1158 0.286

0.450
quick sort 683 2392 0.021

1.031
vm 500 2501 16.47

14.38

DAS4020/12 PC sampling board [Measurement Computing, Inc. 2005] to mea-
sure data from the router, we were able to obtain execution time of the bench-
marks running under the embedded OS and with Phantom. Specifically, we used
a GPIO pin on the WRT54G to indicate start and completion of each individ-
ual benchmark. The DAS4020/12 board is a very fast, high-precision sampling
board that can sample 24 digital input and output channels, four analog input
signals, and two analog output signals at a maximum frequency of 20 MHz.
We set the sampling rate to 50 kHz. Therefore, our measurements present a
maximum timing jitter of 20 μs.

Due to the reduced memory in the WRT54G, we decreased the number of
tasks in each of the benchmarks, while maintaining the main functionality.
Table III summarizes the execution times of the application benchmarks, us-
ing Phantom and traditional pthread libraries. For each application, the top
row presents results from the serialized version, while the bottom row shows
the pthread-based approach. In most cases, the serialization of the application
benchmarks with the Phantom compiler resulted in shorter execution times.
On average, the serialized version of an application needed 30% less time to
complete execution.

It can also be seen in Table III that serialization is not always the most
effective solution. This is the case with vm and dct, where the execution perfor-
mance of the serialized applications were worse than that of their traditional
counterparts. In these examples, the iteration with the thread library was less
than in other examples. Therefore, the advantages brought by serialization
are amortized over the rest of the application. Since our prototype serializing
compiler does not always generate optimal code, these two examples ended up
taking longer to execute than the pthread-based one, mostly because of some
deficiencies on the code generator stage of our prototype implementation.

5.3 Timing Analysis Experiments

For this section of experiments, the maximum response time was specified for
every benchmark. Note that it is not our intention to show a direct relation

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



838 • A. C. Nácul and T. Givargis

Table IV. Partitioning Exploration in Matrix
Multiplication

# Ctx. Resp. Exec.
Partition Switches Time Time
1 112,803 398,000 μs 0.91 s
2 3,488,103 397,000 μs 4.22 s
3 473,403 2,600 μs 1.28 s
4 477,303 18.2 μs 1.29 s
5 3,832,053 5.3 μs 4.55 s
6 772,053 4.9 μs 1.59 s

between response time and multitasking overhead. Instead, our experiments
intend to show that the Phantom compiler is successful in meeting certain
timing constraints, and that our loop preemption scheme is able to reduce the
multitasking overhead while maintaining a correct execution of the code.

The cooperative schedule is the partition that results in the minimal num-
ber of context switches, meaning there is least overhead imposed by the sched-
uler and multitasking control. Therefore, the cooperative scheduler is also the
one that completes every benchmark the fastest. Meanwhile, the cooperative
scheduler is also the least responsive system, due to its large partitions and
consequently large AEB execution times.

Table I summarizes the performance of the benchmarks when synthesized
with timing constraints, namely, a maximum response time. The constraints
are input to the Phantom compiler, and are arbitrary in these examples. In
the current prototype version of the Phantom compiler, timing constraints are
specified as command-line options. Note that the response times used in the
experiments were very small, significantly less than those traditionally guar-
anteed in standard operating systems.

Table I also shows the multitasking overhead of each application for these
specific constraints. As it can be seen in Table I, the Phantom compiler can
meet various timing constraints successfully. The multitasking overhead im-
posed on the system varies with different constraints, and is highly depen-
dent on the application itself. Different synchronization points in different ap-
plications imply that some will have a larger overhead than others for the
same timing constraint. This is in direct relation with the application code. For
example, if there is a critical-section inside a loop that is executed a large num-
ber of times, that will result in a large number of context switches and high
multitasking overhead, even if the critical section is very small compared to the
timing constraints. Nevertheless, some additional partitioning might be neces-
sary due to other parts of the application generating large AEBs in the initial,
cooperative partition. This is the case with benchmark consumer-producer, and
for this reason, the multitasking overhead is not always proportional to the
timing constraint.

For the sake of discussion, we chose two of the most interesting benchmarks
to present in detail. Table IV shows the result of our partition exploration frame-
work for the matrix multiplication benchmark. This is a typical example of the
effect of different partitions in application execution time and response time. In

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 839

Table V. Matrix Multiplication: Cooperative
Scheduling

# Ctx. Resp. Exec.
AEB Switches Time Time
1 22,500 16.6 μs 374,000 μs
2 1 0.8 μs 0.8 μs
3 22,500 0.3 μs 7,400 μs
4 22,500 1.6 μs 36,700 μs
5 150 0.4 μs 62.2 μs
6 22,500 0.4 μs 9,300 μs
7 22,500 0.6 μs 13,700 μs
8 150 0.4 μs 58 μs
9 1 10,600 μs 10,600 μs

10 1 399,000 μs 399,000 μs
Total 112,803 399,000 μs 0.91 s

this example, a maximum response time of 6.25 μs, or 10,000 processor cycles,
was specified as the timing constraint. Partition 1, the cooperative scheduling,
was the fastest to complete, in 0.91 s. Table V shows the AEBs resulting from the
cooperative scheduling. The reaction time was extremely high, about 400 ms,
while the number of context switches was small, about 112,000. As our tim-
ing analysis and loop partitioning framework runs, large AEBs are partitioned
into smaller, more responsive blocks. Loops are also restructured, so that it is
possible to preempt an AEB while executing loops.

In the matrix multiplication benchmark, multiple large loops were par-
titioned to achieve partition 2. The number of context switches increased
significantly; however, there was very little impact on the response time. This
was due to the fact that the longest AEB contains nested loops, whiles were not
partitioned in the first step. From partition 2 to partition 3, the nested loops
were divided into smaller AEBs, while other loops that were partitioned in the
previous partition were configured to iterate more than once inside the AEB.
As a result, both response time and number of context switches were reduced.
Consequently, execution time also decreased.

By applying our methodology, we were able to quickly achieve a partition
that performed very close to the specified constraint. The resulting partition,
shown in Table VI had a response time of 4.9 μs and executed in 1.58 s, per-
forming about 770,000 context switches. Although execution time was relatively
higher than the cooperative scheduler (73%), there was a penalty to pay when
reducing the response time of the system by five orders of magnitude. The fi-
nal partition was obtained by our algorithm in six iterations. Note in Table VI
that AEBs 1, 9, and 10 were partitioned into smaller AEBs, some more than
once.

The final partition on matrix multiplication was obtained by partitioning
and allowing preemption of AEBs whose execution time was beyond the timing
constraint. Additionally, instead of context switching after every loop iteration,
we allowed smaller loops to iterate consecutive times before being preempted by
the scheduler. A solution which had no preemption in the loops, that is, where
every loop iteration was followed by a context switch, resulted in an execution

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



840 • A. C. Nácul and T. Givargis

Table VI. Matrix Multiplication: Final Partition

# Ctx. Resp. Exec.
AEB Switches Time Time

1.1 22,500 0.40 μs 9,100 μs
1.2 315,000 1.60 μs 503,000 μs
2 1 1.11 μs 1.1 μs
3 22,500 0.33 μs 7,500 μs
4 22,500 1.74 μs 39,200 μs
5 150 0.50 μs 76.3 μs
6 22,500 0.41 μs 9,250 μs
7 22,500 0.62 μs 13,900 μs
8 150 0.39 μs 59.4 μs
9.1.1.1 1 4.93 μs 4.9 μs
9.1.1.2.1 2,250 2.87 μs 6,500 μs
9.1.1.2.2 150 0.39 μs 59.2 μs
9.1.2 2,250 2.90 μs 6,500 μ

9.2 150 0.40 μs 59.9 μs
10.1.1.1 1 1.43 μs 1.4 μs
10.1.1.2.1 315,000 1.73 μs 545,000 μs
10.1.1.2.2 22,500 0.50 μs 11,300 μs
10.1.2 150 0.41 μs 61.8 μs
10.2.1 1,650 1.07 μs 1,700 μs
10.2.2 150 0.38 μs 58.2 μs
Total 772,053 4.9 μs 1.58 s

Fig. 9. DCT benchmark, pareto-optimal partitions.

time of 4.5 s (partition 5 in Table IV). It performed an order of magnitude more
context switches and had approximately the same response time of the final
partition obtained with this approach.

Figure 9 plots the response time and the multitasking overhead for the
dct benchmark using the previous partitioning approach of Phantom. The tri-
angular points on the plot are the Pareto-optimal partitions when loops are
not allowed to preempt. The square point shows the solution achieved with
loop preemption for the same set of constraints, which for this example was

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 841

Fig. 10. Jitter sources in the phantom compiler.

set at 31.2 ms. Note that there is a large penalty in performance to reduce
the response time below 50 ms. Using the timing analysis and new loop par-
titioning presented in this work, it is possible to reduce the response time
without such a large impact in performance. In fact, our new partitioning
can produce better response time with smaller multitasking overhead than
the previous approach due to the better handling of loops in AEBs. Figure 9
shows the partition obtained with the new partitioning has a response time
of 29.4 ms, below the constrain of 31.2 ms. If loops could not be preempted
during execution, the best solution to this set of constraints would result in a
response time as low as 12 ms, forcing almost twice as many context switches
as the presented solution. The final execution time of this partition is only
5% worse than the cooperative scheduler, and 8% better than the previously
possible partition. The proposed solution incurs a small overhead, neverthe-
less still providing a good performance and, most important, meets the timing
constraint.

5.4 Real-Time Considerations

By using the Phantom Compiler to serialize the execution of multitasking code,
it is possible to generate predictable code and provide guarantees regarding
the timing behavior of the application. As an example, we included a modem
implementation in our set of benchmarks. A software modem is a real-time
application, in the sense that it must read data from and write data to the
telephone system with a certain frequency, otherwise an error occurs in the
transmission. In case of voice modems, which use the 4 kHz voice channel of
the telephone bandwidth, they must sample the line at 8 kHz, or once every
125 μs, regardless of the transmission speed in bits per second (b/s).

The modem interface to the telephone line is composed of two tasks, the
sender and the receiver tasks. Additionally, the software modem also includes
support for DTMF as another task, so that dialing is possible. In the current
software modem, the sender modulates the transmission with FSK, and both
V.21 and V.23 protocols are implemented. The receiver demodulates the data,
and even in the presence of noise, reconstructs the bit sequence.

While Phantom can provide timing guarantees for real-time applications
like the software modem, tasks will still experience jitter during execution.
In fact, eliminating jitter completely is a complex task in real-time systems.
However, the maximum jitter of a set of Phantom tasks can be determined when
the designer specifies a maximum response time to the Phantom Compiler.
Figure 10 depicts the different components of the serialized Phantom code that
influence the jitter in periodic task activations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



842 • A. C. Nácul and T. Givargis

Consider two periodic tasks T1 and T2, such that T1 has a higher execution
priority than T2. If T1 has to be executed with a frequency f (8000 Hz in the
case of the modem), the tasks have to be partitioned such that the activation
frequency is met. T2 executes whenever T1 is not running, and the scheduler is
invoked periodically to check on timers and verify the availability of other tasks.

When T1’s period expires, T1 has to be scheduled on the processor. However,
that won’t happen until the scheduler runs, when the AEB being executed at
that moment terminates. In the case where an AEB was recently scheduled for
execution, T1 will have to wait its completion before one of its own AEBs can be
scheduled. Therefore, there will be a jitter in the scheduling of T1 that, in the
worst case, is equal to the execution time of the longest AEB in the system.

With the partitioning methodology presented in this work, the duration of the
longest AEB is controllable at a fine level of granularity. Knowing the applica-
tion constraints and the maximum acceptable jitter for each task, the designer
can specify the timing parameters to the partitioner and guarantee that the
timing specified will be met in the serialized code.

In the modem application, for example, the period of the sender and receiver
tasks is 125 μs. Assuming a 5% jitter is acceptable, then the maximum execution
time of an AEB is 6.25 μs. With this value as input, the Phantom compiler will
partition the code such that no AEB executes for more than the constraint of
6.25 μs. As shown in Table I, this constraint was in fact given to the Phantom
compiler for the serialization of the software modem. The generated code meets
the constraint with a 27% overhead for scheduling and multitasking control.

6. RELATED WORK

Some of the features provided by the Phantom compiler are partially
achieved by other approaches as well. In terms of code portability, Phantom
generates a strict ANSI C code, which can be compiled with any standard
compiler toolchain. The concept of Virtual Machines addresses this issue by
providing an abstract machine that is simulated in every platform. Examples
are Sun’s Java [Gosling et al. 1996] and Microsoft’s C# [Microsoft Corporation
2003]. The performance of the virtual machine is the main drawback of this
approach, which also requires that the virtual machine is ported to the target
platform. Some of the performance issues are addressed with JIT [Aycock 2003]
and customized embedded virtual machines [Verdiere et al. 2002].

In the template-based RTOS generation techniques, a reference RTOS is
used as a template in generating customized derivatives of the RTOS for par-
ticular embedded processor cores. This class of techniques mainly relies on in-
clusion or exclusion of RTOS features depending on application requirements
and embedded processor core resource availabilities. The disadvantage of this
class of techniques is that no single generic RTOS template can be used in
the variety of embedded processor cores available. Instead, for optimal perfor-
mance, a rather customized RTOS template must be made available for each
line or family of embedded processor. In addition, for each specific embedded
processor within a family, an architecture model must be provided to the gen-
erator engine.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 843

In one example, Gerstlauer et al. [2003] have used the SpecC language, a
system-level language, as an input to a refinement tool. The refinement tool
partitions the SpecC input into application code and RTOS partitions. Each
RTOS partition is subsequently refined to a final implementation. The mecha-
nism used in this refinement is based on matching needed RTOS functionality
against a library of RTOS functions. In a similar approach, Vercauteren et al.
[1996] have proposed a method based on an API providing RTOS primitives to
the application programmer. This RTOS template is used to realize the subset
of the API that is actually used in the application program. Finally, Gauthier
et al. [2001] have proposed an environment for RTOS generation similar to the
previous approaches. Here a library of RTOS components that are parameter-
ized is used to synthesize the target RTOS given a system level description of
the application program.

System level modeling languages are also used to simulate the RTOS
behavior in a larger design. The work presented by Moigne et al. [2004]
used SystemC [Initiative 2005] to model the RTOS timing and functional
behaviors. In their work, the authors did not present a synthesis of the RTOS,
but only modeled the implementation of a generic RTOS based on templates
for communication, synchronization, and scheduling. Nevertheless, the need
for synthesis is clear if the simulated system is going to be synthesized as a
prototype or final product.

The actual synthesis of embedded software from a system level design lan-
guage was presented by Besana and Borgatti [2003]. Their work introduced a
framework to estimate performance and synthesize application code against a
predefined RTOS, namely, microC/OS [Labrosse 2002]. Although providing
a complete flow, their proposal was restricted to specific system architectures
and imposed a fixed RTOS choice. Nevertheless, it showed the importance of
having the software and RTOS considered early in the design and specification
process. A very similar framework was presented by Herrera et al. [2003], where
SystemC was used to specify an embedded system and synthesize software and
RTOS. Here, software was targeted at a specific RTOS, eCos [RedHat Inc 2005].
In this approach, SystemC primitives are replaced by the equivalent implemen-
tation in the eCos RTOS API.

Another related line of research presents the generation of statically sched-
uled code. In the static scheduling-based techniques, it is assumed that the
application program consists of a static and a priori known set of tasks.
Given this assumption, it is possible to compute a static execution sched-
ule, in other words, an interleaved execution order, and generate an equiv-
alent monolithic program. The advantage of this class of approaches is that
the generated program is application-specific and thus highly efficient. The
disadvantage of this class of techniques is that dynamic multitasking is not
possible.

A very good general survey on generating sequential code for a static set
of tasks was done by Edwards [2003]. In a more specific example, Lin [1998]
has proposed a technique that takes as input an extended C code that includes
primitives for intertask communication based on channels, as well as primitives
for specifying tasks, and generates ANSI C code. The mechanism here is to

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



844 • A. C. Nácul and T. Givargis

model the static set of tasks using a Petri net [Reisig 1992] and generate code
simulating a correct execution order of the Petri net. Similar techniques have
also been proposed by Cortadella et al. [2000]. One important aspect to note in
both Lin’s and Cortadella’s approaches is that the generated code could still be
multitasking, requiring the existence of an RTOS layer that can schedule and
manage the generated tasks.

In a work by Cortadella et al. [2002], later extended by Hsiung et al. [2002],
the concept of quasistatic scheduling was introduced. Both approaches are re-
stricted to reactive systems only. In Cortadella’s version of quasistatic schedul-
ing, it is not possible to handle realtime constraints of embedded software. That
restriction was partially addressed by Hsiung et al. [2002] with time-extended
quasistatic scheduling. The application domain, however, was still for reactive
embedded systems.

The generation of statically scheduled code is a strict requirement of syn-
chronous languages like Esterel [Berry and Gonthier 1992]. Concurrency is
built in the semantics of synchronous languages, and the need to execute it
in sequential processors is the main challenge driving the compiler develop-
ment, as the one proposed by Edwards [1999, 2002]. Synchronous languages,
however, have a different execution model and sematics than traditional im-
perative languages like C. Furthermore, dynamic behavior is very restricted in
these models, and there is no explicit primitive for thread creation.

In the application domain of control-dominated embedded systems,
POLIS [Balarin et al. 1999] is another framework developed to synthesize
embedded software. The solution implemented in POLIS is able to generate
specialized code for the application, given that it is in the restricted domain
of reactive systems. These are systems commonly found in industrial and
automotive applications. The generated code is based on the concurrent finite
state machine (CFSM) model developed by the authors. In POLIS, a custom
scheduler is generated for the static set of tasks. Here, as with the other ap-
proaches presented, no dynamic behavior is possible.

In the topic of custom scheduler generation, the work of Polychronopoulos
et al. [Schouten 1995] explored the concept of auto-scheduling, which is a dy-
namic scheduling technique for parallel tasks. Autoscheduling works on the
nanoThreads concept. NanoThreads are used to extract parallelism on highly
parallel descriptions. Scheduling is also mixed, as with quasistatic scheduling,
where part of the scheduling is performed at compile time and part at runtime.
With nanoThreads and auto-scheduling, the granularity of tasks can be con-
trolled during the synthesis process [Moreira et al. 1995]. With autoscheduling,
code transformations are performed to include runtime support for multitask-
ing [Schouten 1995].

Karkowski and Corporaal [1998] presented an environment where software
is synthesized from an ANSI C program. Their main interest, though, was in
multiprocessor architectures, and the framework is capable of extracting func-
tional parallelism from the application, both fine- and coarse-grain parallelism.
Their work did not synthesize an RTOS. Instead, they were concerned with
generating ASICs and statically scheduled code for the specific platform avail-
able in their setup.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 845

The methodology presented by Cortés et al. [2004, 2005] proposed quasistatic
scheduling for systems with soft and hard real-time tasks. They assumed a
fixed, non-preemptive (collaborative) set of tasks, and compute multiple pos-
sible schedules offline. At runtime, as tasks complete, the system decides on
schedule changes to take advantage of a possible slack and increase system
utilization and efficiency. They proposed heuristics to handle single [Cortés
et al. 2004] and multiprocessor [Cortés et al. 2005] architectures. However,
their initial assumption was that all information about tasks are known ahead
of time, and that tasks are static and nonpreemptive. In the Phantom compiler,
tasks are preemptive, and we proposed an algorithm to efficiently partition the
tasks according to the system’s timing constraints. Furthermore, Phantom is
able to dynamically create and schedule tasks.

An additional difference between Phantom and the work of Cortés et al.
[2004, 2005] regards the representation of tasks and their interactions. While
Cortés et al. used a task graph with data dependencies between tasks repre-
sented by the graph edges, Phantom is based on the AEB graphs, one for each
task, where control dependencies are represented in the graph edges. In Phan-
tom, data dependencies are implicit in the synchronization routines, which are
the basis for the construction of AEB graphs. Therefore, Phantom is able to
take both control and data dependencies between tasks (and parts of tasks)
into consideration when constructing the final schedule.

The approach that is closest to the Phantom compiler was presented by Dean
[2004]. In his work, he proposed software thread integration (STI), or integrat-
ing multiple threads in a single execution flow. STI prioritizes the primary
task, considered real-time, and statically schedules the secondary tasks in the
available idle cycles. Timing is only guaranteed for the primary task, while
secondary tasks run in a best-effort scheduling. In Phantom, we allow global
timing constraints, which affects all the tasks.

Goel et al. [2002] presented a technique to increase the time accuracy of off-
the-shelf operating systems in order to meet the timing constraints of real-time
applications. In their approach, they used Linux as the multitasking support.
By modifying the Linux scheduler and adding timer checks on every context
switch, in a concept called soft timers, they were able to reduce jitter to as little
as 5 μs. Their solution was targeted at traditional operating systems, but could
be adapted to an environment like the one provided by the Phantom compiler.

7. CONCLUSION

This article presented a solution to the synthesis of multitasking code with
timing constraints by the Phantom compiler. Our approach analyzes the appli-
cation partition generated by Phantom and modifies it in order to meet timing
constraints while minimizing multitasking control overhead. We showed the
use of our technique with different benchmarks and various constraints. With
the Phantom compiler, one can synthesize applications that are able to meet a
smaller response time when compared to traditional operating systems.

We are currently working to incorporate more real-time issues into the
Phantom compiler. We are addressing issues like application deadlines, task

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



846 • A. C. Nácul and T. Givargis

priorities, and interrupt management, among others. We are also looking into
incorporating architectural details to the Phantom compiler flow so that more
precise timing and different code transformations are possible.

REFERENCES

AYCOCK, J. 2003. A brief history of just-in-time. ACM Comput. Surv. 35, 2 (June), 97–113.
BALARIN, F., CHIODO, M., GIUSTO, P., HSIEH, H., JURECSKA, A., LAVAGNO, L., SANGIOVANNI-VINCENTELLI,

A., SENTOVICH, E., AND SUZUKI, K. 1999. Synthesis of software programs for embedded con-
trol applications. IEEE Trans. Comput. Aid. Des. Integrat. Circ. Sys. 18, 6 (June), 834–
849.

BERRY, G. AND GONTHIER, G. 1992. The Esterel synchronous programming language: Design, se-
mantics, implementation. Sci. Comput. Programm. 19, 4, 87–152.

BESANA, M. AND BORGATTI, M. 2003. Application mapping to a hardware platform through auto-
mated code generation targeting a RTOS: A design case study. In Proceedings of Design, Automa-
tion & Test in Europe (DATE).

BUSYBOX. 2005. Go online to http://www.busybox.net.
CORTADELLA, J., KONDRATYEV, A., LAVAGNO, L., PASSERONE, C., AND WATANABE, Y. 2002. Quasi-static

scheduling of independent tasks for reactive systems. In Proceedings of the 23rd International
Conference on Application and Theory of Petri Nets (Adelaid, Australia, June 24–28). Lecture
Notes in Computer Science, vol. 2360. Springer, Berlin, Germany.

CORTADELLA, J., KONDRATYEV, A., MASSOT, M., MORAL, S., PASSERONE, C., WATANABE, Y., AND SANGIOVANNI-
VINCENTELLI, A. 2000. Task generation and compile-time scheduling for mixed data-control
embedded software. In Proceedings of Design Automation Conference (DAC).

CORTÉS, L. A., ELES, P., AND PENG, Z. 2004. Quasi-static scheduling for real-time systems with
hard and soft tasks. In Proceedings of DATE. 1176–1181.

CORTÉS, L. A., ELES, P., AND PENG, Z. 2005. Quasi-static scheduling for multiprocessor real-time
systems with hard and soft tasks. In Proceedings of the International Conference on Real-Time
and Embedded Computing Systems and Applications. 422–428.

DEAN, A. 2004. Efficient real-time fine-grained concurrency on low-cost microcontrollers. IEEE
Micro 24, 4 (July-Aug.), 10–22.

EDWARDS, S. 1999. Compiling esterel into sequential code. In Proceedings of CODES.
EDWARDS, S. 2002. An esterel compiler for large control-dominated systems. IEEE Trans.

Comput.-Aid. Des. Integrat. Circ. Syst. 21, 2 (Feb.), 169–183.
EDWARDS, S. 2003. Tutorial: Compiling concurrent languages for sequential processors. ACM

Trans. Des. Automat. Electron. Syst. 8, 2 (Apr.), 141–187.
ERMEDAHL, A., STAPPERT, F., AND ENGBLOM, J. 2005. Clustered worst-case execution-time calcula-

tion. IEEE Trans. Comput. 54, 9 (Sep.), 1104–1122.
FISHER, J., FARABOSCHI, P., AND YOUNG, C. 2002. Embedded Computing: A VLIW Approach to Ar-

chitecture, Compilers, and Tools. Morgan Kauffman, San Francisco, CA.
GAUTHIER, L., YOO, S., AND JERRAYA, A. 2001. Automatic generation and targeting of application-

specific operating systems and embedded systems software. IEEE Trans. Comput.-Aid. Des. In-
tegrat. Circ. Syst. 20, 11 (Nov.), 1293–1301.

GERSTLAUER, A., YU, H., AND GAJSKI, D. 2003. RTOS modeling for system level design. In Proceed-
ings of Design Automation & Test in Europe (DATE).

GOEL, A., ABENI, L., KRASIC, C., SNOW, J., AND WALPOLE, J. 2002. Supporting time-sensitive appli-
cations on a commodity OS. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation.

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification. Addison-Wesley,
Reading, MA.

HERRERA, F., POSADAS, H., SÁNCHEZ, P., AND VILLAR, E. 2003. Systematic embedded software gen-
eration from SystemC. In Proceedings of Design, Automation & Test in Europe (DATE).

HSIUNG, P.-A., LEE, T.-Y., AND SU, F.-S. 2002. Formal synthesis and code generation of real-time em-
bedded software using time-extended quasi-static scheduling. In Proceedings of the Asia-Pacific
Software Engineering Conference.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.



Synthesis of Time-Constrained Multitasking Embedded Software • 847

INTEL CORP. 1997. Using the RDTSC instruction for performance monitoring. Intel Application
Notes. Intel, Santa Clara, CA.

KARKOWSKI, I. AND CORPORAAL, H. 1998. Exploiting fine- and coarse-grain parallelism in embedded
programs. In Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques.

KIRNER, R. AND PUSCHNER, P. 2005. Classification of WCET analysis techniques. In Proceedings
of the International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC).

LABROSSE, J. 2002. MicroC/OS-II: The Real Time Kernel. CMP Books, San Francisco, CA.
LIN, B. 1998. Efficient compilation of process-based concurrent programs without run-time

scheduling. In Proceedings of DATE.
MEASUREMENT COMPUTING, INC. 2005. PCI-DAS4020/12 Specifications, Rev 1.2. Available online

at http://www.mccdaq.com.
MICROSOFT CORPORATION. 2003. The C# 2.0 Specification. Available online at http://msdn.

microsoft.com/vcsharp.

MOIGNE, R. L., PASQUIER, O., AND CALVEZ, J.-P. 2004. A generic RTOS model for real-time systems
simulation with SystemC. In Proceedings of Design, Automation & Test in Europe (DATE).

MOREIRA, J., SCHOUTEN, D., AND POLYCHRONOPOULOS, C. 1995. The performance impact of gran-
ularity control and functional parallelism. In Proceedings of the Workshop on Languages and
Compilers for Parallel Computing.

NACUL, A. AND GIVARGIS, T. 2004. Code partitioning for synthesis of embedded applications with
Phantom. In Proceedings of ICCAD. 190–196.

NACUL, A. AND GIVARGIS, T. 2005a. Lightweight multitasking support for embedded systems using
the Phantom serializing compiler. In Proceedings of DATE. 742–747.

NACUL, A. AND GIVARGIS, T. 2005b. Phantom compiler 0.8. Go online to http://www.ics.

uci.edu/∼nacul/phantom.

REDHAT INC. 2005. Embedded configurable operating system (ecos). Go online to sources.

redhat.com/ecos.

REISIG, W. 1992. A Primer in Petri Net Design. Springer-Verlag, Berlin, Germany.
SCHOUTEN, D. 1995. Efficient scheduling of parallel tasks in a multiprogramming environment.

Ph.D. dissertation. University of Illinois at Urbana-Champaign.
THE OPEN SYSTEMC INITIATIVE. 2005. Go online to www.systemc.org.

THEILING, H., FERDINAND, C., AND WILHELM, R. 2000. Fast and precise WCET prediction by sepa-
rated cache and path analyses. Int. J. Time-Crit. Comput. Syst. 18, 2 (May), 157–179.

VERCAUTEREN, S., LIN, B., AND MAN, H. D. 1996. A strategy for real-time kernel support in
application-specific HW/SW embedded architectures. In Proceedings of the Design Automation
Conference (DAC).

VERDIERE, V., CROS, S., FABRE, C., GUIDER, R., AND YOVINE, S. 2002. Speedup prediction for selective
compilation of embedded Java programs. In Proceedings of EMSOFT.

Received February 2006; revised June 2006; accepted July 2006

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 4, October 2006.


