Virtual Microcontrollers

Scott Sirowy', David Sheldon', Tony Givargis*, Frank Vahid '™

TDepartment of Computer Science and Engineering
University of California, Riverside, USA
{ssirowy,dsheldon,vahid }@cs.ucr.edu

Abstract

Embedded programming training today commonly involves
numerous low-level details of a particular microcontroller. Such
details shift focus away from higher-level structured embedded
programming concepts. Thus, hard-to-break, unstructured
programming habits are commonplace in the field. Yet structured
embedded programming is becoming more necessary as embedded
systems grow in complexity. We introduce a virtual
microcontroller to address this problem. Freed from manufacturing
or historical architectural issues, the virtual microcontroller
contains the core features to support embedded programming
training, and possesses an exceptionally clean interface to low-
level features like timers, interrupt service routines, and UARTS.
The virtual microcontroller can be mapped onto existing
microcontrollers, or even onto FPGAs or a PC, providing more lab
and book flexibility, at the expense of performance and size
overhead. Most importantly, training can still use a bottom-up
resource-aware approach, yet can focus more on structured
embedded programming concepts.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Educatiof:
Computer Science Education- Time Oriented Progrargmi

General Terms
Design, Human Factors, Languages

Keywords
Embedded Programming, Time Oriented Programminggcé&iibn,
Virtualization, Microcontrollers

1. Introduction

Increasingly complex embedded system functionahéguires
elevation of the introduction to embedded prograngnfrom low-
level details to higher-level structured programgninyet the
importance of resource aware embedded programnsrsulages
hiding all low-level details via an operating syste

Present first courses or tutorials on embeddedesystoften
focus on low-level details specific to a particutaicrocontroller,
such as how to configure a particular microconersl timers,
counters, or UARTSs via configuration registers. Daeprocessor
evolution reasons, such details are often convadlufssibly
involving delicate balances between setting of Izdor
frequencies, timer registers, interrupt registeeyd UART
registers, to achieve a serial transmission atricpbar baud rate.
With hundreds of microcontroller variations, detaildiffer
significantly across and even within microcontrofiemilies.

In contrast, embedded system complexity demandsi@be of
embedded programming to higher-level structuredragmhes.

iDepartment of Computer Science
Center for Embedded Computer Systems
University of California, Irvine
givargis@ics.ucr.edu

Such a structured approach may involve using staehine or
dataflow computation models captured in a langulike C,
utilizing clear multi-tasking methods such as rowabin
processing of concurrently-executing state machiaed having a
clear and consistent methodology for dealing wiitet! input and
output events. Specifically, embedded programmingining
should focus on an early introduction to the notibtime-oriented
programming, whereby explicit time management is taught as a
fundamental concept through the use of computatiodels like
synchronous state machines.

Two approaches are commonplace today for elev#tiadevel
of programming. A bottom-up approach first introdsdow-level
detailed programming, and then introduces highegtleoncepts in
a second course. While practical in the senseauthiag technical
skills enabling physical implementation, this ammio has the
drawback of allowing undisciplined programming habito
develop, which can be hard to break later. Furtbeemthe low-
level details may discourage some students fromsypog studies
in the area. Also, the second course commonly doésxist (or
consists of a capstone project rather than addititnaining), or
students may not take that course. Further, labstextbooks are
highly microcontroller-specific; changes due to aibing new
hardware may require substantial modificationsatus| textbooks,
and other materials — and thus are resisted by matryctors.

In contrast, a top-down approach skips the lowlleve
programming and may introduce embedded systemgamging
using a real-time operating system (RTOS) or othigher-level
environment, which provides an abstraction thatesidnany
details. While enabling focus on higher-level issuhis approach
has the drawback of not providing students withrdmition of the
basic underlying microcontroller mechanisms, and ¢zad to
programmers not cognizant of important resourceeiss While
elevating programming is important, resource-awasenis also
critical for practical embedded development, beeausany
systems do not use RTOSes, and because understdoditevel
concepts encourages more effective use of RTOS8rf=at

We propose a compromise approach utilizing a Mirtua
microcontroller, illustrated in Figure 1. The vialumicrocontroller
exposes fundamental low-level components to thgraromer —
timers, interrupt service routines, UARTS, genguapose
input/output, etc. — rather than hiding them usamg RTOS, yet
does so using simple clean structures uncluttesetremsient or
historical low-level complexities. The virtual mazontroller
supports a fixed and non-parameterized architeatitirea simple,
reduced and C-compatible instruction set. The airtu
microcontroller also supports the simplest programgrapertures
possible, allowing the student to focus on more drtgnt
embedded programming concepts while still enabdirtgpttom-up
perspective.

Further, the virtual microcontroller can executeeownariety of
embedded devices, including various existing micnbollers,

Figure 1: (a) Programming a real microcontroller often regsia complex flow that is confusing to beginnihglents and obfuscates
crucial embedded systems concepts. (b) The vintiziocontroller, implemented on any number of desjajuickly allows the student to
write structured embedded microcontroller codetriresors must perform a one-time mapping of theuairmicrocontroller on their
particular device platform.

Increase in Complexity

>

SREG |= (1 << 7);
TCCRIA=0;
TCCRIB =0;

Extensive documentation,
complex tool flows, language
extensions, etc.

Microcontrollel

> TCNT1H = OxFF;

TCNTILL = 0x83;

TIMSK |= (1 << 3);

TCCRI1B = 3;

state = init;

while(true){

switch(state){

case ini

Virtual

(@)
Timer_reg = 1000;
Timer_start = 1; VuC
state = init; tools
while(true){
switch(state){ To) =
‘ case init: =
> 12 =
case incr: LLLTE =
14 =
=
15
(b) =
17 &

(e B o

=1 00
=101

=)
=05
=
04
05

=

[O7 V.M.

| FPGA

embedded microprocessors on boards having genanabge 1/O,
field-programmable gate arrays (FPGAs), or evenaoRC with
appropriate general-purpose /0 additions. Instmsct must
perform a one-time mapping of the virtual microcohér to their
specific device. When changing devices later, irtstirs perform a
remapping, but need not change books or lab mitefibe virtual
microcontroller also has a graphical simulatomalhg instructors
to teach embedded programming even in the sub-aptiase of
not having a hardware lab, or supporting additiomaining by
students outside of lab. Even when using differdenices, the
student continues to use the same virtual microobet tools
(simulator, debugger, compiler), rather than hatmgwitch to the
particular device’s own tools.

2. Related Work

Several research projects attempt to improve epging
education. Hodge [8] introduces the concept dfidual Circuit
Laboratory, a virtual environment for a beginning electrical
engineering course that mimics failure modes ineprtb aid
students in developing solid debugging techniquéhe
environment not only provides a convenient testrenment, but
also allows an instructor to concentrate more @aching. Butler
[2] developed a web-based microprocessor fundameaiarse,
which includes @&undamental Computer that provides students in
a first year engineering course a less threateiritrgduction to
microprocessors and how to program.

Other
evaluating computing architectures for beginningdsnts or non-

researchers have concentrated on developing o

engineers. Benjamin [1] describes tBéackFin architecture, a
hybrid microcontroller and digital signal processor The
architecture provides a rich instruction set basadMIPS with
variable width data, and parallel processing suppdricks [12]
evaluates th&/ME Architecture in the context of addressing the
need for better embedded system education. ThecEblproject
[4] concentrated on developing sensor blocks tkaipfe without
programming or electronics knowledge could connectbuild
basic customized sensor-based embedded systems.

Much research has involved virtualization [11][13)kith
several commercial products developed in respanseet need for
portable virtual machines. VMware [16] and the opssurce
product Xen [18] concentrate on developing virtoechines that
allow the end-user to run multiple operating systeroncurrently.
The Java Virtual Machine [14] allows the programnberwrite
operating system independent code, and tools &S Box and
console emulators allow the user to run legacy iegjbns in
modern operating systems.

A number of real time operating systems have betnduced
to provide a higher level of abstraction betweea #pplication
software and embedded hardware, including the spence eCos
[5], and VxVorks and RTLinux from WindRiver [17].

There have also been several efforts to createuabirt
environments of microcontrollers suitable for rumifrom the
convenience of a standard desktop computer. Thee¥if15]
virtual development system provides a virtual piyiong
environment for anyone learning to program using gopular
8051/8052 microcontroller. Virdes ships with seVelaeady built

Figure 2: Virtual microcontroller MIPS instruction subsetew
added RETI to simplify interrupt use.

11. OR $1 $2 $3
12. ORI $1 $2 imm
13.RETI

14. SLL $1 $2 $3
15. SLT $1 $2 $3
16. SW $1 0($2)
17. SUB $1 $2 $3
18. SUBI $1 $2 imm
19. XOR $1 $2 $3
20. XORI $1 $2 imr

1. ADD $1 $2 $3
2. ADDI $1 $2 imm
3. ADDIU $1 $2 imm
4. AND $1 $2 $3
5. ANDI $1 $2 imm
6. BEQ $1 $2 [Label]
7. J [Label]

8.JR $1

9. LW $1 0($2)

10. NOOF

layouts to blink LEDs, work with analog to digitebnverters, and
a virtual UART and terminal. Images Scientific thlusnents [9]
developed a virtual system for prototyping PIC mémmtrollers,
while other work has concentrated on developingtuslr
peripherals [6] for the AVR microcontroller.

To the best of our knowledge, the work describethis paper
is the first to describe a virtual microcontrolléhat can be
physically implemented on existing platforms whilalso
supporting programmer access to low-level yet ¢lesrtluttered
microcontroller resources.

3. Programmer’s View

We describe the virtual microcontroller &) from the
programmer’s point of view. While programmableilty in C,
some instructors may wish to introduce the instomctset too —
learning to program and read assembly code isastibmmon part
of training, as assembly code is still written éartain drivers, and
is sometimes examined during difficult debugginge \6hose an
instruction set based on the MIPS ISA (instrucsen architecture)
in [7].

We considered other choices, including an ARM-like
instruction set or Java byte code. The ARM instactset is
similar to many microcontroller instruction setsydathere are
already numerous virtual machine implementationdt lfor Java
byte code. However, the MIPS ISA provides a mortiitive
instruction set, with the additional advantage thatISA is usually
already taught in beginning computer architectureurses.
Learning the complete MIPS ISA might overwhelm stuid. We
thus chose to use a twenty instruction subset, shawrigure 2,
chosen as a representative mix of the entire MB& Using the
subset allows for easier learning, at the expehs&rger code size
and slower performance, which are less importatthéncontext of
training. The subset also has the drawback ofiregua special C
compiler back-end (discussed in Section 7, and sugporting
existing MIPS binaries; again, these are lesseressn a training
setting). Future work also entails in expanding tiapabilities of
the virtual microcontroller to support the full MBPISA with the
virtual microcontroller extensions to allow for neoadvanced and
compact programs.

We added a return from interrufRETI instruction, which
didn’t exist in the original MIPS ISA. Because imtgpts are so
commonly used in embedded systems, we sought tposup
interrupts in a clean manner for students. An a#téve approach
would have been to require the student to useutmp jregistedR
instruction to exit interrupts, but such usagerdidgs from the basic
idea of interrupts.

Figure 3: Virtual Microcontroller Architecture.

Inst. Data
Memory Memory
1
MIPS Timer C
In System ISA 4 Timer 1
Programming |nte+rrupts|—
UART |—
| GPIO
Data

The WuC architecture, shown in Figure 3, is a fixed 32-bi
architecture. Microcontrollers used in the begignclassroom are
often 8-bit and occasionally 16-bit, but small dmettures add
additional complexity in moving data between regiistand data
memory by forcing the student to use an accumulatoa stack,
which obfuscate the higher level issues of embegdegramming.
A 32-bit architecture is both simple to understand allows easy
access to a large register set and memory. Althdbghvirtual
microcontroller would have allowed parameterizatiof the
instruction set width for increased flexibility,egHunctionality was
not needed in the context of an embedded systeursezo

The WuC uses a four-kilobyte instruction memory, chosen
based on off-the-shelf microcontroller memory sizasd on the
size required for several introductory embeddedesys labs and
exercises that we examined from several embeddatersg
courses. The MC's data memory is 64 kilobytes. A 32-bit
architecture could support a four-gigabyte memobuy, supporting
such a large space would have made physical mappingal
microcontrollers nearly impossible. The upper halif the 64-
kilobyte data memory is devoted to the«®s memory mapped
peripherals and registers. 64 kilobytes of data orgmvas more
than adequate for any of the embedded programsaraired.

The VuC implements a simplified interrupt controller mbés
viewed by the programmer and the software. The rrmpé
controller model allowed for easy and intuitive ieypentation of
interrupts with priorities. The interrupt contralleonsists of two
memory-mapped special function registers, iaterrupt status
register and ainterrupt value register. Together, the two registers
act as a simplified interrupt vector table, whishcommonly used
in off-the-shelf microcontrollers. When theu€ is interrupted, the
student simply reads thmterrupt value register and runs the
corresponding interrupt service routine using agm@mming
construct akin to @ase statement. For convenience, interrupts are
automatically turned off by theMC, so an interrupt routine cannot
be interrupted by another interrupt request. Nesttrupts might
have confused new students. Therrupt status register serves as
a software switch to enable and/or disable intas;ugnd can easily
be written with the value ‘0’ or ‘1. Interrupt seéce routines
complete with theRETI instruction. TheRETI instruction will
update the MC's program counter to the last instruction not yet
completed, and re-enable interrupts. The interrcgnttroller is
connected to three peripherals: two timers, and ARTl The
peripherals have fixed priorities, where the twodis are given top

priority followed by the UART. Fixed priorities reded the
complexity of the virtual microcontroller as welé dhe software
being run, allowing the student to concentrate ore @mbedded
programming concepts, at the expense of situatishere the
priorities need to be different (which are raraitearning setting).

The WuC interfaces to a basic set of peripherals thablena
variety of embedded systems to be created, fromkingrwith
general-purpose input/output to timing-orientedgpaonming. The
virtual microcontroller separates input and oufiptn two separate
memory mapped eight-bit registers, which can bel r@aput
register) or written (output register). Each inpmd output bit is
also accessible individually by name (e.g., 11, .O#)aving
dedicated input and output eliminates the requstgh for most
microcontrollers of configuring each input/outpudrs direction.
One 8-hit input port and one 8-bit output port veasficient for
most introductory labs we examined. If more ponts aeeded,
external extended parallel /O techniques can tredoced.

The virtual microcontroller has two timers. At $¢ane timer

was required because much of an embedded progrgmmin

curriculum revolves around timing-based computingdeis (state
machines, interrupts, etc.) Theu®@ uses two timers because
several concepts and applications become moretiiguvith the
use of two timers. For instance, a student mighttewian
application that mimics two state machines thattnmassition on
every half second, and every two seconds. Whilette state
machines can be implemented with only one timerg th
programming becomes substantially easier with geeaf multiple
timers. The two timers offer limited configurabjlivia the Timer

0/1 Control register. The student can allow or disallow the timers
to interrupt the WC, and can start and stop the timer by writing a

few bits. The WIC timer's limited configurability provides a
cleaner, concept-oriented interface than ones axffdry off-the-
shelf microcontrollers. The timers are programrhgdnriting the
memory mapped registefimer 0/1 Value register with a
millisecond value to time. This millisecond valisein contrast to
off-the-shelf microcontrollers, which require wnig a value based
on that microcontroller’'s clock frequency. We chasélisecond

resolution for the YC'’s timers because all labs in the embedded

programming course required that granularity orrsea The
millisecond resolution is also an easy time pefiodstudents to
grasp quickly.

The WuC includes a UART (Universal Asynchronous
Receiver/Transmitter), which allows a student tarre how to
interface to serial devices, including a PC, fopuf) display, or

Figure 4: The virtual microcontroller is programmed by simpl
plugging in a USB flash drive with theyZ program and pressing
a button.

virtual microcontroller will execute identically ordifferent
platforms. The need to port code from one platfdaranother,
whether that port is a relatively simple recompdiat or a complete
rewrite of the code base, is eliminated. For examphe piece of
code that blinks lights every half second running @ virtual
microcontroller implemented on a physical microcotér will
also blink the same lights every half second rugnim a PC-
implemented virtual microcontroller.

An advantage of such portability includes the #&pifior a
student to use one implementation at home (e.gRCabased
implementation) while using a different implemeigatin a lab
(e.g., an FPGA-based implementation). Even the dameetting
may use different implementations based on avalgiiysical
resources.

5. USB Programmability

The virtual microcontroller supports USB programgitthere
“programming” refers to downloading code into a idey via a
USB flash drive, and not a traditional hardwaregoaonmer in
which a chip is plugged in, programmed, and placedystem.
Such an approach requires non-volatile memory, @ugires a
removable chip, greatly limiting the ability to itepnent the virtual
microcontroller on various existing devices. Sunhapproach also
requires a separate programmer device, adding 8i, @nd
introducing extra steps for a student. An altersaprogramming

debugging purposes. The UART can be programmed andapproach is to program a device in-system usingS&8 ldable.

configured using three intuitive memory-mapped stgs, the
UART status register, UART TX Data register, and theUART RX
dataregister. To write to the UART, the program writes a vatae
the UART TX Data register, and writes a ‘1’ to th&JART Satus
register to signal a transmission start. Similarly, thegveon can
read theUART RX Data register for valid data once the UART has
interrupted the YC core. As with the MC'’s timers, we eliminated
several additional features offered by off-the-5h@trocontrollers
to ease programming. For instance, the UART batealisafixed at
9600, eliminating the need to configure the ratbatTrate was
chosen based 9600 being the default rate for dewérthe-shelf
microcontrollers.

4. Portability

As long as a computing platform supports
microcontroller described in Section 3, then codéten for the

the virtua

While eliminating the need for a programming deyisach an
approach still requires a PC every time a studemtsvto change a
program.

Instead, we chose a USB flash drive programmingcaa,
illustrated in Figure 4. A student copies the dasiprogram onto a
USB drive as a file, plugs the drive into th@® implementation,
and presses a button on theG/that downloads the program from
the flash drive to the MC instruction memory. The approach
eliminates the need for non-volatile memory in %gC. The
approach enables students to load and change pregty
inserting and swapping flash drives, enabling mobility, and
ease of examining behavior of each others’ progieme. approach
also matches current usage schemes for popularagiecdevices,
allowing a beginning student to start programminighvminimal
effort, and using a familiar paradigm. The USB aggh also gives
the student the intuitive notion that the programd athe

Figure 5: Virtual microcontroller program(a3ND the resulting executable format(b), to increméstualue in the general purpose output
register every half second. Note even at the “pinfarmat the code is human readable assembly, Wil be JIT assembled inside the
virtual microcontroller. Further, the assembly istiaightforward translation of the C code, allogvitevelopment on several layers of

abstraction.

/lprogram increments output
/Ivalue on interrupt
#define OUTPUT B

TimerlSR(){
flag = 1;
}

int main(){
int counter = 0;
Timerset(500); //500 ms
TimerStart();

while(1){
OUTPUT = counter;
if(flag){
flag = 0;
counter +=1;
}
}

microcontroller are separate physical entities. Tbst is that the
VuC must contain an internal USB flash drive readfée use an
off-the-shelf reading device, which increases tize and cost of
the WuC.

6. VuC Executable Format

The virtual microcontroller uses a human-readab$sembly
language file as the “executable” format. A tradfial binary
executable format is more compact, but is unreadbplhumans.
In contrast, an assembly format is more readahleyiging a
clearer understanding of what is being executedthen device,
reducing the number of files that must be workedhwiand
possibly enabling comprehension of the program hgges via
comments in the code). The assembly code is justria (JIT)
assembled to machine code inside the&C\VVWe considered C code
as the distribution format, but assembly code esthisimpler JIT
tools and also supports assembly coding. A drawlbdassembly
versus machine code is that unchecked assembly isod&ore
likely to contain errors (students almost never ifyodool-
generated machine code, but may modify assemblg)cdd the
VuC, a JIT assembler error causes an error LED timitiate (a
future version may also write assembler errorsrteemor file on
the USB flash drive.) The JIT assembler approashamsadditional
advantage of requiring no PC-based tools other ¢hsext editor,
even allowing assembly code to be developed onllgltene or
PDA, saved to a USB flash drive, and downloadedht® VuC.

Compile

--program increments output
--value on interrupt

J Main

ISR: LW $20 12($10)
BEQ $20 $0 ISR_zero
RETI

ISR_zero: ADDI $5 $0 1
RETI

Main: ADDI $1 $0 3

ADDI $2 $0 500 —500 ms
ADDI $3 $0 1

ADDIU $10 $0 32768
ADD $10 $10 $10

SW $2 9($10)

SW $1 8($10)

Loop: SW $9 2($10)

BEQ $5 $3 update

J Loop

update: ADDI $5 $0 0
ADD $9 $9 $3

J Loop

(b)

Nevertheless, in an environment with a PC-basecd@pder or
assembler, enforcement of a methodology involvingaasembly-
code checking tool, or avoidance of changing of piten
generated assembly code, may be helpful.

Figure 5 shows a sample virtual microcontrollerr@gpam and
assembly executable format that increments the evaiti the
general purpose output every half second. The Grano is shown
in Figure 5(a) and the translation/compilation te tassembly
executable format is shown in Figure 5(b). Notioe almost direct
mapping, including the line in the assembly thds seregister to
500 ms. The virtual microcontroller at even the daw levels
maintains a very clean interface to peripheralthBomments and
labels are allowed, to increase the readabilitythef application.
Comments begin with the symbol ‘--', and continoeend of the
current line. Labels are supported as a conveniegiocehe
application programmer.

The interrupt vector is at address 1 in the progrdthen an
interrupt occurs, the program code must poll ithterrupt value
register to determine which interrupt should be serviced.the
increment example, only one interrupt could haveuo®d, but the
code still performs the check on theterrupt value register to
make the code extendable later.

7. Compiler and Simulator

Even at the assembly level, the virtual microcdtgroprovides
mechanisms for intuitive programming of the Vvirtual

Figure 6: Virtual microcontroller simulator prototype. Thiamulator supports standard debugger and registess, as well as a high
level view of the virtual microcontroller and commted peripherals. The simulator also reports paweage, indicated on the right by a
battery indicator.

F Riverside-Iryvine Microcontroller Simulator {(RIMS) - ThreeLedsDirSM.c = |CI|‘>£|
File Help
=Skep-1 Step 2 —Step 3
Load. .. el I Slow Makior
a0 Bo Charge:
owml 08 @
: woicd TLD ClkTick) 4
Onpm 1 0 while{ ITLD. Cli: 0@
- TLD k=10 -
D IJ- l 0 8 = 1> 1:-
Oigm] O b <rum TLD States { TLD S50, TLD_ 51, TLD 52 } TLD. State; e
O 0% wioid rnaing) i "
Onpm] o0 const irk TLD, Period = 10003 §f 1000 ms default 0@
: Timeraet{ TLD Period); ;
Onpm]1 0 Timeroni); g .
Om1 G _J:J @
i |+ B7

0 [381 } 1000

Global Svmbols:

Watch Glabal | Delete Watch

CukpuE:

-
M.

| 3
| 150,404 sec

Ewverts:
BO-»1 (36:0.0.36) 3
BO-»0 (1061 : 0.1.61)

BZ->1 (1064 0.1.64)
Bl->1 (2064 :0.2.64)
B2 ->0 (2065 : 0.2.65)
BO -1 (3056 0.3.56) =

[= RN o S e T | by SR e I o 8

Generate Timing Diagran File

5l

{Click 'File-="Exit' to quit the: simulator

microcontroller peripherals. However, the ability write C code
for such applications offers a number of advantames writing

assembly code, including easier readability astefadevelopment
time, at the expense of requiring a specialized@piler. We have
developed a specialized C compiler for the virtenédrocontroller

based on the open source LCC project [10] devel@pdtinceton
University. The compiler accepts all legal ANSI &hd includes
support for special naming conventions for the trgmd output of
the virtual microcontroller, as well as the namiifgthe interrupt
service routines, like the one showed in Figure.5{Ehe compiler
generates assembly like the file shown in Figut® H{at can then
immediately be run on either a physical virtual maontroller, or

a simulator we have also developed. At this stue,simulator
can support the full range of the MIPS ISA, whikee tphysical

microcontroller prototypes only support the tweirtgtruction
subset shown in Figure 2. This limitation will lmoved in further
revisions of the virtual microcontroller.

Figure 6 shows a screenshot of our virtual microaier
simulator. The simulator supports development eahsence of a
physical device, and is also useful for instructonghen
demonstrating new concepts with a projected display

In the middle of the screen, the student can vatéadard C
code that is then compiled using the LCC to virmarocontroller
C compiler. The simulator has very few buttonspwihg for an
intuitive development experience which involves ting,
compiling, and running the virtual microcontrolfgogram in three
easy steps.

Figure 7: Virtual microcontroller implementations-
Implementation # 1: in a black-box, with interd/R-
microcontroller-based circuitry exposed.

The simulator supports standard
simulator/debugger functions, such as steps, boéalg
input/output value writes/reads, observation obglovariables and
internal registers, including memory-mapped peripheegisters,
etc. The simulator also supports the ability toegate a timing
diagram for input into a waveform viewer that sugipucd files.

The simulator provides graphical views of the aaal@ virtual
microcontroller peripherals, including input swiésh output LEDs,
and internal timers. The simulator provides a giegdhview of the
timers as they count up to their interrupt timendk a “status bar”
display ranging from 0% to 100%. Finally, becausaver is
becoming more and more of an issue in embeddedagroging,
the virtual microcontroller simulator also providasbattery life
indicator, shown on the right of the screenshoFigure 6. The
student can investigate using sleep options for thrtual
microcontroller inside the C code to save battéey We plan on
extending the physical virtual microcontrollers &iow power
saving options so the code used in the simulatbralgio work on
the physical virtual microcontroller devices.

8. Proof of Concept and Experiments

We implemented the MC on various physical platforms. Each
implementation was based on a core instruction sgeulator,
which consisted of just under 1,000 lines of C codlbe code base
is highly modular, allowing further mappings of th@C to be
created with less effort. The differences in eachuCV
implementation lied in how we mapped theQ/ peripherals to
physical peripherals.

Figure 7, Figure 8, and Figure 9 show several impletations
of the virtual microcontroller. The implementatishown in Figure
7 emulates the MC on a physical Atmel AVR microcontroller,
combined with a PIC 18 microcontroller for inteiifag with the
USB reader device. In this implementation, we ptaly tied the
VuC's general purpose input and output to switched BEDS,
providing a standalone device with a simple usé¢erface. An
alternative implementation could include both thétches/LEDs
plus input/output ports that could be connectedth@r devices and

microcontroller

Figure 8: Implementation # 2: on an AVR microcontroller &dboard,
with input/output wires that can be connected t@otircuits

Figure 9: Implementation # 3: on a Xilinx Spartan 3E FPGsng a
serial connection to a PC to output to a seriahieal.

that could override the switches/LEDs, shown irnuFég8. We built
an implementation on a Xilinx FPGA, shown in FigWe by
emulating the MC on a MicroBlaze soft-core processor. We built
interface functions on top of the MicroBlaze's picg$ interrupt
controller and timers to communicate with the pbgshardware.
We built another FPGA implementation, this time afésng the
VuC in synthesizable VHDL and then synthesizing auifronto
the FPGA. The ISRs, timers, and UART were creatsd a
components that interfaced to the MIPS ISA cord, tre FPGAS
general purpose input/output. Each implementatémuired a few
days to create. Of course, an instructor may nee ha build the
implementation from scratch as we did; previousl@mgentations
can be described or downloaded from the web. Fompteteness
and to test other platforms, we successfully imgeted the virtual
microcontroller on the three platforms discussedvali as on a

PIC microcontroller, an 8051 microcontroller, andneo
implementation running on the native FPGA fabri@adpartan 3E
development board.

To test whether the NMC could handle standard embedded

systems lab assignments, we redesigned the midrotien labs
from the embedded systems coursedJaiversity of California,
Riverside, and University of California, Irvine, igh have been
taught for over 10 years and are similar
microcontroller courses worldwide. The labs introea student to
basic embedded microcontroller programming concepting
general purpose input and output, timer-based progring, state
machine programming, and interfacing to variouggberals.

The first embedded programming “Hello World” lalvaived
blinking a light on and off. The code to blinkight on and off in
virtual microcontroller code consisted of 16 assknmfistructions.
The second lab interfaces a microcontroller to sessgment
displays, involving writing to general-purpose auty and creating
a simple delay loop. The third lab interfaces weitstandard keypad
by reading general-purpose inputs. The fourth latroduces
interrupts and interrupt service routines. The ringgts are
introduced along with the virtual timers, and thadents are asked
to program a simple decimal counter using intesughd the
concepts used in the previous labs. The fifth latooduces the
serial protocol and interfacing to a microcontroeUART. The
students are asked to read from the serial podtttaen output the
input with a simple ROT13 encoding. Finally, thetldéab brings
combines the earlier concepts in design of a readimer game.
For all of the labs, the input and output ports eveufficient to
interface to all of the required external periplera

Each lab was redesigned and written in theC\$ assembly
language and tested on the implemented platforngsaldb wrote
each application in C code and used the compildraiosiate the
virtual microcontroller's assembly executable fotnBecause the
assembly file is also the executable format, th&C¢ executable
file was 10 times bigger than a traditional binagdyie to using
ASCIl text characters. The @M implementation internally
translates the text file to a traditional binary reduce internal
storage and improve performance. Also, we were ablarite C
code about ten times quicker than writing the addégequivalent.

We are currently using the virtual microcontroléémulator in
intermediate embedded systems courses at both riherisity of
California, Riverside, and at the University of @ahia, Irvine.
The simulator gives us the opportunity to assigméwork and
assignments where the students can write code emtitiebug on
the simulator, and getting instant feedback on tdebr not their
own code worked. While we don’t have enough datarasently
quantify whether or not using the more abstracttusir
microcontroller gives a better understanding to 8teuctured
embedded programming concepts we teach, we haveedoa
possible impact in both the quality of homework en@s turned in
as well as the performance in lab on the real rommtroller
hardware.

9. Conclusions and Future Directions

Embedded programming training often involves numasrdow
level details that often detract from learning stawed high level
embedded programming concepts. As a solution, wsepted the
virtual microcontroller, a clean intuitive microdoaller that allows
a beginning embedded programming student to coratenbn
structured embedded programming while still leagnimportant
low-level resource concepts related to interrupisjers, and

to numgrou

UARTs. We implemented the MC on several physical devices
including an AVR microcontroller and an FPGA, arediesigned a
complete introductory course set of labs for theCV We plan on
making templated versions of the virtual microcolér source
freely available to the public to use and modify meeded.
Templated versions would allow instructors to qlyicknd easily
have virtual microcontrollers running on their owavailable
platforms. We also plan on making the virtual maontroller
simulator freely available.

In the future, we plan on introducing the virtuatrocontroller
even earlier into the computer science curriculwith the focus
on teaching structured time oriented programmingy \ea&rly in a
student's education. Ideally we would like to imbce time
oriented programming concurrently with their firsaditionally
programming course. The virtual microcontroller atess the
opportunity to teach such concepts without overwiired the
students with the often difficult technical aspettat usually come
with commercial microcontrollers. Students with aarly solid
foundation in time oriented programming would thenpoised to
take on the more high and low level challenges timahe with
embedded programming in upper division courses.

10. Acknowledgements

This work was supported in part by the National eBce
Foundation (CNS-0614957). We also thank Bailey dfjlDonathan
Basseri, and Andrew Becker for their work in hefpiwith the
development of the VuC simulator and physical gngies.

References

[1] BENJAMIN, M., KAELI, D., AND PLATCOW, R. 2006. Experiences with
the Blackfin architecture in an embedded systeins WCAE '06

[2] BUTLER, J. AND BROCKMAN, J. Web-based Learning Tools on
Microprocessor Fundamentals for a First-Year Engiimg Course.
2003. American Society for Engineering Education.

[3] CELOXICA. 2006. DK design
http://www.celoxica.com/products/dk/default.asp.

[4] COTTRELL, S. AND F. VAHID. A Logic Enabling Configuration by
Non-Experts in Sensor Networks. HFC. 2005.

[5] ECOS. http://ecos.sourceware.org/

[6] Hapsim. http://www.helmix.at/hapsim

[7] HENNESSY, J. AND PATTERSON D. Computer Architecture — A
Quantitative Approach. Morgan Kaufman Publishe3§. edition.
1996

[8] HobpGE, H. HINTON, H.S, AND LIGHTNER, M. Virtual Circuit
Laboratory. ASEE. American Society for Engineerikgucation.
2000

[9] IMAGESSCIENTIFIC INSTRUMENTS http://imagesco.com

[10] LCC. http://www.cs.princeton.edu/software/lcc/

[11] LEVIS, P. AND CULLER, D. 2002. Maté: a tiny virtual machine for
sensor networkssl GOPS Oper. Syst. Rev. 36, 5 (Dec. 2002), 85-95.

[12] Ricks, K. G., JACKSON, D. J., AND STAPLETON, W. A. 2005. An
evaluation of the VME architecture for use in entdedl systems
education. SIGBED Rev. 2, 4 (Oct. 2005), 63-69.

[13] SwmiTH, J. AND NAIR, R. VIRTUAL MACHINES: Versatile Platforms for
Systems and Processes. Morgan-Kaufman Publist@@s. 2

[14] StARK, R., ScHMID, J, AND BORGER E. Java and the Virtual
Machine- Definition, Verificartion, and Validatio2001.

[15] VIRDESDEVELOPMENTSYSTEM. http://avoron.com/index.php

[16] VMWARE. http://www.vmware.com/

[17] WINDRIVER Systems. http://www.windriver.com/

[18] XEN. http://www.xen.org

suite.

