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Abstract 
Embedded programming training today commonly involves 
numerous low-level details of a particular microcontroller. Such 
details shift focus away from higher-level structured embedded 
programming concepts. Thus, hard-to-break, unstructured 
programming habits are commonplace in the field. Yet structured 
embedded programming is becoming more necessary as embedded 
systems grow in complexity.  We introduce a virtual 
microcontroller to address this problem. Freed from manufacturing 
or historical architectural issues, the virtual microcontroller 
contains the core features to support embedded programming 
training, and possesses an exceptionally clean interface to low-
level features like timers, interrupt service routines, and UARTs. 
The virtual microcontroller can be mapped onto existing 
microcontrollers, or even onto FPGAs or a PC, providing more lab 
and book flexibility, at the expense of performance and size 
overhead. Most importantly, training can still use a bottom-up 
resource-aware approach, yet can focus more on structured 
embedded programming concepts. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
Computer Science Education- Time Oriented Programming 

General Terms 
Design, Human Factors, Languages 

Keywords 
Embedded Programming, Time Oriented Programming, Education, 
Virtualization, Microcontrollers 

1. Introduction  
Increasingly complex embedded system functionality requires 
elevation of the introduction to embedded programming from low-
level details to higher-level structured programming. Yet the 
importance of resource aware embedded programmers discourages 
hiding all low-level details via an operating system.  

Present first courses or tutorials on embedded systems often 
focus on low-level details specific to a particular microcontroller, 
such as how to configure a particular microcontroller’s timers, 
counters, or UARTs via configuration registers. Due to processor 
evolution reasons, such details are often convoluted, possibly 
involving delicate balances between setting of oscillator 
frequencies, timer registers, interrupt registers, and UART 
registers, to achieve a serial transmission at a particular baud rate. 
With hundreds of microcontroller variations, details differ 
significantly across and even within microcontroller families.  

In contrast, embedded system complexity demands elevation of 
embedded programming to higher-level structured approaches. 

Such a structured approach may involve using state machine or 
dataflow computation models captured in a language like C, 
utilizing clear multi-tasking methods such as round-robin 
processing of concurrently-executing state machines, and having a 
clear and consistent methodology for dealing with timed input and 
output events. Specifically, embedded programming training 
should focus on an early introduction to the notion of time-oriented 
programming, whereby explicit time management is taught as a 
fundamental concept through the use of computation models like 
synchronous state machines. 

Two approaches are commonplace today for elevating the level 
of programming. A bottom-up approach first introduces low-level 
detailed programming, and then introduces higher-level concepts in 
a second course. While practical in the sense of teaching technical 
skills enabling physical implementation, this approach has the 
drawback of allowing undisciplined programming habits to 
develop, which can be hard to break later. Furthermore, the low-
level details may discourage some students from pursuing studies 
in the area. Also, the second course commonly does not exist (or 
consists of a capstone project rather than additional training), or 
students may not take that course. Further, labs and textbooks are 
highly microcontroller-specific; changes due to obtaining new 
hardware may require substantial modifications to labs, textbooks, 
and other materials – and thus are resisted by many instructors. 

In contrast, a top-down approach skips the low-level 
programming and may introduce embedded systems programming 
using a real-time operating system (RTOS) or other higher-level 
environment, which provides an abstraction that hides many 
details. While enabling focus on higher-level issues, this approach 
has the drawback of not providing students with an intuition of the 
basic underlying microcontroller mechanisms, and can lead to 
programmers not cognizant of important resource issues. While 
elevating programming is important, resource-awareness is also 
critical for practical embedded development, because many 
systems do not use RTOSes, and because understanding low-level 
concepts encourages more effective use of RTOS features.  

We propose a compromise approach utilizing a virtual 
microcontroller, illustrated in Figure 1. The virtual microcontroller 
exposes fundamental low-level components to the programmer – 
timers, interrupt service routines, UARTs, general-purpose 
input/output, etc. – rather than hiding them using an RTOS, yet 
does so using simple clean structures uncluttered by transient or 
historical low-level complexities. The virtual microcontroller 
supports a fixed and non-parameterized architecture with a simple, 
reduced and C-compatible instruction set. The virtual 
microcontroller also supports the simplest programming apertures 
possible, allowing the student to focus on more important 
embedded programming concepts while still enabling a bottom-up 
perspective.   

Further, the virtual microcontroller can execute on a variety of 
embedded devices, including various existing microcontrollers, 



 

 

embedded microprocessors on boards having general-purpose I/O, 
field-programmable gate arrays (FPGAs), or even on a PC with 
appropriate general-purpose I/O additions. Instructors must 
perform a one-time mapping of the virtual microcontroller to their 
specific device. When changing devices later, instructors perform a 
remapping, but need not change books or lab materials. The virtual 
microcontroller also has a graphical simulator, allowing instructors 
to teach embedded programming even in the sub-optimal case of 
not having a hardware lab, or supporting additional training by 
students outside of lab. Even when using different devices, the 
student continues to use the same virtual microcontroller tools 
(simulator, debugger, compiler), rather than having to switch to the 
particular device’s own tools. 

2. Related Work 
Several research projects attempt to improve engineering 
education. Hodge [8] introduces the concept of a Virtual Circuit 
Laboratory, a virtual environment for a beginning electrical 
engineering course that mimics failure modes in order to aid 
students in developing solid debugging techniques. The 
environment not only provides a convenient test environment, but 
also allows an instructor to concentrate more on teaching.  Butler 
[2] developed a web-based microprocessor fundamental course, 
which includes a Fundamental Computer that provides students in 
a first year engineering course a less threatening introduction to 
microprocessors and how to program. 

Other researchers have concentrated on developing or 
evaluating computing architectures for beginning students or non-

engineers. Benjamin [1] describes the BlackFin architecture, a 
hybrid microcontroller and digital signal processor.  The 
architecture provides a rich instruction set based on MIPS with 
variable width data, and parallel processing support.  Ricks [12] 
evaluates the VME Architecture in the context of addressing the 
need for better embedded system education.  The Eblocks project 
[4] concentrated on developing sensor blocks that people without 
programming or electronics knowledge could connect to build 
basic customized sensor-based embedded systems.  

Much research has involved virtualization [11][13], with 
several commercial products developed in response to the need for 
portable virtual machines. VMware [16] and the open source 
product Xen [18] concentrate on developing virtual machines that 
allow the end-user to run multiple operating systems concurrently. 
The Java Virtual Machine [14] allows the programmer to write 
operating system independent code, and tools like DOS Box and 
console emulators allow the user to run legacy applications in 
modern operating systems. 

A number of real time operating systems have been introduced 
to provide a higher level of abstraction between the application 
software and embedded hardware, including the open source eCos 
[5], and VxVorks and RTLinux from WindRiver [17].  

There have also been several efforts to create virtual 
environments of microcontrollers suitable for running from the 
convenience of a standard desktop computer. The Virdes [15] 
virtual development system provides a virtual prototyping 
environment for anyone learning to program using the popular 
8051/8052 microcontroller. Virdes ships with several already built 

Figure 1: (a) Programming a real microcontroller often requires a complex flow that is confusing to beginning students and obfuscates 
crucial embedded systems concepts. (b) The virtual microcontroller, implemented on any number of devices, quickly allows the student to 

write structured embedded microcontroller code. Instructors must perform a one-time mapping of the virtual microcontroller on their 
particular device platform.  

 
 

 
SREG |= (1 << 7); 
TCCR1A = 0; 
TCCR1B = 0; 
TCNT1H = 0xFF; 
TCNT1L = 0x83; 
TIMSK |= (1 << 3); 
TCCR1B = 3; 
state = init; 
while(true){ 
    switch(state){ 
        case init: 

Increase in Complexity 

Timer_reg = 1000;  
Timer_start = 1; 
state = init; 
while(true){ 
    switch(state){ 
        case init: 
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layouts to blink LEDs, work with analog to digital converters, and 
a virtual UART and terminal.  Images Scientific Instruments [9] 
developed a virtual system for prototyping PIC microcontrollers, 
while other work has concentrated on developing virtual 
peripherals [6] for the AVR microcontroller. 

To the best of our knowledge, the work described in this paper 
is the first to describe a virtual microcontroller that can be 
physically implemented on existing platforms while also 
supporting programmer access to low-level yet clean, uncluttered 
microcontroller resources.  

3. Programmer’s View 
We describe the virtual microcontroller (VµC) from the 
programmer’s point of view.  While programmable entirely in C, 
some instructors may wish to introduce the instruction set too – 
learning to program and read assembly code is still a common part 
of training, as assembly code is still written for certain drivers, and 
is sometimes examined during difficult debugging. We chose an 
instruction set based on the MIPS ISA (instruction set architecture) 
in [7].  

We considered other choices, including an ARM-like 
instruction set or Java byte code. The ARM instruction set is 
similar to many microcontroller instruction sets, and there are 
already numerous virtual machine implementations built for Java 
byte code. However, the MIPS ISA provides a more intuitive 
instruction set, with the additional advantage that the ISA is usually 
already taught in beginning computer architecture courses. 
Learning the complete MIPS ISA might overwhelm students. We 
thus chose to use a twenty instruction subset, shown in Figure 2, 
chosen as a representative mix of the entire MIPS ISA. Using the 
subset allows for easier learning, at the expense of larger code size 
and slower performance, which are less important in the context of 
training.  The subset also has the drawback of requiring a special C 
compiler back-end (discussed in Section 7, and not supporting 
existing MIPS binaries; again, these are lesser issues in a training 
setting).  Future work also entails in expanding the capabilities of 
the virtual microcontroller to support the full MIPS ISA with the 
virtual microcontroller extensions to allow for more advanced and 
compact programs.  

We added a return from interrupt RETI instruction, which 
didn’t exist in the original MIPS ISA. Because interrupts are so 
commonly used in embedded systems, we sought to support 
interrupts in a clean manner for students. An alternative approach 
would have been to require the student to use the jump register JR 
instruction to exit interrupts, but such usage distracts from the basic 
idea of interrupts.   

The VµC architecture, shown in Figure 3, is a fixed 32-bit 
architecture.  Microcontrollers used in the beginning classroom are 
often 8-bit and occasionally 16-bit, but small architectures add 
additional complexity in moving data between registers and data 
memory by forcing the student to use an accumulator or a stack, 
which obfuscate the higher level issues of embedded programming. 
A 32-bit architecture is both simple to understand and allows easy 
access to a large register set and memory. Although the virtual 
microcontroller would have allowed parameterization of the 
instruction set width for increased flexibility, the functionality was 
not needed in the context of an embedded systems course.  

The VµC uses a four-kilobyte instruction memory, chosen 
based on off-the-shelf microcontroller memory sizes, and on the 
size required for several introductory embedded systems labs and 
exercises that we examined from several embedded systems 
courses. The VµC’s data memory is 64 kilobytes. A 32-bit 
architecture could support a four-gigabyte memory, but supporting 
such a large space would have made physical mapping to real 
microcontrollers nearly impossible. The upper half of the 64-
kilobyte data memory is devoted to the VµC’s memory mapped 
peripherals and registers. 64 kilobytes of data memory was more 
than adequate for any of the embedded programs we examined. 

The VµC implements a simplified interrupt controller model as 
viewed by the programmer and the software. The interrupt 
controller model allowed for easy and intuitive implementation of 
interrupts with priorities. The interrupt controller consists of two 
memory-mapped special function registers, an interrupt status 
register and a interrupt value register.  Together, the two registers 
act as a simplified interrupt vector table, which is commonly used 
in off-the-shelf microcontrollers. When the VµC is interrupted, the 
student simply reads the interrupt value register and runs the 
corresponding interrupt service routine using a programming 
construct akin to a case statement. For convenience, interrupts are 
automatically turned off by the VµC, so an interrupt routine cannot 
be interrupted by another interrupt request. Nested interrupts might 
have confused new students. The interrupt status register serves as 
a software switch to enable and/or disable interrupts, and can easily 
be written with the value ‘0’ or ‘1’. Interrupt service routines 
complete with the RETI instruction. The RETI instruction will 
update the VµC’s program counter to the last instruction not yet 
completed, and re-enable interrupts. The interrupt controller is 
connected to three peripherals: two timers, and a UART. The 
peripherals have fixed priorities, where the two timers are given top 

Figure 2: Virtual microcontroller MIPS instruction subset. We 
added RETI to simplify interrupt use.   

 
 

Figure 3: Virtual Microcontroller Architecture.  

 
 

 
1. ADD $1 $2 $3 
2. ADDI $1 $2 imm 
3. ADDIU $1 $2 imm 
4. AND $1 $2 $3 
5. ANDI $1 $2 imm 
6. BEQ $1 $2 [Label] 
7. J [Label] 
8. JR $1 
9. LW $1 0($2) 
10. NOOP 

11. OR $1 $2 $3 
12. ORI $1 $2 imm 
13. RETI 
14. SLL $1 $2 $3 
15. SLT $1 $2 $3 
16. SW $1 0($2) 
17. SUB $1 $2 $3 
18. SUBI $1 $2 imm 
19. XOR $1 $2 $3 
20. XORI $1 $2 imm 
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priority followed by the UART. Fixed priorities reduced the 
complexity of the virtual microcontroller as well as the software 
being run, allowing the student to concentrate on core embedded 
programming concepts, at the expense of situations where the 
priorities need to be different (which are rare in a learning setting).  

The VµC interfaces to a basic set of peripherals that enable a 
variety of embedded systems to be created, from working with 
general-purpose input/output to timing-oriented programming.  The 
virtual microcontroller separates input and output into two separate 
memory mapped eight-bit registers, which can be read (input 
register) or written (output register).  Each input and output bit is 
also accessible individually by name (e.g., I1, O4). Having 
dedicated input and output eliminates the required step for most 
microcontrollers of configuring each input/output port’s direction. 
One 8-bit input port and one 8-bit output port was sufficient for 
most introductory labs we examined. If more ports are needed, 
external extended parallel I/O techniques can be introduced.  

The virtual microcontroller has two timers.  At least one timer 
was required because much of an embedded programming 
curriculum revolves around timing-based computing models (state 
machines, interrupts, etc.)  The VµC uses two timers because 
several concepts and applications become more intuitive with the 
use of two timers. For instance, a student might write an 
application that mimics two state machines that must transition on 
every half second, and every two seconds. While the two state 
machines can be implemented with only one timer, the 
programming becomes substantially easier with the use of multiple 
timers.  The two timers offer limited configurability via the Timer 
0/1 Control register. The student can allow or disallow the timers 
to interrupt the VµC, and can start and stop the timer by writing a 
few bits. The VµC timer’s limited configurability provides a 
cleaner, concept-oriented interface than ones offered by off-the-
shelf microcontrollers.  The timers are programmed by writing the 
memory mapped register Timer 0/1 Value register with a 
millisecond value to time.  This millisecond value is in contrast to 
off-the-shelf microcontrollers, which require writing a value based 
on that microcontroller’s clock frequency. We chose millisecond 
resolution for the VµC’s timers because all labs in the embedded 
programming course required that granularity or coarser. The 
millisecond resolution is also an easy time period for students to 
grasp quickly. 

The VµC includes a UART (Universal Asynchronous 
Receiver/Transmitter), which allows a student to learn how to 
interface to serial devices, including a PC, for input, display, or 
debugging purposes. The UART can be programmed and 
configured using three intuitive memory-mapped registers, the 
UART status register, UART TX Data register, and the UART RX 
data register.  To write to the UART, the program writes a value to 
the UART TX Data register, and writes a ‘1’ to the UART Status 
register to signal a transmission start. Similarly, the program can 
read the UART RX Data register for valid data once the UART has 
interrupted the VµC core. As with the VµC’s timers, we eliminated 
several additional features offered by off-the-shelf microcontrollers 
to ease programming. For instance, the UART baud rate is fixed at 
9600, eliminating the need to configure the rate. That rate was 
chosen based 9600 being the default rate for several off-the-shelf 
microcontrollers. 

4. Portability 
As long as a computing platform supports the virtual 
microcontroller described in Section 3, then code written for the 

virtual microcontroller will execute identically on different 
platforms. The need to port code from one platform to another, 
whether that port is a relatively simple recompilation, or a complete 
rewrite of the code base, is eliminated. For example, one piece of 
code that blinks lights every half second running on a virtual 
microcontroller implemented on a physical microcontroller will 
also blink the same lights every half second running on a PC-
implemented virtual microcontroller.  

An advantage of such portability includes the ability for a 
student to use one implementation at home (e.g., a PC-based 
implementation) while using a different implementation in a lab 
(e.g., an FPGA-based implementation). Even the same lab setting 
may use different implementations based on available physical 
resources.  

5. USB Programmability  
The virtual microcontroller supports USB programming (here 
“programming” refers to downloading code into a device) via a 
USB flash drive, and not a traditional hardware programmer in 
which a chip is plugged in, programmed, and placed in-system. 
Such an approach requires non-volatile memory, and requires a 
removable chip, greatly limiting the ability to implement the virtual 
microcontroller on various existing devices. Such an approach also 
requires a separate programmer device, adding to cost, and 
introducing extra steps for a student. An alternative programming 
approach is to program a device in-system using a USB cable.  
While eliminating the need for a programming device, such an 
approach still requires a PC every time a student wants to change a 
program.   

Instead, we chose a USB flash drive programming approach, 
illustrated in Figure 4. A student copies the desired program onto a 
USB drive as a file, plugs the drive into the VµC implementation, 
and presses a button on the VµC that downloads the program from 
the flash drive to the VµC instruction memory. The approach 
eliminates the need for non-volatile memory in the VµC. The 
approach enables students to load and change programs by 
inserting and swapping flash drives, enabling more mobility, and 
ease of examining behavior of each others’ program. The approach 
also matches current usage schemes for popular electronic devices, 
allowing a beginning student to start programming with minimal 
effort, and using a familiar paradigm. The USB approach also gives 
the student the intuitive notion that the program and the 

Figure 4: The virtual microcontroller is programmed by simply 
plugging in a USB flash drive with the VµC program and pressing 

a button.  

 
 



 

 

microcontroller are separate physical entities. The cost is that the 
VµC must contain an internal USB flash drive reader. We use an 
off-the-shelf reading device, which increases the size and cost of 
the VµC. 

6. VµC Executable Format 
The virtual microcontroller uses a human-readable assembly 
language file as the “executable” format.  A traditional binary 
executable format is more compact, but is unreadable by humans. 
In contrast, an assembly format is more readable, providing a 
clearer understanding of what is being executed on the device, 
reducing the number of files that must be worked with, and 
possibly enabling comprehension of the program (perhaps via 
comments in the code). The assembly code is just-in-time (JIT) 
assembled to machine code inside the VµC. We considered C code 
as the distribution format, but assembly code enabled simpler JIT 
tools and also supports assembly coding. A drawback of assembly 
versus machine code is that unchecked assembly code is more 
likely to contain errors (students almost never modify tool-
generated machine code, but may modify assembly code). In the 
VµC, a JIT assembler error causes an error LED to illuminate (a 
future version may also write assembler errors to an error file on 
the USB flash drive.) The JIT assembler approach has an additional 
advantage of requiring no PC-based tools other than a text editor, 
even allowing assembly code to be developed on a cell-phone or 
PDA, saved to a USB flash drive, and downloaded to the VµC.  

Nevertheless, in an environment with a PC-based C compiler or 
assembler, enforcement of a methodology involving an assembly-
code checking tool, or avoidance of changing of compiler-
generated assembly code, may be helpful.  

Figure 5 shows a sample virtual microcontroller C program and 
assembly executable format that increments the value of the 
general purpose output every half second. The C program is shown 
in Figure 5(a) and the translation/compilation to the assembly 
executable format is shown in Figure 5(b). Notice the almost direct 
mapping, including the line in the assembly that sets a register to 
500 ms. The virtual microcontroller at even the lowest levels 
maintains a very clean interface to peripherals. Both comments and 
labels are allowed, to increase the readability of the application.  
Comments begin with the symbol ‘--‘, and continue to end of the 
current line. Labels are supported as a convenience to the 
application programmer.  

The interrupt vector is at address 1 in the program. When an 
interrupt occurs, the program code must poll the interrupt value 
register to determine which interrupt should be serviced. In the 
increment example, only one interrupt could have occurred, but the 
code still performs the check on the interrupt value register to 
make the code extendable later.   

7. Compiler and Simulator 
Even at the assembly level, the virtual microcontroller provides 
mechanisms for intuitive programming of the virtual 

Figure 5: Virtual microcontroller program(a) AND the resulting executable format(b), to increment the value in the general purpose output 
register every half second. Note even at the “binary” format the code is human readable assembly, which will be JIT assembled inside the 

virtual microcontroller. Further, the assembly is a straightforward translation of the C code, allowing development on several layers of 
abstraction. 

 

//program increments output  
//value on interrupt 
#define OUTPUT B 
 
TimerISR(){ 
   flag = 1; 
} 
 
int main(){ 
   int counter = 0; 
   Timerset(500);  //500 ms 
   TimerStart(); 
 
   while(1){ 
      OUTPUT = counter; 
      if(flag){ 
        flag = 0; 
        counter += 1;     
   }    
} 
 

--program increments output  
--value on interrupt 
J Main 
ISR: LW $20 12($10)  
BEQ $20 $0 ISR_zero  
RETI 
ISR_zero: ADDI $5 $0 1  
RETI 
Main: ADDI $1 $0 3   
ADDI $2 $0 500 –-500 ms      
ADDI $3 $0 1         
ADDIU $10 $0 32768   
ADD $10 $10 $10      
SW $2 9($10)   
SW $1 8($10)         
Loop: SW $9 2($10)   
BEQ $5 $3 update 
J Loop 
update: ADDI $5 $0 0   
ADD $9 $9 $3           
J Loop  

(a) (b) 

Compile 



 

 

microcontroller peripherals. However, the ability to write C code 
for such applications offers a number of advantages over writing 
assembly code,  including easier readability and faster development 
time, at the expense of requiring a specialized C compiler. We have 
developed a specialized C compiler for the virtual microcontroller 
based on the open source LCC project [10] developed at Princeton 
University. The compiler accepts all legal ANSI C, and includes 
support for special naming conventions for the input and output of 
the virtual microcontroller, as well as the naming of the interrupt 
service routines, like the one showed in Figure 5(a).  The compiler 
generates assembly like the file shown in Figure 5(b) that can then 
immediately be run on either a physical virtual microcontroller, or 
a simulator we have also developed.  At this stage, the simulator 
can support the full range of the MIPS ISA, while the physical 

microcontroller prototypes only support the twenty-instruction 
subset shown in Figure 2. This limitation will be removed in further 
revisions of the virtual microcontroller.  

Figure 6 shows a screenshot of our virtual microcontroller 
simulator. The simulator supports development in the absence of a 
physical device, and is also useful for instructors when 
demonstrating new concepts with a projected display.  

In the middle of the screen, the student can write standard C 
code that is then compiled using the LCC to virtual microcontroller 
C compiler. The simulator has very few buttons, allowing for an 
intuitive development experience which involves writing, 
compiling, and running the virtual microcontroller program in three 
easy steps.  

Figure 6:  Virtual microcontroller simulator prototype.  The simulator supports standard debugger and register views, as well as a high 
level view of the virtual microcontroller and connected peripherals. The simulator also reports power usage, indicated on the right by a 

battery indicator.  

 
 



 

 

The simulator supports standard microcontroller 
simulator/debugger functions, such as steps, breakpoints, 
input/output value writes/reads, observation of global variables and 
internal registers, including memory-mapped peripheral registers, 
etc. The simulator also supports the ability to generate a timing 
diagram for input into a waveform viewer that supports vcd files.  

The simulator provides graphical views of the available virtual 
microcontroller peripherals, including input switches, output LEDs, 
and internal timers. The simulator provides a graphical view of the 
timers as they count up to their interrupt time, akin to a “status bar” 
display ranging from 0% to 100%. Finally, because power is 
becoming more and more of an issue in embedded programming, 
the virtual microcontroller simulator also provides a battery life 
indicator, shown on the right of the screenshot in Figure 6. The 
student can investigate using sleep options for the virtual 
microcontroller inside the C code to save battery life. We plan on 
extending the physical virtual microcontrollers to allow power 
saving options so the code used in the simulator will also work on 
the physical virtual microcontroller devices. 

8. Proof of Concept and Experiments 
We implemented the VµC on various physical platforms. Each 
implementation was based on a core instruction set simulator, 
which consisted of just under 1,000 lines of C code.  The code base 
is highly modular, allowing further mappings of the VµC to be 
created with less effort. The differences in each VµC 
implementation lied in how we mapped the VµC peripherals to 
physical peripherals. 

Figure 7, Figure 8, and Figure 9 show several implementations 
of the virtual microcontroller. The implementation shown in Figure 
7 emulates the VµC on a physical Atmel AVR microcontroller, 
combined with a PIC 18 microcontroller for interfacing with the 
USB reader device. In this implementation, we physically tied the 
VµC’s general purpose input and output to switches and LEDs, 
providing a standalone device with a simple user interface. An 
alternative implementation could include both the switches/LEDs 
plus input/output ports that could be connected to other devices and 

that could override the switches/LEDs, shown in Figure 8. We built 
an implementation on a Xilinx FPGA, shown in Figure 9, by 
emulating the VµC on a MicroBlaze soft-core processor. We built 
interface functions on top of the MicroBlaze’s physical interrupt 
controller and timers to communicate with the physical hardware. 
We built another FPGA implementation, this time describing the 
VµC in synthesizable VHDL and then synthesizing a circuit onto 
the FPGA. The ISRs, timers, and UART were created as 
components that interfaced to the MIPS ISA core, and the FPGAs 
general purpose input/output. Each implementation required a few 
days to create. Of course, an instructor may not have to build the 
implementation from scratch as we did; previous implementations 
can be described or downloaded from the web. For completeness 
and to test other platforms, we successfully implemented the virtual 
microcontroller on the three platforms discussed as well as on a 

Figure 7: Virtual microcontroller implementations-   
Implementation # 1:  in a black-box, with internal AVR-

microcontroller-based circuitry exposed.  

  
 

Figure 8: Implementation # 2:  on an AVR microcontroller breadboard, 
with input/output wires that can be connected to other circuits  

        
 

Figure 9: Implementation # 3:  on a Xilinx Spartan 3E FPGA using a 
serial connection to a PC to output to a serial terminal.  

    
 



 

 

PIC microcontroller, an 8051 microcontroller, and one 
implementation running on the native FPGA fabric of a Spartan 3E 
development board.  

To test whether the VµC could handle standard embedded 
systems lab assignments, we redesigned the microcontroller labs 
from the embedded systems courses at University of California, 
Riverside, and University of California, Irvine, which have been 
taught for over 10 years and are similar to numerous 
microcontroller courses worldwide. The labs introduce a student to 
basic embedded microcontroller programming concepts, using 
general purpose input and output, timer-based programming, state 
machine programming, and interfacing to various peripherals.   

The first embedded programming “Hello World” lab involved 
blinking a light on and off.  The code to blink a light on and off in 
virtual microcontroller code consisted of 16 assembly instructions. 
The second lab interfaces a microcontroller to seven-segment 
displays, involving writing to general-purpose outputs, and creating 
a simple delay loop. The third lab interfaces with a standard keypad 
by reading general-purpose inputs. The fourth lab introduces 
interrupts and interrupt service routines. The interrupts are 
introduced along with the virtual timers, and the students are asked 
to program a simple decimal counter using interrupts and the 
concepts used in the previous labs. The fifth lab introduces the 
serial protocol and interfacing to a microcontroller’s UART.  The 
students are asked to read from the serial port, and then output the 
input with a simple ROT13 encoding. Finally, the last lab brings 
combines the earlier concepts in design of a reaction timer game. 
For all of the labs, the input and output ports were sufficient to 
interface to all of the required external peripherals.  

Each lab was redesigned and written in the VµC’s assembly 
language and tested on the implemented platforms. We also wrote 
each application in C code and used the compiler to translate the 
virtual microcontroller’s assembly executable format. Because the 
assembly file is also the executable format, the VµC’s executable 
file was 10 times bigger than a traditional binary, due to using 
ASCII text characters. The VµC implementation internally 
translates the text file to a traditional binary to reduce internal 
storage and improve performance. Also, we were able to write C 
code about ten times quicker than writing the assembly equivalent. 

We are currently using the virtual microcontroller simulator in 
intermediate embedded systems courses at both the University of 
California, Riverside, and at the University of California, Irvine.  
The simulator gives us the opportunity to assign homework and 
assignments where the students can write code and test/debug on 
the simulator, and getting instant feedback on whether or not their 
own code worked. While we don’t have enough data to presently 
quantify whether or not using the more abstract virtual 
microcontroller gives a better understanding to the structured 
embedded programming concepts we teach, we have noticed a 
possible impact in both the quality of homework materials turned in 
as well as the performance in lab on the real microcontroller 
hardware. 

9. Conclusions and Future Directions  
Embedded programming training often involves numerous low 
level details that often detract from learning structured high level 
embedded programming concepts. As a solution, we presented the 
virtual microcontroller, a clean intuitive microcontroller that allows 
a beginning embedded programming student to concentrate on 
structured embedded programming while still learning important 
low-level resource concepts related to interrupts, timers, and 

UARTs. We implemented the VµC on several physical devices 
including an AVR microcontroller and an FPGA, and redesigned a 
complete introductory course set of labs for the VµC.  We plan on 
making templated versions of the virtual microcontroller source 
freely available to the public to use and modify as needed.  
Templated versions would allow instructors to quickly and easily 
have virtual microcontrollers running on their own available 
platforms.  We also plan on making the virtual microcontroller 
simulator freely available. 

In the future, we plan on introducing the virtual microcontroller 
even earlier into the computer science curriculum, with the focus 
on teaching structured time oriented programming very early in a 
student’s education. Ideally we would like to introduce time 
oriented programming concurrently with their first traditionally 
programming course. The virtual microcontroller creates the 
opportunity to teach such concepts without overwhelming the 
students with the often difficult technical aspects that usually come 
with commercial microcontrollers. Students with an early solid 
foundation in time oriented programming would then be poised to 
take on the more high and low level challenges that come with 
embedded programming in upper division courses. 
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