

Virtual Microcontrollers

Scott Sirowy†, David Sheldon†, Tony Givargis‡, Frank Vahid†‡
†Department of Computer Science and Engineering

University of California, Riverside, USA

{ssirowy,dsheldon,vahid }@cs.ucr.edu

‡Department of Computer Science

Center for Embedded Computer Systems

University of California, Irvine

givargis@ics.ucr.edu

Abstract
Embedded programming training today commonly involves
numerous low-level details of a particular microcontroller. Such
details shift focus away from higher-level structured embedded
programming concepts. Thus, hard-to-break, unstructured
programming habits are commonplace in the field. Yet structured
embedded programming is becoming more necessary as embedded
systems grow in complexity. We introduce a virtual
microcontroller to address this problem. Freed from manufacturing
or historical architectural issues, the virtual microcontroller
contains the core features to support embedded programming
training, and possesses an exceptionally clean interface to low-
level features like timers, interrupt service routines, and UARTs.
The virtual microcontroller can be mapped onto existing
microcontrollers, or even onto FPGAs or a PC, providing more lab
and book flexibility, at the expense of performance and size
overhead. Most importantly, training can still use a bottom-up
resource-aware approach, yet can focus more on structured
embedded programming concepts.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education- Time Oriented Programming

General Terms
Design, Human Factors, Languages

Keywords
Embedded Programming, Time Oriented Programming, Education,
Virtualization, Microcontrollers

1. Introduction
Increasingly complex embedded system functionality requires
elevation of the introduction to embedded programming from low-
level details to higher-level structured programming. Yet the
importance of resource aware embedded programmers discourages
hiding all low-level details via an operating system.

Present first courses or tutorials on embedded systems often
focus on low-level details specific to a particular microcontroller,
such as how to configure a particular microcontroller’s timers,
counters, or UARTs via configuration registers. Due to processor
evolution reasons, such details are often convoluted, possibly
involving delicate balances between setting of oscillator
frequencies, timer registers, interrupt registers, and UART
registers, to achieve a serial transmission at a particular baud rate.
With hundreds of microcontroller variations, details differ
significantly across and even within microcontroller families.

In contrast, embedded system complexity demands elevation of
embedded programming to higher-level structured approaches.

Such a structured approach may involve using state machine or
dataflow computation models captured in a language like C,
utilizing clear multi-tasking methods such as round-robin
processing of concurrently-executing state machines, and having a
clear and consistent methodology for dealing with timed input and
output events. Specifically, embedded programming training
should focus on an early introduction to the notion of time-oriented
programming, whereby explicit time management is taught as a
fundamental concept through the use of computation models like
synchronous state machines.

Two approaches are commonplace today for elevating the level
of programming. A bottom-up approach first introduces low-level
detailed programming, and then introduces higher-level concepts in
a second course. While practical in the sense of teaching technical
skills enabling physical implementation, this approach has the
drawback of allowing undisciplined programming habits to
develop, which can be hard to break later. Furthermore, the low-
level details may discourage some students from pursuing studies
in the area. Also, the second course commonly does not exist (or
consists of a capstone project rather than additional training), or
students may not take that course. Further, labs and textbooks are
highly microcontroller-specific; changes due to obtaining new
hardware may require substantial modifications to labs, textbooks,
and other materials – and thus are resisted by many instructors.

In contrast, a top-down approach skips the low-level
programming and may introduce embedded systems programming
using a real-time operating system (RTOS) or other higher-level
environment, which provides an abstraction that hides many
details. While enabling focus on higher-level issues, this approach
has the drawback of not providing students with an intuition of the
basic underlying microcontroller mechanisms, and can lead to
programmers not cognizant of important resource issues. While
elevating programming is important, resource-awareness is also
critical for practical embedded development, because many
systems do not use RTOSes, and because understanding low-level
concepts encourages more effective use of RTOS features.

We propose a compromise approach utilizing a virtual
microcontroller, illustrated in Figure 1. The virtual microcontroller
exposes fundamental low-level components to the programmer –
timers, interrupt service routines, UARTs, general-purpose
input/output, etc. – rather than hiding them using an RTOS, yet
does so using simple clean structures uncluttered by transient or
historical low-level complexities. The virtual microcontroller
supports a fixed and non-parameterized architecture with a simple,
reduced and C-compatible instruction set. The virtual
microcontroller also supports the simplest programming apertures
possible, allowing the student to focus on more important
embedded programming concepts while still enabling a bottom-up
perspective.

Further, the virtual microcontroller can execute on a variety of
embedded devices, including various existing microcontrollers,

embedded microprocessors on boards having general-purpose I/O,
field-programmable gate arrays (FPGAs), or even on a PC with
appropriate general-purpose I/O additions. Instructors must
perform a one-time mapping of the virtual microcontroller to their
specific device. When changing devices later, instructors perform a
remapping, but need not change books or lab materials. The virtual
microcontroller also has a graphical simulator, allowing instructors
to teach embedded programming even in the sub-optimal case of
not having a hardware lab, or supporting additional training by
students outside of lab. Even when using different devices, the
student continues to use the same virtual microcontroller tools
(simulator, debugger, compiler), rather than having to switch to the
particular device’s own tools.

2. Related Work
Several research projects attempt to improve engineering
education. Hodge [8] introduces the concept of a Virtual Circuit
Laboratory, a virtual environment for a beginning electrical
engineering course that mimics failure modes in order to aid
students in developing solid debugging techniques. The
environment not only provides a convenient test environment, but
also allows an instructor to concentrate more on teaching. Butler
[2] developed a web-based microprocessor fundamental course,
which includes a Fundamental Computer that provides students in
a first year engineering course a less threatening introduction to
microprocessors and how to program.

Other researchers have concentrated on developing or
evaluating computing architectures for beginning students or non-

engineers. Benjamin [1] describes the BlackFin architecture, a
hybrid microcontroller and digital signal processor. The
architecture provides a rich instruction set based on MIPS with
variable width data, and parallel processing support. Ricks [12]
evaluates the VME Architecture in the context of addressing the
need for better embedded system education. The Eblocks project
[4] concentrated on developing sensor blocks that people without
programming or electronics knowledge could connect to build
basic customized sensor-based embedded systems.

Much research has involved virtualization [11][13], with
several commercial products developed in response to the need for
portable virtual machines. VMware [16] and the open source
product Xen [18] concentrate on developing virtual machines that
allow the end-user to run multiple operating systems concurrently.
The Java Virtual Machine [14] allows the programmer to write
operating system independent code, and tools like DOS Box and
console emulators allow the user to run legacy applications in
modern operating systems.

A number of real time operating systems have been introduced
to provide a higher level of abstraction between the application
software and embedded hardware, including the open source eCos
[5], and VxVorks and RTLinux from WindRiver [17].

There have also been several efforts to create virtual
environments of microcontrollers suitable for running from the
convenience of a standard desktop computer. The Virdes [15]
virtual development system provides a virtual prototyping
environment for anyone learning to program using the popular
8051/8052 microcontroller. Virdes ships with several already built

Figure 1: (a) Programming a real microcontroller often requires a complex flow that is confusing to beginning students and obfuscates
crucial embedded systems concepts. (b) The virtual microcontroller, implemented on any number of devices, quickly allows the student to

write structured embedded microcontroller code. Instructors must perform a one-time mapping of the virtual microcontroller on their
particular device platform.

SREG |= (1 << 7);
TCCR1A = 0;
TCCR1B = 0;
TCNT1H = 0xFF;
TCNT1L = 0x83;
TIMSK |= (1 << 3);
TCCR1B = 3;
state = init;
while(true){
 switch(state){
 case init:

Increase in Complexity

Timer_reg = 1000;
Timer_start = 1;
state = init;
while(true){
 switch(state){
 case init:
 …
 case incr:
 }
}

Timer

 PIC

 Virtual
Microcontroller

…

 V.M.

Extensive documentation,
complex tool flows, language
extensions, etc.

…

 V.M.

(a)

(b)

VµC
tools

PIC
tools

FPGA
Tools

FPGA

I0
I1
I2
I3
I4
I5
I6
I7

O0
O1
O2
O3
O4
O5
O6
O7

layouts to blink LEDs, work with analog to digital converters, and
a virtual UART and terminal. Images Scientific Instruments [9]
developed a virtual system for prototyping PIC microcontrollers,
while other work has concentrated on developing virtual
peripherals [6] for the AVR microcontroller.

To the best of our knowledge, the work described in this paper
is the first to describe a virtual microcontroller that can be
physically implemented on existing platforms while also
supporting programmer access to low-level yet clean, uncluttered
microcontroller resources.

3. Programmer’s View
We describe the virtual microcontroller (VµC) from the
programmer’s point of view. While programmable entirely in C,
some instructors may wish to introduce the instruction set too –
learning to program and read assembly code is still a common part
of training, as assembly code is still written for certain drivers, and
is sometimes examined during difficult debugging. We chose an
instruction set based on the MIPS ISA (instruction set architecture)
in [7].

We considered other choices, including an ARM-like
instruction set or Java byte code. The ARM instruction set is
similar to many microcontroller instruction sets, and there are
already numerous virtual machine implementations built for Java
byte code. However, the MIPS ISA provides a more intuitive
instruction set, with the additional advantage that the ISA is usually
already taught in beginning computer architecture courses.
Learning the complete MIPS ISA might overwhelm students. We
thus chose to use a twenty instruction subset, shown in Figure 2,
chosen as a representative mix of the entire MIPS ISA. Using the
subset allows for easier learning, at the expense of larger code size
and slower performance, which are less important in the context of
training. The subset also has the drawback of requiring a special C
compiler back-end (discussed in Section 7, and not supporting
existing MIPS binaries; again, these are lesser issues in a training
setting). Future work also entails in expanding the capabilities of
the virtual microcontroller to support the full MIPS ISA with the
virtual microcontroller extensions to allow for more advanced and
compact programs.

We added a return from interrupt RETI instruction, which
didn’t exist in the original MIPS ISA. Because interrupts are so
commonly used in embedded systems, we sought to support
interrupts in a clean manner for students. An alternative approach
would have been to require the student to use the jump register JR
instruction to exit interrupts, but such usage distracts from the basic
idea of interrupts.

The VµC architecture, shown in Figure 3, is a fixed 32-bit
architecture. Microcontrollers used in the beginning classroom are
often 8-bit and occasionally 16-bit, but small architectures add
additional complexity in moving data between registers and data
memory by forcing the student to use an accumulator or a stack,
which obfuscate the higher level issues of embedded programming.
A 32-bit architecture is both simple to understand and allows easy
access to a large register set and memory. Although the virtual
microcontroller would have allowed parameterization of the
instruction set width for increased flexibility, the functionality was
not needed in the context of an embedded systems course.

The VµC uses a four-kilobyte instruction memory, chosen
based on off-the-shelf microcontroller memory sizes, and on the
size required for several introductory embedded systems labs and
exercises that we examined from several embedded systems
courses. The VµC’s data memory is 64 kilobytes. A 32-bit
architecture could support a four-gigabyte memory, but supporting
such a large space would have made physical mapping to real
microcontrollers nearly impossible. The upper half of the 64-
kilobyte data memory is devoted to the VµC’s memory mapped
peripherals and registers. 64 kilobytes of data memory was more
than adequate for any of the embedded programs we examined.

The VµC implements a simplified interrupt controller model as
viewed by the programmer and the software. The interrupt
controller model allowed for easy and intuitive implementation of
interrupts with priorities. The interrupt controller consists of two
memory-mapped special function registers, an interrupt status
register and a interrupt value register. Together, the two registers
act as a simplified interrupt vector table, which is commonly used
in off-the-shelf microcontrollers. When the VµC is interrupted, the
student simply reads the interrupt value register and runs the
corresponding interrupt service routine using a programming
construct akin to a case statement. For convenience, interrupts are
automatically turned off by the VµC, so an interrupt routine cannot
be interrupted by another interrupt request. Nested interrupts might
have confused new students. The interrupt status register serves as
a software switch to enable and/or disable interrupts, and can easily
be written with the value ‘0’ or ‘1’. Interrupt service routines
complete with the RETI instruction. The RETI instruction will
update the VµC’s program counter to the last instruction not yet
completed, and re-enable interrupts. The interrupt controller is
connected to three peripherals: two timers, and a UART. The
peripherals have fixed priorities, where the two timers are given top

Figure 2: Virtual microcontroller MIPS instruction subset. We
added RETI to simplify interrupt use.

Figure 3: Virtual Microcontroller Architecture.

1. ADD $1 $2 $3
2. ADDI $1 $2 imm
3. ADDIU $1 $2 imm
4. AND $1 $2 $3
5. ANDI $1 $2 imm
6. BEQ $1 $2 [Label]
7. J [Label]
8. JR $1
9. LW $1 0($2)
10. NOOP

11. OR $1 $2 $3
12. ORI $1 $2 imm
13. RETI
14. SLL $1 $2 $3
15. SLT $1 $2 $3
16. SW $1 0($2)
17. SUB $1 $2 $3
18. SUBI $1 $2 imm
19. XOR $1 $2 $3
20. XORI $1 $2 imm

Interrupts

MIPS
ISA

Data
Memory

Timer 1
Timer 0

UART

In System
Programming

Inst.
Memory

GPIO

Data

Bus

GPIO

priority followed by the UART. Fixed priorities reduced the
complexity of the virtual microcontroller as well as the software
being run, allowing the student to concentrate on core embedded
programming concepts, at the expense of situations where the
priorities need to be different (which are rare in a learning setting).

The VµC interfaces to a basic set of peripherals that enable a
variety of embedded systems to be created, from working with
general-purpose input/output to timing-oriented programming. The
virtual microcontroller separates input and output into two separate
memory mapped eight-bit registers, which can be read (input
register) or written (output register). Each input and output bit is
also accessible individually by name (e.g., I1, O4). Having
dedicated input and output eliminates the required step for most
microcontrollers of configuring each input/output port’s direction.
One 8-bit input port and one 8-bit output port was sufficient for
most introductory labs we examined. If more ports are needed,
external extended parallel I/O techniques can be introduced.

The virtual microcontroller has two timers. At least one timer
was required because much of an embedded programming
curriculum revolves around timing-based computing models (state
machines, interrupts, etc.) The VµC uses two timers because
several concepts and applications become more intuitive with the
use of two timers. For instance, a student might write an
application that mimics two state machines that must transition on
every half second, and every two seconds. While the two state
machines can be implemented with only one timer, the
programming becomes substantially easier with the use of multiple
timers. The two timers offer limited configurability via the Timer
0/1 Control register. The student can allow or disallow the timers
to interrupt the VµC, and can start and stop the timer by writing a
few bits. The VµC timer’s limited configurability provides a
cleaner, concept-oriented interface than ones offered by off-the-
shelf microcontrollers. The timers are programmed by writing the
memory mapped register Timer 0/1 Value register with a
millisecond value to time. This millisecond value is in contrast to
off-the-shelf microcontrollers, which require writing a value based
on that microcontroller’s clock frequency. We chose millisecond
resolution for the VµC’s timers because all labs in the embedded
programming course required that granularity or coarser. The
millisecond resolution is also an easy time period for students to
grasp quickly.

The VµC includes a UART (Universal Asynchronous
Receiver/Transmitter), which allows a student to learn how to
interface to serial devices, including a PC, for input, display, or
debugging purposes. The UART can be programmed and
configured using three intuitive memory-mapped registers, the
UART status register, UART TX Data register, and the UART RX
data register. To write to the UART, the program writes a value to
the UART TX Data register, and writes a ‘1’ to the UART Status
register to signal a transmission start. Similarly, the program can
read the UART RX Data register for valid data once the UART has
interrupted the VµC core. As with the VµC’s timers, we eliminated
several additional features offered by off-the-shelf microcontrollers
to ease programming. For instance, the UART baud rate is fixed at
9600, eliminating the need to configure the rate. That rate was
chosen based 9600 being the default rate for several off-the-shelf
microcontrollers.

4. Portability
As long as a computing platform supports the virtual
microcontroller described in Section 3, then code written for the

virtual microcontroller will execute identically on different
platforms. The need to port code from one platform to another,
whether that port is a relatively simple recompilation, or a complete
rewrite of the code base, is eliminated. For example, one piece of
code that blinks lights every half second running on a virtual
microcontroller implemented on a physical microcontroller will
also blink the same lights every half second running on a PC-
implemented virtual microcontroller.

An advantage of such portability includes the ability for a
student to use one implementation at home (e.g., a PC-based
implementation) while using a different implementation in a lab
(e.g., an FPGA-based implementation). Even the same lab setting
may use different implementations based on available physical
resources.

5. USB Programmability
The virtual microcontroller supports USB programming (here
“programming” refers to downloading code into a device) via a
USB flash drive, and not a traditional hardware programmer in
which a chip is plugged in, programmed, and placed in-system.
Such an approach requires non-volatile memory, and requires a
removable chip, greatly limiting the ability to implement the virtual
microcontroller on various existing devices. Such an approach also
requires a separate programmer device, adding to cost, and
introducing extra steps for a student. An alternative programming
approach is to program a device in-system using a USB cable.
While eliminating the need for a programming device, such an
approach still requires a PC every time a student wants to change a
program.

Instead, we chose a USB flash drive programming approach,
illustrated in Figure 4. A student copies the desired program onto a
USB drive as a file, plugs the drive into the VµC implementation,
and presses a button on the VµC that downloads the program from
the flash drive to the VµC instruction memory. The approach
eliminates the need for non-volatile memory in the VµC. The
approach enables students to load and change programs by
inserting and swapping flash drives, enabling more mobility, and
ease of examining behavior of each others’ program. The approach
also matches current usage schemes for popular electronic devices,
allowing a beginning student to start programming with minimal
effort, and using a familiar paradigm. The USB approach also gives
the student the intuitive notion that the program and the

Figure 4: The virtual microcontroller is programmed by simply
plugging in a USB flash drive with the VµC program and pressing

a button.

microcontroller are separate physical entities. The cost is that the
VµC must contain an internal USB flash drive reader. We use an
off-the-shelf reading device, which increases the size and cost of
the VµC.

6. VµC Executable Format
The virtual microcontroller uses a human-readable assembly
language file as the “executable” format. A traditional binary
executable format is more compact, but is unreadable by humans.
In contrast, an assembly format is more readable, providing a
clearer understanding of what is being executed on the device,
reducing the number of files that must be worked with, and
possibly enabling comprehension of the program (perhaps via
comments in the code). The assembly code is just-in-time (JIT)
assembled to machine code inside the VµC. We considered C code
as the distribution format, but assembly code enabled simpler JIT
tools and also supports assembly coding. A drawback of assembly
versus machine code is that unchecked assembly code is more
likely to contain errors (students almost never modify tool-
generated machine code, but may modify assembly code). In the
VµC, a JIT assembler error causes an error LED to illuminate (a
future version may also write assembler errors to an error file on
the USB flash drive.) The JIT assembler approach has an additional
advantage of requiring no PC-based tools other than a text editor,
even allowing assembly code to be developed on a cell-phone or
PDA, saved to a USB flash drive, and downloaded to the VµC.

Nevertheless, in an environment with a PC-based C compiler or
assembler, enforcement of a methodology involving an assembly-
code checking tool, or avoidance of changing of compiler-
generated assembly code, may be helpful.

Figure 5 shows a sample virtual microcontroller C program and
assembly executable format that increments the value of the
general purpose output every half second. The C program is shown
in Figure 5(a) and the translation/compilation to the assembly
executable format is shown in Figure 5(b). Notice the almost direct
mapping, including the line in the assembly that sets a register to
500 ms. The virtual microcontroller at even the lowest levels
maintains a very clean interface to peripherals. Both comments and
labels are allowed, to increase the readability of the application.
Comments begin with the symbol ‘--‘, and continue to end of the
current line. Labels are supported as a convenience to the
application programmer.

The interrupt vector is at address 1 in the program. When an
interrupt occurs, the program code must poll the interrupt value
register to determine which interrupt should be serviced. In the
increment example, only one interrupt could have occurred, but the
code still performs the check on the interrupt value register to
make the code extendable later.

7. Compiler and Simulator
Even at the assembly level, the virtual microcontroller provides
mechanisms for intuitive programming of the virtual

Figure 5: Virtual microcontroller program(a) AND the resulting executable format(b), to increment the value in the general purpose output
register every half second. Note even at the “binary” format the code is human readable assembly, which will be JIT assembled inside the

virtual microcontroller. Further, the assembly is a straightforward translation of the C code, allowing development on several layers of
abstraction.

//program increments output
//value on interrupt
#define OUTPUT B

TimerISR(){
 flag = 1;
}

int main(){
 int counter = 0;
 Timerset(500); //500 ms
 TimerStart();

 while(1){
 OUTPUT = counter;
 if(flag){
 flag = 0;
 counter += 1;
 }
}

--program increments output
--value on interrupt
J Main
ISR: LW $20 12($10)
BEQ $20 $0 ISR_zero
RETI
ISR_zero: ADDI $5 $0 1
RETI
Main: ADDI $1 $0 3
ADDI $2 $0 500 –-500 ms
ADDI $3 $0 1
ADDIU $10 $0 32768
ADD $10 $10 $10
SW $2 9($10)
SW $1 8($10)
Loop: SW $9 2($10)
BEQ $5 $3 update
J Loop
update: ADDI $5 $0 0
ADD $9 $9 $3
J Loop

(a) (b)

Compile

microcontroller peripherals. However, the ability to write C code
for such applications offers a number of advantages over writing
assembly code, including easier readability and faster development
time, at the expense of requiring a specialized C compiler. We have
developed a specialized C compiler for the virtual microcontroller
based on the open source LCC project [10] developed at Princeton
University. The compiler accepts all legal ANSI C, and includes
support for special naming conventions for the input and output of
the virtual microcontroller, as well as the naming of the interrupt
service routines, like the one showed in Figure 5(a). The compiler
generates assembly like the file shown in Figure 5(b) that can then
immediately be run on either a physical virtual microcontroller, or
a simulator we have also developed. At this stage, the simulator
can support the full range of the MIPS ISA, while the physical

microcontroller prototypes only support the twenty-instruction
subset shown in Figure 2. This limitation will be removed in further
revisions of the virtual microcontroller.

Figure 6 shows a screenshot of our virtual microcontroller
simulator. The simulator supports development in the absence of a
physical device, and is also useful for instructors when
demonstrating new concepts with a projected display.

In the middle of the screen, the student can write standard C
code that is then compiled using the LCC to virtual microcontroller
C compiler. The simulator has very few buttons, allowing for an
intuitive development experience which involves writing,
compiling, and running the virtual microcontroller program in three
easy steps.

Figure 6: Virtual microcontroller simulator prototype. The simulator supports standard debugger and register views, as well as a high
level view of the virtual microcontroller and connected peripherals. The simulator also reports power usage, indicated on the right by a

battery indicator.

The simulator supports standard microcontroller
simulator/debugger functions, such as steps, breakpoints,
input/output value writes/reads, observation of global variables and
internal registers, including memory-mapped peripheral registers,
etc. The simulator also supports the ability to generate a timing
diagram for input into a waveform viewer that supports vcd files.

The simulator provides graphical views of the available virtual
microcontroller peripherals, including input switches, output LEDs,
and internal timers. The simulator provides a graphical view of the
timers as they count up to their interrupt time, akin to a “status bar”
display ranging from 0% to 100%. Finally, because power is
becoming more and more of an issue in embedded programming,
the virtual microcontroller simulator also provides a battery life
indicator, shown on the right of the screenshot in Figure 6. The
student can investigate using sleep options for the virtual
microcontroller inside the C code to save battery life. We plan on
extending the physical virtual microcontrollers to allow power
saving options so the code used in the simulator will also work on
the physical virtual microcontroller devices.

8. Proof of Concept and Experiments
We implemented the VµC on various physical platforms. Each
implementation was based on a core instruction set simulator,
which consisted of just under 1,000 lines of C code. The code base
is highly modular, allowing further mappings of the VµC to be
created with less effort. The differences in each VµC
implementation lied in how we mapped the VµC peripherals to
physical peripherals.

Figure 7, Figure 8, and Figure 9 show several implementations
of the virtual microcontroller. The implementation shown in Figure
7 emulates the VµC on a physical Atmel AVR microcontroller,
combined with a PIC 18 microcontroller for interfacing with the
USB reader device. In this implementation, we physically tied the
VµC’s general purpose input and output to switches and LEDs,
providing a standalone device with a simple user interface. An
alternative implementation could include both the switches/LEDs
plus input/output ports that could be connected to other devices and

that could override the switches/LEDs, shown in Figure 8. We built
an implementation on a Xilinx FPGA, shown in Figure 9, by
emulating the VµC on a MicroBlaze soft-core processor. We built
interface functions on top of the MicroBlaze’s physical interrupt
controller and timers to communicate with the physical hardware.
We built another FPGA implementation, this time describing the
VµC in synthesizable VHDL and then synthesizing a circuit onto
the FPGA. The ISRs, timers, and UART were created as
components that interfaced to the MIPS ISA core, and the FPGAs
general purpose input/output. Each implementation required a few
days to create. Of course, an instructor may not have to build the
implementation from scratch as we did; previous implementations
can be described or downloaded from the web. For completeness
and to test other platforms, we successfully implemented the virtual
microcontroller on the three platforms discussed as well as on a

Figure 7: Virtual microcontroller implementations-
Implementation # 1: in a black-box, with internal AVR-

microcontroller-based circuitry exposed.

Figure 8: Implementation # 2: on an AVR microcontroller breadboard,
with input/output wires that can be connected to other circuits

Figure 9: Implementation # 3: on a Xilinx Spartan 3E FPGA using a
serial connection to a PC to output to a serial terminal.

PIC microcontroller, an 8051 microcontroller, and one
implementation running on the native FPGA fabric of a Spartan 3E
development board.

To test whether the VµC could handle standard embedded
systems lab assignments, we redesigned the microcontroller labs
from the embedded systems courses at University of California,
Riverside, and University of California, Irvine, which have been
taught for over 10 years and are similar to numerous
microcontroller courses worldwide. The labs introduce a student to
basic embedded microcontroller programming concepts, using
general purpose input and output, timer-based programming, state
machine programming, and interfacing to various peripherals.

The first embedded programming “Hello World” lab involved
blinking a light on and off. The code to blink a light on and off in
virtual microcontroller code consisted of 16 assembly instructions.
The second lab interfaces a microcontroller to seven-segment
displays, involving writing to general-purpose outputs, and creating
a simple delay loop. The third lab interfaces with a standard keypad
by reading general-purpose inputs. The fourth lab introduces
interrupts and interrupt service routines. The interrupts are
introduced along with the virtual timers, and the students are asked
to program a simple decimal counter using interrupts and the
concepts used in the previous labs. The fifth lab introduces the
serial protocol and interfacing to a microcontroller’s UART. The
students are asked to read from the serial port, and then output the
input with a simple ROT13 encoding. Finally, the last lab brings
combines the earlier concepts in design of a reaction timer game.
For all of the labs, the input and output ports were sufficient to
interface to all of the required external peripherals.

Each lab was redesigned and written in the VµC’s assembly
language and tested on the implemented platforms. We also wrote
each application in C code and used the compiler to translate the
virtual microcontroller’s assembly executable format. Because the
assembly file is also the executable format, the VµC’s executable
file was 10 times bigger than a traditional binary, due to using
ASCII text characters. The VµC implementation internally
translates the text file to a traditional binary to reduce internal
storage and improve performance. Also, we were able to write C
code about ten times quicker than writing the assembly equivalent.

We are currently using the virtual microcontroller simulator in
intermediate embedded systems courses at both the University of
California, Riverside, and at the University of California, Irvine.
The simulator gives us the opportunity to assign homework and
assignments where the students can write code and test/debug on
the simulator, and getting instant feedback on whether or not their
own code worked. While we don’t have enough data to presently
quantify whether or not using the more abstract virtual
microcontroller gives a better understanding to the structured
embedded programming concepts we teach, we have noticed a
possible impact in both the quality of homework materials turned in
as well as the performance in lab on the real microcontroller
hardware.

9. Conclusions and Future Directions
Embedded programming training often involves numerous low
level details that often detract from learning structured high level
embedded programming concepts. As a solution, we presented the
virtual microcontroller, a clean intuitive microcontroller that allows
a beginning embedded programming student to concentrate on
structured embedded programming while still learning important
low-level resource concepts related to interrupts, timers, and

UARTs. We implemented the VµC on several physical devices
including an AVR microcontroller and an FPGA, and redesigned a
complete introductory course set of labs for the VµC. We plan on
making templated versions of the virtual microcontroller source
freely available to the public to use and modify as needed.
Templated versions would allow instructors to quickly and easily
have virtual microcontrollers running on their own available
platforms. We also plan on making the virtual microcontroller
simulator freely available.

In the future, we plan on introducing the virtual microcontroller
even earlier into the computer science curriculum, with the focus
on teaching structured time oriented programming very early in a
student’s education. Ideally we would like to introduce time
oriented programming concurrently with their first traditionally
programming course. The virtual microcontroller creates the
opportunity to teach such concepts without overwhelming the
students with the often difficult technical aspects that usually come
with commercial microcontrollers. Students with an early solid
foundation in time oriented programming would then be poised to
take on the more high and low level challenges that come with
embedded programming in upper division courses.

10. Acknowledgements
This work was supported in part by the National Science
Foundation (CNS-0614957). We also thank Bailey Miller, Jonathan
Basseri, and Andrew Becker for their work in helping with the
development of the VuC simulator and physical prototypes.

References
[1] BENJAMIN, M., KAELI, D., AND PLATCOW, R. 2006. Experiences with

the Blackfin architecture in an embedded systems lab.. WCAE '06
[2] BUTLER, J. AND BROCKMAN, J. Web-based Learning Tools on

Microprocessor Fundamentals for a First-Year Engineering Course.
2003. American Society for Engineering Education.

[3] CELOXICA. 2006. DK design suite.
http://www.celoxica.com/products/dk/default.asp.

[4] COTTRELL, S. AND F. VAHID . A Logic Enabling Configuration by
Non-Experts in Sensor Networks. HFC. 2005.

[5] ECOS. http://ecos.sourceware.org/
[6] HAPSIM. http://www.helmix.at/hapsim
[7] HENNESSY, J. AND PATTERSON, D. Computer Architecture – A

Quantitative Approach. Morgan Kaufman Publishers. 3rd edition.
1996

[8] HODGE, H. HINTON, H.S, AND LIGHTNER, M. Virtual Circuit
Laboratory. ASEE. American Society for Engineering Education.
2000

[9] IMAGES SCIENTIFIC INSTRUMENTS. http://imagesco.com
[10] LCC. http://www.cs.princeton.edu/software/lcc/
[11] LEVIS, P. AND CULLER, D. 2002. Maté: a tiny virtual machine for

sensor networks. SIGOPS Oper. Syst. Rev. 36, 5 (Dec. 2002), 85-95.
[12] RICKS, K. G., JACKSON, D. J., AND STAPLETON, W. A. 2005. An

evaluation of the VME architecture for use in embedded systems
education. SIGBED Rev. 2, 4 (Oct. 2005), 63-69.

[13] SMITH , J. AND NAIR, R. VIRTUAL MACHINES: Versatile Platforms for
Systems and Processes. Morgan-Kaufman Publishers. 2005.

[14] STARK, R., SCHMID, J, AND BORGER, E. Java and the Virtual
Machine- Definition, Verificartion, and Validation. 2001.

[15] VIRDES DEVELOPMENT SYSTEM. http://avoron.com/index.php
[16] VMWARE. http://www.vmware.com/
[17] WINDRIVER Systems. http://www.windriver.com/
[18] XEN. http://www.xen.org

