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A Custom FPGA Processor for Physical Model
Ordinary Differential Equation Solving

Chen Huang, Frank Vahid, and Tony Givargis

Abstract—Models of physical systems, such as of human
physiology or of chemical reactions, are typically comprised of
numerous ordinary differential equations (ODEs). Today’s de-
signers commonly consider simulating physical models utilizing
field-programmable gate arrays (FPGAs). This letter introduces
a resource efficient custom processor—the differential equation
processing element, or DEPE—specifically designed for efficient
solution of ODEs on FPGAs, and also introduces its accompanying
compilation tools. We show that a single DEPE on a Xilinx Virtex6
130T FPGA executes several physiological models faster than
real-time while requiring only a few hundred FPGA lookup tables
(LUTs). Experiments with a commercial high-level synthesis(HLS)
tool show that while a single DEPE is 5-50x slower than HLS
circuits, DEPE is 10-200x smaller. We show that a single DEPE
is only 10X slower than a relatively massive and costly 3 GHz
Pentium 4 desktop processor for ODE solving, and its speed is
also competitive with a 700 Mhz T1 digital signal processor and an
450 Mhz ARM processor. DEPE is 4 x-17 X faster than a Xilinx
MicroBlaze soft-core processor and 3x—6x smaller. DEPE thus
represents an excellent processing element for use by itself for
small physical models, and in future parallel networks for larger
models.

Index Terms—Custom processor, field-programmable gate
array (FPGA), ordinary differential equation (ODE) solving,
physical model simulation.

I. INTRODUCTION

HE capture and execution of physical models have

gained extensive research attention in past decades. A
physical model is a mathematical representation of a physical
phenomenon. Executing a model may assist with understanding
a physical process such as a human heartbeat [10] or with
testing control algorithms in a cyber-physical system. Models
commonly execute several orders of magnitude slower than
real-time. Faster execution is clearly preferred, and in fact
real-time execution is mandatory for much cyber-physical
system testing. Real-time execution is possible today for more
models due not only to faster processors, but also to larger
capacities of field-programmable gate arrays (FPGAs).

Manuscript received April 08, 2011 ; accepted June 16, 2011. Date of pub-
lication September 29, 2011; date of current version December 21, 2011. This
manuscript was recommended for publication by J. Hoe. This work was sup-
ported in part by the National Science Foundation (CNS1016792) and by the
Semiconductor Research Corporation (GRC 2143.001).

C. Huang and F. Vahid are with the Department of Computer Science and
Engineering, University of California Riverside, Riverside, CA 92507 USA
(e-mail: chuang @cs.ucr.edu; vahid@cs.ucr.edu).

T. Givargis is with the Department of Computer Science and the Center
for Embedded Computer Systems, University of California Irvine, Irvine, CA
92697 USA (e-mail: givargis@uci.edu).

Digital Object Identifier 10.1109/LES.2011.2170152

FPGAs implement circuits, wherein thousands of connected
components execute in parallel. Circuits represent an excellent
match for executing physical models. A physical model typi-
cally consists of thousands of ordinary differential equations
(ODEs), each ODE representing part of the physical space, each
part connected with neighboring parts, all parts executing in par-
allel. Execution consists of solving the ODEs using known it-
erative techniques. Thus, ODE solvers can be mapped to cir-
cuit components, each connected to neighboring components,
thus avoiding the memory or input/output bottlenecks common
in FPGA applications, and each executing in parallel.

Many previous case studies of using FPGAs to speedup
physical system simulation have been conducted. For example,
Yoshimi [17] obtained 100X speedups of a fine-grained bio-
logical simulation compared to a processor. Pimentel [11] used
FPGAs to simulate a heart-lung system in real-time for the
purpose of testing medical devices. Those case studies mostly
used manual circuit design and optimization, which required
significant human effort for design and test.

High-level synthesis (HLS) [2], [S], [14] compiles equations
into circuits, but the large numbers of equations in physical
models quickly overloads HLS. Instead, the equations can be
partitioned among a network of programmable processors. The
size of such processors will be a key determining factor of the
execution speed of the model, because the processor size deter-
mines the number of processors that can fit on an FPGA.

This letter introduces a resource efficient custom pro-
grammable processor designed for fast ODE solving. Using a
processor rather than custom circuit may also provide future
benefits involving instrumenting the processor code to support
profiling, debugging, updating, and more. We overview of
physical modeling, and introduce our “DEPE” processor’s
architecture and describe the processor’s supporting compiler.
We compare with a commercial HLS tool and with several pro-
grammable processors including a soft-core FPGA processor
and an application-specific instruction-set. DEPE is useful by
itself for small physical models, but more importantly provides
a good basis for future parallel processor networks on FPGAs
for larger models.

II. PHYSICAL MODELING AND ODE SOLVING

Fig. 1 provides a basic model of a human lung [8] known
as a resistance/compliance, or RC, model. The amount of air
flow into the lung (Flow) equals the air pressure at the mouth
(Pmouth) minus the pressure at the lung (Plung), divided by
the resistance (R) of the lung. Furthermore, Plung equals the
lung volume (V') divided by the lung compliance (Comn). Flow
equals the derivative of lung volume with respect to time.

A more complex model may be obtained by replicating equa-
tions. For example, Weibel [15] modeled a human lung as com-

1943-0663/$26.00 © 2011 IEEE



114

Plung
Pmouth

R Com
| | | | |
Flow L | |1 1% |

Flow = (Pmouth — Plung) / R
Plung =V /Com
ODE: d(V)/dt = Flow

Fig. 1. Simple “RC” lung model.
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Fig. 2. Four generation Weibel lung.

prised of multiple generations (over 20) as in Fig. 2. Each branch
in each generation is modeled using an ODE for Volume (sim-
ilar to Fig. 1) and another ODE for Flow. More generations in
the model yields higher accuracy but exponentially increases the
number of ODEs. For simplicity, we refer to a system of ODEs
of dimension m as m ODE:s.

To determine the lung volume at a given time, the ODE can be
solved using differential equation solution techniques. Instead,
solutions are approximated using iterative solvers such as Euler
[1] or Runge-Kutta [4]. Starting from time O, iterative solvers
move forward in time by a given time step, such as by 1 ms. At
each time step, two major tasks are performed.

1) Evaluate: Estimate each variable’s derivative value using
the equation slope for current variable values, e.g.,
d(V)/dt = (Pmouth — V/Com)/R

2) Update: Approximate variable values for the next time
step using the current values and the derivatives calculated
above, e.g., V = V 4+ d(V)/dt * h, where h is the time
step.

The Euler method performs the above tasks once per step, and
has an error rate proportional to h? per step. Runge-Kutta (RK)
methods give better accuracy. The RK4 method calculates the
derivative of each variable four times—at the beginning, mid-
point (twice), and end of the interval—per time step, with error
proportional to h® per step (note h < 1). An intermediate RK2
method gives an error rate of h> per step.

For this letter, we implemented three physical models. The
first is a Weibel lung model [15]. We considered 2 generations
(yielding 6 ODEs) and 4 (30 ODEs). The second model is a
Lutchen lung [9], which models the gas exchange of the lung
rather than the physical structure. It has a complex gas ex-
change model for the airway, consisting of a number of “cells”
(segments in the airway for gas exchange). We considered 10
cells (yielding 10 ODEs) and 50 (50 ODEs). The third is a
heart model aiming to represent heart failure [16], containing
31 ODEs. We thus had 5 physical models: Weibel 2/4 (denoted
W2, W4), Lutchen 10/50 (L10, L50), and the heart model. We
use small models in this letter, because the DEPE is designed
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TABLE I
HLS PERFORMANCE AND RESOURCE USAGE

Model Perf (ms) LUTs DSPs BRAMs
W2 (6 ODEs) 2.7 2,110 41 0
L10 (10 ODEs) 23 2,602 151 0
W4 (30 ODEs) 2.9 9,233 215 0
Heart (31 ODEs) 3.3 9,775 124 0
L50 (50 ODEs) 2.4 62,945 360 0

for solving a simple physical model (<100 ODEs) or part of a
complex model.

Target FPGA: We targeted a Xilinx XC6VLX130T-3 FPGA,
having 80000 LUTSs (lookup tables), 480 DSP units (built-in
hardcore multipliers), and 264 BRAMs (built-in 32Kb hardcore
block RAMs). We used Xilinx ISE 12.3 for synthesis. The work
is not limited to a particular FPGA or synthesis tool.

Method: In this work, we used the RK4 solver with a 0.0001
s time step for all experiments.

III. HIGH-LEVEL SYNTHESIS AND A MICROBLAZE SOFTCORE

We first investigated using high-level synthesis (HLS) to
implement physical models on FPGAs. HLS converts equations
into a circuit consisting of a controller and datapath. Modern
HLS tools perform extensive algorithm parallelization (e.g.,
loop unrolling) and create heavily-pipelined datapaths.

Unfortunately, HLS tools typically do not generate resource
efficient circuits for large sets of equations. To illustrate, we
experimented with a commercial HLS tool.! We initially ex-
panded the equations into the corresponding RK4 equations [see
Fig. 4(b)] captured in C, but HLS generated circuits were huge.
We instead just synthesized an ODE kernel for the Evaluate task
of Section II, and manually wrote an HDL wrapper for the RK4
solver that utilized the HLS generated ODE kernel four times
per step.

Table I shows HLS results. Throughout this letter, perfor-
mance numbers are in milliseconds (ms) and are normalized to
1000 ms of simulated time, so 3 means the model executed 1 s of
simulated time in just 3 ms (thus executing much faster than real
time). Though the performance is much faster than real-time,
HLS required tens of thousands of LUTs for the W4 and Heart
models, and over 60K LUTs for the L50 model. It also used sev-
eral hundred DSP units. Note that L50 model uses about 80%
of LUTs in the target FPGA.

The input to HLS can be further modified to improve re-
sults. One could partition the equations while generating them,
or use a partitioning algorithm to divide the generated equa-
tions. Rather than investigating this avenue further, which might
yield some resource savings but not order-of-magnitude sav-
ings, we chose to investigate options involving a programmable
processor for much larger savings.

Xilinx provides the MicroBlaze soft-core processor opti-
mized for Xilinx FPGAs. For our target FPGA, the default
MicroBlaze version uses 1445 LUTSs, three DSP units, and
eight BRAMs, and runs at 123 MHz. We create C code for
RK4 solutions for our five models [as in Fig. 4(b)] and used

ILicensing restrictions prevent disclosing the tool name. The tool is used by
dozens of industry firms and by the US military.
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TABLE II

FPGA SOLUTIONS’ PERFORMANCE (MS)
Model HLS MicroBlaze ASIP DEPE
W2 (6 ODEs) 2.7 185 12 11
L10 (10 ODEs) 2.3 98 20 19
W4 (30 ODEs) 2.9 430 71 66
Heart (31 ODEs) 3.3 383 94 87
L50 (50 ODEs) 2.4 506 117 108

Xilinx’s compiler to compile to the MicroBlaze with the —02
optimization. Performance results are shown in Table II.

The MicroBlaze is on average 100x slower than HLS, but
faster than real-time for all five simple models, though W4,
Heart, and L50’s simulation time is getting close to 1 s.

IV. DIFFERENTIAL EQUATION PROCESSING ELEMENT

A. Initial ASIP Design

We developed an application-specific instruction-set pro-
cessor (ASIP) [7] for differential equation solving for improved
speed and smaller size versus a MicroBlaze. Only a few in-
structions are needed to support a differential equation solving
application. Based on the application, we created an instruction
set with just 12 instructions (load, load const, store, store_din,
add, sub, mul_shift, and, or, xor, jpnz, jpz). Note that a store_din
instruction stores data from an external input, and a mul_shift
instruction assists with fixed-point multiplication. We created
a standard pipelined controller to handle instruction fetch,
decode, and execution.

ASIP performance for the five models is shown in Table II.
The ASIP executes the models on average 5x faster than the
MicroBlaze. Resource usage will be discussed shortly.

B. NISC Processing Element—DEPE

We noted that an instruction set, even a small 12-instruction
one, might not be necessary for the intended purpose. Elim-
inating the instruction set, and instead filling the instruction
RAM directly with datapath control words, LUTs and increase
clock frequency. This is the principle behind the no-instruc-
tion-set computer (NISC) [12].

The DEPE datapath shown in Fig. 3 has three input ports
and one output port for communicating with external variables
(or with other processors in future work), with those numbers
being adjustable to the physical model. The datapath has a dual-
port Data RAM serving as a register file. The Data RAM size
and implementation (LUTs or BRAM) can be changed for the
model. The default ALU has an integer adder/subtractor, and a
DSP unit to perform integer multiplication; other components,
such a divider, can be included if needed by the model.

Executing a model required use of just two different
types of control words. A compute control word executes
draml[i] op dram[j]— > dramlk], i.e., read two Data RAM
items, perform an ALU operation, and write the result in Data
RAM. A store control word executes din[i|— > dramlj],
i.e., store one of the input ports into Data RAM. Branching
instructions can be eliminated, because ODE solving process
only involves sequential computations per time step. DEPE
is pipelined and executes one control word per clock cycle.

Inputs (external or from other PEs)

dl d? d3 \1/ CLK
0 v Input _sel
\l/ < PC
We
Data RAM Addr.
\l/ \l/ Addr_r Inst RAM
ALU =
Control word
dout

Fig. 3. DEPE architecture.

TABLE III
ASIP AND DEPE RESOURCE USAGE AND CLOCK FREQUENCY (MHz)

ASIP DEPE
Data
RAM || LUTs DSP BRAM _ Freq || LUTs DSP__ BRAM _ Freq
64 517 1 1 182 341 1 1 198
128 607 1 1 155 468 1 1 166
512 424 1 3 162 233 1 3 175

Table II shows performance results. DEPE is about 8% faster
than ASIP due to the faster clock frequency.

C. Memory Model of DEPE

Since DEPE implements a small part of a physical model,
each DEPE contains a local data RAM to store the data of that
part. For large models, data would be distributed among mul-
tiple DEPEs. There is no centralized global memory in a multi-
DEPE approach, so the DEPE approach may scale well.

D. ASIP and DEPE Resource Usage

Table IIT shows ASIP and DEPE resource usage. We consider
three Data RAM size/implementations: the 64 and 128 words
drams are implemented with LUTS, and the 512 words dram is
implemented with a block RAM. DEPE uses 50% fewer LUTs,
due mostly to eliminating instruction decoding logic.

Compared to a MicroBlaze, the ASIP uses 3x less LUTs,
while DEPE uses 4x less LUTs. The ASIP and DEPE use 1/3
of the DSP units and use less BRAM units (1 and 3 versus 8).
The tradeoff is of course the reduced generality of the ASIP and
DEPE, but they are sufficient for ODE solving purposes.

E. DEPE Compiler

We developed a custom compiler to translate physical model
equations to DEPE control words. The input format is shown
in Fig. 4(a) (representing a RC lung model in Fig. 1, note R =
1). The input begins with parameter settings (e.g., zero, compli-
ance, and time step constants), initial variable values, a list of
external inputs, and then one or more equations. The equation
syntax is similar to that used in JSIM [8]. Finally, the input ends
with indication of the iterative solution method (Euler, RK2, or
RK4), and the solution’s time step in seconds.

The compiler transforms the equations based on the method
chosen. Fig. 4(b) shows the transformed equations for Euler, as
well as for an RK2 solver for illustration. Note the RK2 method
calculates the derivative twice per step.
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parameter: Euler transformation:

R 1 \% =V + (Pmouth - V / Com) * dt
Com 2608 RK2 transformation:
dt 4 V.0 =V
dt3 3 k1_V =Pmouth - V/Com
div4 1 v =V_0+kI1_V *dt3
initVal: k2_V =pin-V/Com
2 incr_V = (k1_V+k2_V+k2_V+k2_V)*div4
input: A% =V_0+incr_V[1]
Pmouth 0 (b)
equation:

V’ = Pmouth — (V / Com) store din[2] -> ram([2]

method: compute ram[0] * ram[1]->ram[3]
Euler compute ram[2] — ram[3]->ram[3]
step: compute ram[3] * ram[4]->ram[3]
0.0001 compute ram[0] + ram[3]->ram[0]

(@ (c)

Fig. 4. DEPE compiler: (a) input, (b) transformed equations (Euler and RK2),
and (c) generated control words (Euler).

Finally, the compiler generates control words to execute each
equation, as in Fig. 4(c) for the Euler transformation. Those
words’ binaries are stored in Instruction RAM.

The compiler determines the necessary sizes of Data and In-
struction RAM. The maximum Data RAM size is set to 512 for
DEPE, otherwise the control word’s width would surpass 32
bits. Based on our experiments, the 512-word Data RAM can
support about 100 ODEs, satisfying our requirement that DEPE
implement a small part of a physical model.

FE. Comparison With Non-FPGA Platforms

For further comparison purposes, we also implemented the
models on several common computing platforms:

1) Desktop: C code on a Pentium4 3.0 GHz processor with
8KB L1 and 1MB L2 cache, compiled using gcc with —02
flag.

2) ARM: C code on a 450 MHz TI ARM9e embedded pro-
cessor with 32KB L1 and 128KB L2 cache, compiled using
TMS470 compiler with —O2 flag.

3) DSP: C code on a 700 MHz TI C6424 digital signal pro-
cessor with 112KB L1 and 128KB L2 cache, compiled
using TI C6000 compiler with —O2 flag.

We used the same fixed-point computation as on the FPGA
for a fair comparison. For fastest ODE solving on processors, we
first compared explicit ODE equation calculation with standard
libraries using matrix-based approaches [3], [6], but found the
explicit approach fastest so used such an approach. ARM and
DSP performance are simulated with TI CCS [13] cycle accu-
rate profiler. Performance results appear in Table IV. The ARM,
DSP and DEPE showed comparable performance, executing all
models > 10x faster than real-time. Of course, ARM and DSP
would be much larger than DEPE on an FPGA and their fre-
quencies would be less. DEPE’s similar performance with lower
clock frequency is due to its equation solving efficiency via its
single-cycle compute operation and large (up to 512-word) Data
RAM. The Desktop implementation is clearly fastest, executing
all models > 100x faster than real-time, but of course comes
with high cost and power. For reference, we ran the 5 models in
Matlab on the desktop, resulting in performance 160x slower
than C on the desktop.

Although DEPE’s performance is about 10X slower than
the desktop, its small resource usage permits hundreds of 100
DEPEs to be placed on the target Virtex6 FPGA. Our recent
studies show that a larger Xilinx Virtex6 240T FPGA can
hold up to 400 PEs, and runs more than 30x faster than a
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TABLE IV
PERFORMANCE (MS) ON NON-FPGA PLATFORMS

Model Desktop ARM DSP DEPE

W?2 (6 ODEs) 2 24 15 11
L10 (10 ODEs) 2 16 15 19
W4 (30 ODEs) 7 90 81 66
Heart (31 ODEs) 8 96 75 87
L50 (50 ODEs) 9 78 74 108

Pentium4 3.0 GHz desktop for a Weibel 11 generation lung and
a Lutchen model with 4000 ODEs. Future work will involve
synthesis/compilation for DEPE networks.

V. CONCLUSION

DEPE is a soft-core FPGA processor created specifically for
fast and resource-efficient differential equation solving. Such
solving on FPGAs is important today because physical models
are increasingly implemented on FPGAs to speed up simu-
lations or to support real-time cyber-physical system testing.
DEPE’s NISC-style architecture uses only two thirds the LUTs
of an ASIP and has an 8% faster clock frequency, and is 3-6x
smaller and 4-17x faster than a MicroBlaze soft-core pro-
cessor, with performance comparable to off-the-shelf ARM and
DSP processors having much faster clock frequencies. DEPE
was created as the foundation for future parallel networks of
processors on FPGAs to support large physical models. DEPE’s
programmability enables future instrumentation for profile and
debug purposes.
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