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Automatic Synthesis of Physical System Differential Equation Models
to a Custom Network of General Processing Elements on FPGAs

CHEN HUANG and FRANK VAHID, University of California, Riverside
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Fast execution of physical system models has various uses, such as simulating physical phenomena or real-
time testing of medical equipment. Physical system models commonly consist of thousands of differential
equations. Solving such equations using software on microprocessor devices may be slow. Several past efforts
implement such models as parallel circuits on special computing devices called Field-Programmable Gate
Arrays (FPGAs), demonstrating large speedups due to the excellent match between the massive fine-grained
local communication parallelism common in physical models and the fine-grained parallel compute elements
and local connectivity of FPGAs. However, past implementation efforts were mostly manual or ad hoc. We
present the first method for automatically converting a set of ordinary differential equations into circuits on
FPGAs. The method uses a general Processing Element (PE) that we developed, designed to quickly solve a
set of ordinary differential equations while using few FPGA resources. The method instantiates a network of
general PEs, partitions equations among the PEs to minimize communication, generates each PE’s custom
program, creates custom connections among PEs, and maintains synchronization of all PEs in the network.
Our experiments show that the method generates a 400-PE network on a commercial FPGA that executes
four different models on average 15x faster than a 3 GHz Intel processor, 30x faster than a commercial 4-core
ARM, 14x faster than a commercial 6-core Texas Instruments digital signal processor, and 4.4x faster than
an NVIDIA 336-core graphics processing unit. We also show that the FPGA-based approach is reasonably
cost effective compared to using the other platforms. The method yields 2.1x faster circuits than a commercial
high-level synthesis tool that uses the traditional method for converting behavior to circuits, while using 2x
fewer lookup tables, 2x fewer hardcore multiplier (DSP) units, though 3.5x more block RAM due to being
programmable. Furthermore, the method does not just generate a single fastest design, but generates a
range of designs that trade off size and performance, by using different numbers of PEs.
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1. INTRODUCTION
In cyber-physical systems [Lee 2008], computers or devices interact with the physical
world. Developing digital models that accurately and quickly emulate physical systems
has several uses. For instance, if a digital human lung model can execute in real time
with sufficient accuracy, the lung model can be used to test medical ventilators in
real time, to train medical professionals on ventilator use in real time, or even to run
regression tests faster than real time. Another cyber-physical system scenario involves
model-predictive control, wherein a controller like an aircraft flight system uses real-
time predictions of physical system reactions to guide control actions [Gholkar et al.
2002]. Even beyond cyber-physical systems, simulating physical systems is commonly
done in various branches of science, such as in physics and chemistry [Motuk et al.
2005; Osana et al. 2004]. Such simulations commonly require weeks or longer. Such
use cases represent our main motivations.

Due to the complexity of physical models, previous approaches often use highly sim-
plified models for emulation speed [Heart Simulator 2011]. Simplified models may
not reflect the behavior of real physical systems with sufficient accuracy. Higher accu-
racy requires more complicated models and thus requires more computation capability.
Physical models are often captured with Ordinary Differential Equations (ODEs). A
complex physical model may contain thousands of ODEs (for simplicity, we refer to
a system of ODEs of dimension m as m ODEs in this article). Iterative ODE solution
methods require that all equations be evaluated frequently, such as every 1ms or faster,
to maintain accuracy. Today’s high-end desktop processors often cannot execute com-
plex physical system models in real time, because the mostly serial software execution
on a processor does not match the massively parallel nature of physical models.

A physical system model often contains inherent massive parallelism, which is in-
tuitive as the physical world tends to involve items (e.g., human cells) operating in
parallel. As such, a model’s ODEs can be evaluated concurrently at each time step of
an iterative solver. The ODEs also have high data locality and localized data transfer,
again reflecting the physical world’s tendency for local connectivity. High data locality
and localized data transfer patterns are well suited to Field-Programmable Gate Ar-
rays (FPGAs), which effectively support massively parallel computations, distributed
data storage, and custom localized communication. The bottleneck in FPGAs is typi-
cally centralized data access, which is common in many typical computer applications
but does not exist in most physical system models.

We propose a network of general processing elements (referred to as PEs throughout
the article), intended for FPGAs, to efficiently solve the ODEs of a physical system.
Each PE is a lightweight programmable processor whose design we optimized for
solving ODEs. The data transfers between different PEs are implemented with syn-
chronized point-to-point connections. The structure of the custom network mimics the
real physical structure of a physical model, thus providing highly effective synthesized
FPGA circuits in terms of both performance and resource usage compared to circuits
generated by the standard automated approach of high-level synthesis [McFarland
et al. 1990].

We created a PE synthesis method, embodied in a PE synthesis tool, to automatically
convert a model’s ODEs into VHDL (VHSIC Hardware Description Language) [VHDL
2011] files that can be synthesized to an FPGA. The tool automatically maps the ODEs
to multiple PEs, and searches for the best mapping of ODEs to PEs such that the
interconnections among PEs is minimized. Furthermore, rather than creating a single
design, the tool generates a design space that shows trade-offs among design size and
performance by using different numbers of PEs, so that the designer can choose a design
based on a target application’s requirements. Figure 1 shows an example of mapping
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Lung model’s ODEs:
d(V1)/dt=Fmid_1 
d(F2)/dt=(Pmid_1– Pin) / L 
d(V2)/dt=Fmid_2 
… 

Fig. 1. Synthesizing an eight-generation Weibel lung model into networks of PEs on FPGAs.

ODEs of an eight-generation Weibel lung model [Lin et al. 2009] to networks of PEs.
The PE synthesis tool reads the ODEs of the model and generates two designs that
have different size and performance. Note that the generated networks have similar
binary tree structures compared to the Weibel lung model.

The article is organized as follows. Section 2 reviews related work. Section 3 re-
views modeling physical systems using ODEs. Section 4 describes the architecture of
the network of PEs, and Section 5 describes the PE compiler and automatic ODE-
to-PE mapping algorithm, these two sections containing the key contribution of this
article. Section 6 shows experimental results of our PE synthesis method compared
with numerous alternative devices and approaches for executing physical models, and
Section 7 concludes.

2. RELATED WORK
Modeling and simulation of physical systems have been studied extensively in different
fields. Physiological models are developed to help with understanding and analyzing
mechanical, physical, and biochemical functions of the human body. Electromagnetic
models are developed to understand and predict electromagnetic behavior, and are
widely used in design of cellular phones, mobile computing, etc.

Languages have been introduced for modeling physical systems, such as the Mathe-
matical Modeling Language (MML) [NSR Physiome Project 2011], the Systems Biology
Markup Language (SBML) [Hucka et al. 2004], and CellML [2011]. Tools were devel-
oped for simulating physical systems, such as Matlab [Mathworks 2011], LabView
[National Instruments 2011], JSim [2011], and Mathematica [2011]. These tools are
usually aimed at producing accurate simulation results, rather than emphasizing real-
time simulation.

Many efforts aim to increase execution speed for complex physical models using
general-purpose processors or Graphics Processing Unit (GPUs) [ATI Graphics Cards
2011; Nvidia Corporation 2011]. Multicore processors [AMD 2011; Intel Corporation
2011] and supercomputers [Cray 2011; IBM Blue Gene 2011] have been utilized to ex-
ploit the parallelism inside physical models. For instance, a 768-core SGI machine exe-
cuted a complex 2-billion equation heart model, simulating 0.4ms in 2 hours (18 million
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times slower than real time) [MedGadget 2008]. An Nvidia GTX 295 GPU was used to
execute a Flaim heart model 30x faster than OpenMP, with less than 1% error [Lionetti
2010]. Executing one heart beat (300ms) required 7.7 minutes. While multicore pro-
cessors and GPUs are capable of doing parallel computation, their communication
architectures do not match the local neighbor communication of many physical models,
so the data transfer between different cores may cause memory contention or other
communication bottlenecks. Designers also need extra design time and expertise to
efficiently write multithreaded programs for multicore and GPU.

Many case studies using FPGAs to speed up simulation have been conducted. FPGAs
were used to speed up fine-grained intra-cellular simulation [Salwinski and Eisenberg
2004], showing that an FPGA could hold 500 reactions related to gene expression.
Yoshimi et al. [2004] obtained 100x speedups of a fine-grained biological simulation
compared to a single processor, and showed why multicores are not suitable for speed-
ing up fine-grained biochemical reactions. FPGAs have been used to simulate a heart-
lung system model in real time for the purpose of testing medical devices [Pimentel
and Tirat-Gefen 2006]. That work showed that a PC requires 1.5 hours to simulate
60 seconds of real time for that model, while an FPGA solution ran in real time. Their
FPGA performance was calculated by a theoretical formula based on the number of
multipliers and the performance of each multiplier of their target FPGA, rather than an
implementation. Chen et al. [2009] used FPGAs to do an inductive dynamic simulation
with a Runge-Kunta ODE solver. The custom FPGA implementation resulted in a 100x
speedup over a 2.2 GHz desktop computer using Simulink [2001]. Osana et al. [2004]
developed the ReCSiP tool to generate chemical models on FPGAs using the SBML
language. The crossbar communication structure used in ReCSiP supports dozens of
solvers but may not scale to larger models. Iwanaga et al. [2005] used FPGAs to simu-
late ODE-based multimodel biochemical simulations, proposing several scheduling and
resource sharing methods to optimize implementation on FPGAs. The aforesaid efforts
mostly used manual design to implement the physical models on FPGAs, requiring
much human effort for design and test. This article proposes a systematic and scalable
approach to synthesize physical system models into a custom network of general PEs
on an FPGA.

A no-instruction-set-computer concept was introduced by Reshadi et al. [2005]. That
work involved creation of a C-to-RTL synthesis tool to generate custom instructions
on a given datapath, eliminating the need for instruction decoding logic. Our PE uses
a similar idea to encode control words into instruction memory. Our PE is typically
smaller and less flexible than a NISC processor due to our focus on differential equation
solving, and we also emphasize synthesis of a custom communication structure for a
network of PEs.

Another common approach for implementing applications on FPGAs uses high-level
synthesis, also known as behavioral synthesis. Many tools have been developed to
generate circuits from a high-level representation like C, Matlab, Java, etc. Major
high-level synthesis approaches and tools include SA-C [Najjar et al. 2003], Streams-C
[Gokhale et al. 2000], DEFACTO [Diniz et al. 2001], SPARK [SPARK Project 2005],
ROCCC [Buyukkurt et al. 2006], Celoxica [2011], SynphonyC [2011], DRFM [Cong
et al. 2008], etc. We use a commercial high-level synthesis tool in this work for com-
parison purposes. We show in Section 6.2 that our tool generates faster and smaller
implementations due to our tool’s specific focus on a network of ODEs.

3. PHYSICAL SYSTEM MODELING AND ODE SOLVING
This section reviews physical system modeling with ODEs, using a Weibel lung as a
driver example. The section emphasizes the ODE solving process and data dependen-
cies among ODEs, and describes four different physical models used in the article.
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Fig. 2. The first four generations of a Weibel lung model.

Branch 2 

ODEs for branch 1: 
P_mid[1] = V[1] / Com[1] 
Fout[1] = Fin – F_mid[1] 
d(V[1]) /dt = F_mid[1] 
d(Fout[1])/dt = (P_mid[1] –  
Pout[1] – Fout[1] * R2[1])/ L[1] 

ODEs for branch 2: 
P_mid[2] = V[2] / Com[2] 
Fin[2] = Fout[1] – Fin[3] 
Fout[[2] = Fin[2] – F_mid[2] 
d(V[2]) /dt = F_mid[2] 
d(Fout[2])/dt = (P_mid[2] –  
Pout[2] – Fout[2] * R2[2]) / L[2] 

… 

Branch 1 

Branch 3

Fig. 3. RLC circuit modeling of a bifurcating airway.

3.1. Modeling Physical Systems with ODEs
As an example of modeling a physical system, consider modeling a human’s lungs.
Weibel [1963] proposed a lung model having a binary tree structure to reflect a human
lung’s anatomic structure. Figure 2 shows the structure of the first four generations of
the Weibel lung model. Generation 1 represents the airway (or trachea). Generation 2
represents two bronchi. Generations 3–20 represent smaller bronchioles, and gener-
ations 20–23 contain millions of alveoli that handle gas exchange between the lung
and capillaries. In the structure, each line segment within a generation is known as a
branch. Splitting of a branch is called bifurcating. Due to the exponential increase in
the number of branches for each generation, a Weibel model typically includes fewer
than 23 generations. The total number of branches in the model will equal 2n – 1, where
n is the deepest generation number.

A bifurcating airway of the Weibel lung structure can be modeled as the RLC circuit
shown in Figure 3. The physical property of each branch is captured with R (resistance),
Com (capacitance, or compliance in lung terminology), and L (inductance). Each branch
has unique R, Com, and L values according to the branch’s physical properties. For
example, deeper generations have larger resistances and smaller capacitances. The
relevant variables during simulation are F (flow), P (pressure), and V (volume) of each
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branch. For instance: Fin[1] is the input flow for branch 1, Fout[1] is the output flow of
branch 1, and P mid[1] is the inner pressure of branch 1.

3.2. ODE Solving Process and Data Dependencies among ODEs
The equations illustrated in Figure 3 model a bifurcating airway. These equations
include ordinary equations, for example, P mid[1] = V[1]/Com[1] (middle pressure
of branch1 is equal to volume of branch1 divided by capacitance of branch1), as well
as Ordinary Differential Equations (ODEs), for example, d(V[1])/dt = F mid[1] (the
derivative of branch1’s volume is equal to the middle flow of branch1).

The variables on the left-hand side of ODEs are state variables, for example, V[1],
Fout[1]. The ordinary equations calculate temporary values that are used in the ODEs,
for example, P mid[1] is used for calculating d(Fout[1])/dt. Substituting temporary
values yields the general ODE format: d(X)/dt = Fun(X), where X is a vector of the
state variables: V[1], V[2], V[3], Fout[1], Fout[2], Fout[3]. The derivative of X is a
function of X.

To solve these ODEs, iterative solvers such as Euler [Atkinson 1993] or Runge-Kutta
[Butcher 2003] are often used. Starting from time 0, iterative solvers move forward
in time by a given time step, such as by 1ms. Note that there are data dependencies
among ODEs. For instance, the ODE d(Fout[1])/dt = (V[1]/Com[1] – Pout[1] – Fout[1] ∗

R2[1])/L[1] depends on the ODE d(V[1])/dt = F mid[1], because V[1] is updated by the
second ODE at each step, and the new value is needed by the first ODE. We use
the Euler method to describe the ODE solving process here. At each step, we divided
the solving process into the following three stages.

(1) Evaluate. Calculate the derivative of each state variable, such as d(V[1]/dt) = Fin –
Fout[1].

(2) Update. Update each state variable using the derivatives calculated in the evaluate
stage, such as V[1] = V[1] + d(V[1]/dt) ∗ dt, where dt is a time step.

(3) Data transfer. Propagate the new value of each state variable to the ODEs that
depend on the state variable.

These three stages present the basic idea of the parallel version of the ODE solving
process, where each ODE is mapped to a different processor. At the beginning of each
time step, we assume each processor has the latest values of state variables on the
right-hand side of the ODE, for example, V[1], Fout[1] in the following ODE.

d(Fout[1])/dt = (V[1]/Com[1] − Pout[1] − Fout[1] ∗ R2[1])/L[1].

Thus the evaluate and update stages can be calculated in parallel on each proces-
sor. However, new state variable values need to be transferred between processors
according to ODE data dependencies at the data transfer stage.

The Euler method has an error proportional to dt2 per step. The Runge-Kutta method
gives better accuracy. The classical RK4 method calculates the derivative of each state
variable four times (at beginning, midpoint (twice), and end of the interval) per step,
having error proportional to dt5 per step (note that dt is less than 1, thus dt5 < dt2).

3.3. Physical Model Examples
This article uses four complex physical models as examples. The first is the Weibel
lung model described earlier. The second is an entirely different lung model called the
Lutchen lung [Lutchen et al. 1982]. The third is a wave model [Motuk et al. 2005]. The
fourth is an atrial cell model [Zhang et al. 2001]. Figure 4 briefly shows the physical
structure of the three additional models.

Figure 4(a) shows the structure of the Lutchen lung model, which contains three
components: a nondispersive airway and two alveolar compartments. The Lutchen lung
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(b) 

V(i, j) 

V(i -1, j) 

V(i+1, j) 

V(i, j-1) 

V(i, j+1) 

(a)  

Alveolar 
Comp. 2 

Alveolar 
Comp. 1 

Q 

V1 

V2 

Vn 

Q1 Q2 

Gas 

Non-dispersive 
Airway 

Vi VjVj

Vj

Vj

Vj

Vj

(c)  

Fig. 4. Three additional physical model examples: (a) Lutchen lung model; (b) wave model; (c) atrial cell
model.

emphasis is on modeling gas exchange in the nondispersive airways, each of which is
segmented into a number of gas cells. Each gas cell only connects with two neighbor
cells, for example, V2 only connects with V1 and V3.

The wave model, or Finite Difference Time-Domain (FDTD) model, is an important
physical model in electromagnetics. The basic structure of the wave model is the grid
shown in Figure 4(b). Each node in the grid has a value representing the amplitude of
the wave at that point. Each node only communicates with its four neighbor nodes. For
instance, V(i, j) only communicates with nodes V(i, j − 1), V(i, j + 1), V(i – 1, j), V(i + 1, j).

Figure 4(c) shows a three-dimensinal atrial cell model intended to model a heart for
interacting with a pacemaker [Zhang et al. 2001]. Each node represents an atrial cell,
and Vi stands for the membrane potential for cell i. Each atrial cell only communicates
with its six neighbor cells (Vj) in a three-dimensinal space, as shown in the figure.

The four physical model examples represent four different connection structures: lin-
ear (Lutchen lung), binary tree (Weibel lung), grid (wave model), and three-dimensional
cubic (atrial cell). In this work, we use an 11-generation Weibel lung with 4094 ODEs,
a 4000-cell Lutchen lung with 4000 ODEs, an 80×80 wave model with 6400 ODEs, and
a 15 × 15 × 15 atrial cell mode with 3375 ODEs. The four physical models are denoted
as Weibel 11, Lutchen 4000, Wave 80 × 80, and Atrial cell 15 throughout the article.

4. GENERAL PROCESSING ELEMENT ARCHITECTURE AND A CUSTOM NETWORK OF PES
This section summarizes the architecture of a general Processing Element (PE), and
then introduces the communication architecture for a custom network of PEs.

4.1. Background: Basic PE Architecture
We earlier proposed an architecture for a single general PE optimized for general ODE
solving purposes [Huang et al. 2011]. The goals included minimizing the PE’s FPGA
resource requirements while also maximizing the PE’s performance for solving ODEs.
The general PE has the flexibility of solving different types of ODEs.

Figure 5 reviews the basic (nonpipelined) PE architecture. The PE has multiple input
ports (three in the figure) and an output port to handle communication between the
PE and other PEs/external modules. The PE has a data RAM that works as a register
file, a programmable instruction RAM that stores the control word for each instruction,
and an ALU component that reads data from data RAM and performs an operation.

To reduce the PE’s resource usage, we used microcoded control words [Agarwal et al.
1986] to eliminate instruction decoding logic and thus improving size and performance,
similar to the idea of the No-Instruction-Set Computer (NISC) [Reshadi et al. 2005]. The
PE has two types of control words: store and compute. A store control word stores data
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Fig. 5. Nonpipelined PE architecture.

from its own output, another PE, or from an external input. A compute control word
performs a certain computation using data from the data RAM. A detailed discussion
about these two operations appears in Huang et al. [2011]. The number of input ports,
data, and instruction RAM sizes, and ALU operations can each be adjusted to the ODEs
mapped to the PE. Since an ODE can be parsed into basic operations for the ALU, the
general PE can solve different types of ODEs.

Currently, we manually convert floating-point numbers into 32-bit fixed-point num-
bers that can be executed efficiently with the integer ALU and shift operator in the
PE. To obtain a precise conversion, we estimate the value range for each variable using
a floating-point simulation [Kum et al. 2000]. The scale factor of each variable can be
determined by the equation: MAXint32/MAXi, where MAXint32 and MAXi stand for the
maximal value of a 32-bit integer and the maximal simulated value of variable i.

To verify the accuracy of the fixed-point conversion, we tested the Weibel 11 model,
in which the flow and volume change significantly at each generation. We compared
the fixed-point version results with a double-precision floating-point implementation in
Matlab. The maximal relative error among all the variables (from different generations)
is within 0.5%, which shows the fixed-point computation gives nearly identical results
compared to the floating-point implementation.

The worst-case manual fixed-point conversion time for the four models is approxi-
mately 1 hour. The manual conversion could be automated in the future using any one
of several established techniques, such as Kum et al. [2000].

We also invested the possibility of using floating-point components in the FPGA,
and found the floating-point implementation would yield approximately a 3x–8x per-
formance decrease and a 3x–5x size increase. Since the fixed-point computation gives
comparable accuracy compared to the floating-point implementation, we use fixed point
in our current design.

4.2. PE Performance Optimization
The longest register-to-register delay, known as the critical path, determines a PE’s
maximum clock frequency. The critical path in a basic PE is from the data RAM
through the ALU and back to the data RAM. This path can become especially long
when large numbers of PEs are implemented on an FPGA, because block RAM (used
in data RAM) and DSP units (used in ALUs) have fixed locations on the FPGA and
thus a PE in a highly utilized FPGA may have to use distant block RAM and DSP
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Fig. 6. Pipelined PE architecture.

units, resulting in long wire delays. To reduce the critical path, in this work we add
pipeline registers as shown in Figure 6. We add two pipeline registers, Data reg and
Out reg, into the PE datapath. The critical path of the pipelined design is: Data reg ->
ALU -> Out reg, thus eliminating the wire delay between DSP units and block RAM.
Based on our synthesis results, the clock frequency of the pipelined architecture’s clock
frequency increased from 100 MHz (for the nonpipelined version) to 170 MHz for the
pipelined version, for some large designs.

However, pipelining increases the number of control words, requiring more instruc-
tion RAM. The nonpipelined PE can perform a computation and result write-back with
one control word, for example, data RAM[5] ∗data RAM[8] -> data RAM[10]. However,
the pipelined PE needs one control word to write the result into the Out reg, and then
another control word to write the result to data RAM. To reduce the number of required
words, we introduced two new paths, known as forward paths, such that temporary
results can be directly forwarded to the ALU for the next computation rather than
having to first be written back to the data RAM. Our experiments show that the two
forward paths nearly eliminate the need to write temporary values back to data RAM,
such that the pipelined architecture uses only 10% more control words than the non-
pipelined architecture. In terms of resource usage, the pipelined architecture incurs a
LUT penalty of 10% to 20%.

4.3. Custom Network of PEs and Communication
Using multiple PEs can improve performance by solving ODEs in parallel. A simple
parallelization approach, used here for illustration, maps one ODE to one PE, that
is, a one-to-one ODE-to-PE mapping. Due to data dependencies among ODEs, each
PE must communicate with other PEs. Figure 7 shows a 3-generation Weibel lung
model, having 7 ODEs, mapped to a 7-PE network. Note that the communication
Global clock structure of the network has a similar binary tree topology compared to
the 3-generation Weibel lung, because the single ODE of each Weibel lung branch only
communicates with the ODE’s parent and child branches.

For a given set of ODEs mapped to PEs, we create a custom point-to-point connection
structure. All PEs are synchronized with a global clock, and the data transfers are
statically scheduled at compile time. This statically synchronized communication
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Fig. 7. Mapping a 3-generation Weibel lung to a custom network of PEs.

  PE1 PE2
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Fig. 8. Synchronized data transfer between PEs with global clock and point-to-point connection.

scheme eliminates resource-costly handshaking logic. A simple bidirectional data
transfer between two PEs is illustrated in Figure 8. PE1 and PE2 each have its output
connected to the other’s input port. The data exchange between two PEs takes three
clock cycles. For instance, PE1 and PE2 each perform a computation in Cycle 1, then
are idle in Cycle 2 to let the result latch into the out register. In Cycle 3, PE1 and PE2
can read the data produced by each other. The point-to-point communication network
is custom to each physical model (similar to the physical structure). Any pair of PEs
can communicate in parallel, which is more efficient (in terms of size and performance)
than general-purpose communication structures.

Rather than a one-to-one ODE-to-PE mapping, a many-to-one mapping can be con-
sidered, where multiple ODEs execute serially on a single PE. Mapping multiple ODEs
to a single PE reduces performance by reducing parallelism, yet may better utilize the
special locality of a physical model. For example, mapping nearby variables to the same
PE would reduce the communication overhead. A many-to-one mapping also reduces
the required FPGA resources, enabling larger models to fit onto an FPGA. The next
section discusses the exploration of different mappings.
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Fig. 9. PE synthesis and compiler tool overall structure.

Miller et al. [2011] describe how to integrate a PE or a network of PEs into a system
for cyber-physical system testing where the PEs represent a digital mockup of the
physical system.

5. SYNTHESIS AND COMPILATION OF THE CUSTOM NETWORK OF PES
We developed algorithms and tools to automatically synthesize a custom network of
PEs for a given set of ODEs, and to automatically compile these ODEs into the control
words for each PE. The tool’s overall structure is illustrated in Figure 9.

The tool reads in a model consisting primarily of a set of ODEs. The model parser
builds an ODE-dependency graph that describes the data dependencies among the
ODEs. The tool then performs a custom design-space exploration with an automatic
ODE-to-PE mapping algorithm, and generates designs with different sizes and perfor-
mances. Finally, the tool generates PE control words, a custom network of PEs, and
synthesizable VHDL files for FPGA implementation using standard synthesis tools.

5.1. Model Specification and ODE-Dependency Graph
Figure 10(a) shows a sample model specification file for a 2-generation Weibel lung
model. The model specification file includes three sections. The method-based parame-
ters include a solver method (Euler or RK4) and the solver time step in seconds. The sec-
ond section includes model parameters (e.g., resistance and compliance of each branch),
initial values of state variables (e.g., the initial volume and flow of each branch), and
external inputs (e.g., input flow to the lung). The last section contains the ODEs and
other equations that describe the model’s behavior. The tool builds an ODE-dependency
graph according to ODE data dependencies of the model, as in Figure 10(b).

5.2. Automatic Design-Space Exploration and ODE-to-PE Mapping
A complex physical model usually contains thousands of ODEs, so the corresponding
ODE-dependency graph contains thousands of nodes. The FPGA used in this article
is able to accommodate hundreds of PEs, thus the tool needs to map multiple ODEs
to each PE. The mapping of ODEs to PEs determines the communication structure of
the custom network. Figure 11 shows an example of mapping 31 ODEs to 8 PEs. A
good mapping will generally reduce the design size and improve performance. We thus
developed an automatic ODE-to-PE mapping algorithm to search for a good mapping.

Since each ODE can be mapped to any PE and all PEs are functionally equivalent,
the total number of all possible mapping is: mn/m!, where m is the number of PEs
and n is the number of ODEs. An exhaustive search is not feasible for large models
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method: 
rk4 
step: 
0.0001 
parameter: 
R1[1] 402 
L[1] 1846 
..... 
initVal: 
V[1] 2 
…… 
input: 
fin 8000 
ode: 
P2[1] = V[1] * Com[1] 
P2[2] = V[2] * Com[2] 
...... 
F3[1]' = (P2[1] - F1[2] * R1[2] - P2[2] - F3[1] * R1[1]) * L[1] 

Method based parameters 

Model parameters, 
Initial Values, 
External inputs 

(a) model specification (b) ODE-dependency graph 

Fig. 10. A 2-generation Weibel lung model specification and ODE-dependency graph.
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Fig. 11. ODE-to-PE mapping.

with thousands of ODEs. The ODE-to-PE mapping problem can be reduced to balanced
graph partitioning, which is NP-complete [Andreev and Racke 2006]. Hence, we use
an ODE-to-PE mapping algorithm that involves an iterative search heuristic based on
simulated annealing.

5.2.1. Objective and Cost Function. The objective of the mapping algorithm is to minimize
both ODE solving time and design size. Since the network of PEs uses a synchronized
communication scheme, the system performance is mostly determined by the bottleneck
PE, namely the PE requiring the most computation cycles. We denote #cycle as the
number of cycles of the bottleneck PE. The design size is mostly determined by the
total number of connections (abstract connections between PEs, not the physical wires
in the FPGA implementation) in the network, denoted as #connection. To combine
these two metrics, we use a cost function #cycle ∗ #connection, with the objective being
to minimize the cost.

To calculate the cost function, the mapping algorithm needs to calculate the number
of cycles of each PE and find the PE with the highest cycles (#cycle). The number of
cycles of each PE is determined by parsing the ODEs into PE instructions (including
computation and communication instructions). To calculate the total number of
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Fig. 12. Size neighbor generator (B: m/n stands for benefit: #ODE/edge weight).

connections, the mapping algorithm builds a PE-dependency graph according to the
current ODE-to-PE mapping and the ODE-dependency graph. The PE-dependency
graph building process is illustrated in Figure 11. An edge in the PE-dependency
graph shows the physical connections, and edge weights reflect how many edges are
in the original ODE-dependency graph (e.g., PE1 and PE2 have four edges in the
ODE-dependency graph). The total number of connections is then the total number of
edges in the PE-dependency graph (e.g., 7 in Figure 11).

The mapping algorithm iteratively generates a new mapping from the current map-
ping (denoted as a neighbor mapping), calculates the cost of the neighbor mapping,
and decides whether to accept the neighbor mapping. The previously described steps
are called an iteration. To speed up the algorithm, we developed an incremental cost
function that modifies the PE-dependency graph based on the difference between the
current mapping and the new mapping. This idea is similar to the incremental cost
function in the Kernighan-Lin algorithm [Kernighan and Lin 1970]. The incremental
cost function speeds up the original cost function by more than 100x.

5.2.2. Neighbor Mapping Generatio. We found that the mapping algorithm improves the
cost slowly by generating the random neighbors (randomly chooses an ODE, and maps
the ODE to a different PE). We thus developed two neighbor mapping generators (one
for performance, the other for size) to guide the neighbor mapping generation. The
performance neighbor generator chooses a random ODE from the bottleneck PE, and
moves the ODE to a random PE that connects to the ODE in the ODE-dependency
graph. The idea of the performance neighbor is to balance the number of ODEs among
all PEs, thus improving overall performance. Note we also considered a convexity
constraint (the performance neighbor generator should not increase size, and vice
versa) by moving the ODE to a random PE which is connected with the ODE, thus the
performance neighbor may also reduce the number of connections.

The size neighbor generator aims at reducing the total number of connections among
all PEs. A size neighbor example is shown in Figure 12. The size neighbor generator
first chooses a random ODE (2 in the figure), then finds which ODEs are connected to
ODE2 and are resident in other PEs (1, 4, 5 in the figure). The generator then calculates
the benefit of moving each candidate ODE (1, 4, 5) by #ODE/edge weight, and moves
the ODE with the maximal benefit. The generator prefers to move an ODE with smaller
edge weight (defined in the previous section) that has the most chance of reducing a
connection. For instance, move ODE1 from PE1 to PE2 will reduce a connection. The
#ODE stands for the total number of ODEs in the PE where the candidate ODE resides.
The generator prefers to move an ODE from a PE that contains a larger number of
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Objective:  min (#cycle * #connection) 

Input:  PE number, total number of iterations and ODE dependency graph 
Step 1: Generate a random ODE-to-PE mapping and calculate initial cost: CostI. 
Define current cost: CostC = CostI. Define best cost: CostB = CostI. Define 
temperature: T = CostI
Step 2:  Generate a performance or size neighbor by the neighbor mapping generator. 
Step 3: Calculate the neighbor mapping’s cost: CostN. If CostN < CostB, then CostB = 
CostN
Step 4: Define: D = CostN – CostC. If D < 0, accept the neighbor, else use possibility 
exp(-D/T) to accept it.  
Step 5: Decrease T (T=CostI / #iteration) and go back to Step 2 until total number of 
iterations reached.  
Output: best ODE-PE mapping found

Fig. 13. ODE-PE mapping algorithm.

(a) 10K iterations                                                      (b)  150K iterations 

Fig. 14. PE-dependency graphs at different iterations.

ODEs, to balance the number of ODEs in each PE (to improve performance). Thus the
size neighbor generator also considers the convexity constraint.

5.2.3. ODE-to-PE Mapping Algorithm. The ODE-to-PE mapping algorithm is illustrated
in Figure 13. Note the algorithm inputs include the number of PEs and the num-
ber of iterations. Figure 14 shows two PE-dependency graphs at different iterations
for mapping 510 ODEs to 32 PEs. Note that the 150K-iteration mapping contains
fewer connections compared to the 10K-iteration mapping. The algorithm takes about
5–20 minutes to run on a 3.0 GHz Pentium 4 machine, because we chose a large number
of iterations to generate a near-optimal mapping. The ODE-to-PE mapping algorithm’s
runtime is much less than the FPGA synthesis tool runtime, which usually takes more
than 2 hours for large designs. In this work, we run the mapping algorithm multiple
times with different numbers of PEs to generate a design space for each physical model.

To test the quality of the ODE-to-PE mapping algorithm, we compared the automatic
mapping results to manual mappings. For the four physical models in this article, the
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Fig. 15. ODE solving stages.

total number of cycles (performance) of the automatic mapping is usually within 15% of
the manual partition. The only exception is the three-dimensional atrial model, where
the automatic mapping has a 19% overhead. The total number of connections (size)
of the automatic mapping is within 5% of the manual solution for all four models.
We notice the automatic mapping algorithm performs worse for complex communica-
tion structures, such as the three-dimensional cubic atrial cell model. The mapping
algorithm could be further improved for models with a complex connection structure.

5.3. PE Instruction Generation and VHDL Code Generation
5.3.1. PE Instruction Generation. After generating the mapping between ODEs and PEs,

the next task of the tool is to generate PE instructions and VHDL files. Figure 15 shows
ODE solving stages of three PEs. The ODE solving process has three stages: evaluate,
update, and data transfer, as defined in Section 3.2. The evaluate and update processes
can be executed independently within each PE, and they may finish at different clock
cycles. Evaluate and update instructions are generated by parsing the ODEs mapped
to each PE into PE instructions using expression evaluation. All PEs are synchronized
at the point when the slowest PE finishes its update task (PE2 in this example). Extra
“idle” instructions will be added to the PEs that finished earlier.

The tool statically schedules the data transfer between PEs, after a PE has updated
local variables, based on ODE data dependencies. The tool tracks the availability of each
PE for each clock cycle and schedules compute operations to load data from data RAM
into out register, for example, PE1 executes compute data RAM[5] + 0 at cycle 1, PE2
could execute store din[2] -> data RAM[3] at cycle 3 to store the result produced by PE1
(assume PE1’s output is connected to PE2’s input port2). Multiple data transfers could
happen in parallel as long as they do not conflict with each other. The communication
instructions are appended to the update instructions to complete the PE instructions
for one solving step. The number of cycles for each PE is determined by the number of
instructions.

5.3.2. VHDL Code Generation. To generate the VHDL files, we first created a PE compo-
nent pool for different PE versions (discussed in detail in Section 6.1). Each PE version
has a unique triple of number of input ports, instruction RAM size, and data RAM
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size. Each PE also has a generic map for the data and instruction RAM. We developed
a script to generate the VHDL code for the PE pool. The script took about 2 hours to
build, because different PE versions have the same general architecture and only differ
in input ports and instruction RAM/data RAM size. Once created, the PE pool can be
reused by different physical models.

For each PE instance, the PE compiler first chooses a suitable PE version from the PE
pool and then converts the PE instructions into the control words by a PE assembler.
The control words and the model’s initial value/parameters will then be injected into
the target PE through the generic map.

Once each PE instance has been generated, the next step is to connect them based
on the structure of the top-level network. Since we already know the network struc-
ture by the automatic mapping algorithm, the PE compiler will convert the edges (in
the PE-dependency graph) into VHDL wires. The VHDL code generation flow is fully
automated by the PE compiler without the help of any other tools.

6. EXPERIMENTAL RESULTS
This section provides experimental results for automatically synthesizing the four
physical models described in Section 3.3 into custom networks of PEs. We first show
the size and performance of different single PE versions, and then compare our ap-
proach to a high-level synthesis approach. We further compare the performance of our
approach to other general-purpose processor platforms including a multicore PC, an
ARM processor, DSP processors, and a modern GPU, and we provide a detailed case
study with an 11-generation Weibel lung model.

The Weibel 11 (4094 ODEs), Lutchen 4000 (4000 ODEs), and atrial cell 15 (3375
ODEs) models use an RK4 solver with a 0.0001 second step, while the wave 80 × 80
(6400 ODEs) model has a much smaller step (1/44.1K second, audio sample rate) and
thus uses an Euler solver.

Performance numbers are in milliseconds (ms) unless otherwise stated and represent
the time for an implementation to execute 1000ms of simulated time. For example, “300”
means an implementation executed 1000ms of simulated time in just 300 milliseconds
(thus executing faster than real time).

The PE and HLS approaches targeted a Xilinx XC6VLX240T-2 FPGA, having 150,720
LUTs (lookup tables), 768 DSP units (built-in hardcore multipliers), and 416 BRAMs
(built-in 32Kb hardcore block RAMs). We used the Xilinx ISE 12.3 tool [Xilinx ISE
2011] for synthesis. We fully synthesized and implemented each example on the target
FPGA and report the maximum allowable clock frequency as determined by the Xilinx
tools. We note that the work is not limited to a particular FPGA or synthesis tool.

6.1. Size and Frequency of Different Single PE Versions
A PE’s data RAM size and instruction RAM size can be configured according to how
many ODEs are mapped to the PE. A PE’s input mux size is determined by the com-
munication structure. We thus generate different PE versions labeled as: PE(input
no) D(data RAM size) I(inst BRAM no), for example, PE3 D64 I2 means the PE has 3
input ports, a 64-word data RAM, and an instruction RAM with 2 BRAMs.

The number of PE input ports can be 1, 3, 7, or 15 in our current design (powers
of 2 minus 1, where 1 is the reservation for self-output). The data RAM size can be
32, 64, 128, or 1024 words. The 32-, 64-, and 128-word versions are implemented
with LUTs, while the 1024-word version is implemented with block RAM. The LUTs
implementation of large data RAMs (larger than 128 words) is inefficient in terms of
both performance and size. The instruction RAM is implemented with BRAM, because
the number of PE instructions is usually more than 128 in our experiments. The
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Table I. Synthesis Results of Different Single PE Versions

LUTs DSP BRAM freq. (MHz) LUTs DSP BRAM freq. (MHz)

PE3 D32 I1 214 1 1 193 PE1 D64 I1 264 1 1 195
PE3 D64 I1 284 1 1 194 PE3 D64 I1 284 1 1 194
PE3 D128 I1 378 1 1 197 PE7 D64 I1 312 1 1 195
PE3 D1024 I1 184 1 2 193 PE15 D64 I1 376 1 1 198

(a) Different data RAM sizes (b) Different numbers of input ports

instruction RAM contains 1, 2, 3, or 4 BRAMs. We added implementations for 4∗4∗4 =
64 PE versions into our PE pool to adapt to different physical models’ requirements.

We show two sets of PE synthesis results in Table I by altering data RAM size
and number of input ports, respectively. Table I(a) shows PEs with 3 input ports, 1
instruction BRAM, and with different data RAM sizes. We notice that a PE’s number of
LUTs increases rapidly with data RAM size. A PE3 D128 I1 with a 128-word data RAM
uses 70% more LUTs than a PE3 D32 I1 with a 32-word data RAM. PE3 D1024 I1 uses
a BRAM to implement data RAM, thus using the fewest LUTs. Table I(b) shows how
the number of input ports impacts PE size. Note that the number of LUTs increases
slowly from 1 input port to 3 and 7 input ports. The 15-input port PE15 D64 I1 shows
a larger LUTs increase, because of the large input mux.

The eight PE versions have similar maximum clock frequencies of about 195 MHz.
We compared our PEs with a Xilinx MicroBlaze soft-core processor [MicroBlaze 2011].
The default MicroBlaze version consumes 1,445 LUTs, 3 DSP units, and 8 BRAMs, and
has a clock frequency of 123 MHz on the target FPGA. Our PE is thus about 5x smaller
than the MicroBlaze, and has a 60% faster clock speed.

6.2. Network of PEs versus High-Level Synthesis
6.2.1. High-Level Synthesis with Custom Communication Architectur. A High-Level Synthesis

(HLS) tool usually takes C code of a system/function and converts the C code into
synthesizable VHDL code. Modern HLS tools perform extensive algorithm paralleliza-
tion (e.g., loop unrolling, loop interchange) and create heavily pipelined designs. For
comparison purposes, we implemented the four physical models onto an FPGA with a
commercial HLS tool1 with optimization for a custom communication architecture.

Since the four physical models each have a homogenous structure, the corresponding
ODEs of each model have the same format. For instance, the wave model’s ODEs have
the following format: d(v[i][j])/dt = a ∗ (v[i−1][j] + v[i+1][j] + v[i][j−1] + v[i][j+1]) +
b ∗ v[i][j], where i, j represents the position of a node in a two-dimentional space. The
HLS tool generates a custom datapath that efficiently calculates the ODE, noted as
ODE unit. We use a for loop in the C code to capture this homogenous property, and
choose different unrolling factors in the HLS tool to generate designs with different
numbers of ODE units, thus generating designs that trade off size and performance.

We noticed that the HLS tool generates a unified memory with block RAM to store
all the variables of the ODEs. The unified memory becomes a bottleneck for large
designs with multiple ODE units. When using HLS, iteration between writing the
input specification and synthesis is common to improve the implementation. We thus
rewrote the input specification to include a custom communication architecture that
used registers to store the data, referred to as data registers. All ODE units can write
to corresponding data registers concurrently. Since multiple ODEs are mapped to
each ODE unit using resource sharing, each ODE unit needs to access multiple data

1The tool name is not included due to the licensing agreement. The tool is commercially available and used by
dozens of companies and universities, including the U.S. Dept. of Defense. Reproduction of our experiments
using other high-level synthesis tools is highly encouraged.
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Table II. Synthesis Results and Performance Comparisons between Network of PEs and High-Level Synthesis
(∗: implemented on a larger Virtex6 550T-2 FPGA)

Weibel 11 LUTs DSP BRAM Euiqv. LUTs Cycle/step freq.(Mhz) perf(ms) imp. Time

HLS(10) 57,985 160 80 126,785 3,856 105 367 116
HLS(40) 104,190 640 80 292,990 964 112 86 356
PE(64) 13,421 64 320 144,621 3,900 181 215 69
PE(396) 89,724 396 396 331,284 780 178 44 277
Lutchen 4000

HLS(20) 48,150 300 60 144,750 2,760 91 303 160
∗HLS(80) 187,555 480 80 336,355 690 68 101 570
PE(63) 13,008 63 315 142,158 3,247 182 178 70
PE(397) 89,761 397 397 331,931 549 179 31 225
Wave 80∗80

HLS(20) 92,743 180 80 166,543 1,280 102 558 142
∗HLS(80) 167,472 480 160 345,072 320 84 170 438
PE(63) 13,780 63 189 97,570 1,402 166 372 62
PE(380) 93,958 380 380 325,758 269 175 68 260
Atrial cell 15

HLS(20) 36,881 100 180 126,681 8,250 85 971 216
∗HLS(80) 133,558 400 160 291,158 2,025 104 195 402
PE(63) 29,696 63 315 158,846 6,225 140 445 80
PE(219) 87,452 309 309 275,942 1,320 145 91 272

registers. Input muxes are needed for each ODE unit. The custom communication
architecture consumes extra FPGA resources for the data registers and input muxes,
but avoids the block RAM bottleneck, thus improves performance.

6.2.2. Performance and Size Comparison. Table II shows synthesis results of the HLS
and the network of PEs on the target FPGA. Each physical model has two networks
of PEs’ implementations and two HLS implementations obtained by using different
numbers of PEs or ODE units, representing small and large designs. For instance,
HLS(10) means that HLS design contains 10 ODE units. The FPGA resource usage
of each implementation is shown. To ease comparisons by use of a single number,
we also define an equivalent LUTs term assuming BRAM and DSP components are
both implemented with LUTs. By implementing equivalent DSP multiplier and BRAM
components using LUTs, we determined that a DSP unit is equivalent to 250 LUTs,
while a BRAM unit is equivalent to 360 LUTs. The table also shows the clock cycles per
(solver) step, maximum clock frequency, performance, and total implementation time.

The network of PEs and HLS yield comparable clock cycles per step for their designs.
However, the network of PEs’ clock frequency is on average 1.8x faster than HLS. In
terms of FPGA resource usage, the networks of PEs use on average 0.5x LUTs, 0.57x
DSP units, and 3.5x BRAMs compared to their counterpart HLS designs. The networks
of PEs use more BRAMs due to PE instructions and data storage. Figure 16 shows the
average size (in equivalent LUTs) and performance of the four models using HLS
and networks of PEs. Note that for comparably sized implementations, our approach
achieves 2.1x performance improvement over HLS.

The custom communication architecture in HLS consumes more than 70% of total
LUTs for small designs, and around 40% for large designs. Our approach provides a
more resource-efficient communication architecture by extensive ODE-to-PE mapping
exploration for reducing the total number of connections among PEs.

We compared the total implementation time of the two approaches. The network
of PEs’ tool time includes: the PE compiler (10∼20 min), Xilinx ISE (1∼3 hour); the
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Fig. 16. Size and performance comparison between high-level synthesis and the network of PEs.

Table III. Synthesis Results and Performance Comparisons between the Network of PEs, HLS,
and Manual Design for the Weibel 11 Model on the Target FPGA

Weibel 11 LUTs DSP BRAM Equiv. LUTs Cycle/step freq.(Mhz) perf(ms) imp. time (min)

HLS(40) 104,190 640 80 292,990 964 112 86 356
Manual design 78,597 350 100 202,097 820 192 43 2 Days
PE(396) 89,724 396 396 331,284 780 178 44 277

HLS’s tool time includes: HLS tool (5∼25 min), Xilinx ISE (1∼5 hour), and manual
communication architecture coding (1∼3 hour). Our approach uses on average 50%
less time than HLS.

6.2.3. Compare Network of PEs to a Hand-Tuned Implementation. To further test the qual-
ity of our approach, we implemented a hand-tuned version of the Weibel 11 model.
We manually designed and optimized the ODE datapath for the Weibel lung model’s
ODE. We also manually optimized the communication architecture between the ODE
datapath and the data registers. To reduce the size of the communication architecture,
the input mux may be shared by multiple input ports using time multiplex. To reduce
the size of the shared input mux, we also utilize the spatial locality of the ODEs by
manually mapping nearby ODEs to an ODE datapath.

Table III shows the synthesis results. The manual optimized design uses around
10% fewer LUTs, DSP, and 4x fewer BRAMs compared to the network of PEs. In terms
of equivalent LUTs, the manual design is about 40% smaller due to the large BRAM
reduction. The clock frequency and performance of the manual design is comparable
to the network of PEs. Compared to the HLS approach, the manual design reduces the
size by 33%, and increases the performance by 100% due to a fully customized ODE
datapath and communication architecture.

Although our approach used more FPGA resources compared to the manual design,
the design flow of our approach is fully automated. The manual design took about
16 hours to design and implement. Note the ALU component in the PE can handle
any type of ODE, while the manual design used a customized ODE datapath that can
only calculate one type of ODE (Weibel lung ODE in the design). Thus the PE is more
readily reusable, and can also be instrumented for future debug and monitor purposes.

6.3. Network of PEs vs. General-Purpose Processors and a GPU
6.3.1. Configuration of Each Approach. We compare the network of PEs with other modern

general-purpose processor approaches. These approaches include a modern Intel I7
processor based on the X86-64 instruction set [Intel 64 2011], a TI ARM processor based
on a RISC (reduced instruction set computer) instruction set [ARM RISC 2001], a TI
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digital signal processor with an optimized architecture for the fast operational needs
of digital signal processing, and an NVIDIA graphics processor unit with specialized
circuits designed to accelerate video processing. The GPU is programmed with CUDA
C [CUDA 2011] (C with NVIDIA extensions and restrictions). The configuration of each
approach is listed as follows.

(1) PC: C code on a 3.06 GHz Intel I7-950 4-core processor, compiled using Visual C++
2010 with –O3 flag.

(2) ARM: C code on a 1 GHz TI Cortex A9 4-core embedded processor, compiled using
TMS470 compiler with –O3 flag.

(3) DSP: C code on a 700 MHz TI C6472 6-core digital signal processor, compiled using
TI C6000 compiler with –O3 flag.

(4) GPU: CUDA C code on a 763 MHz NVIDIA GTX460 Fermi GPU with 336 CUDA
cores, compiled using nvcc with –O3 flag.

(5) PE: A network with 400 PEs on the target Xilinx Virtex6 240T-2 FPGA.

We used a fixed-point C implementation for the four physical models for a fair com-
parison across all the general processor platforms. Although the general-purpose plat-
forms all support floating point, the fixed-point implementation on FPGA gives nearly
identical results. The C code is compiled with the –O3 flag intended to optimize perfor-
mance. The ARM and DSP results are simulated by TI’s CCS cycle-accurate simulator
[TI CCS 2011]. For the multicore general-purpose processors, rather than conducting
time-consuming multithreaded implementation, we instead measured single-threaded
performance first and then calculated an optimistic performance bound for multicores
simply by dividing the single-threaded performance by the number of cores; in reality,
communication overhead will degrade multicore performance.

We also implemented the ODE solvers for the physical models on an Nvidia GTX460
GPU. The target GPU contains 336 cores in total, and cores are distributed onto differ-
ent GPU blocks. Since each model only contains a few types of ODEs due to homogenous
physical structure, we developed ODE kernel functions to calculate each type of ODEs.
Different GPU threads are executing the ODE kernel functions against different model
variables. To obtain the best performance, we tuned GPU implementation parameters,
such as the number of blocks and the number of threads within each block. We also
utilized the physical models’ spatial locality and load the variables into the shared
memory within each block. Utilizing the shared memory will reduce the expensive
global memory access, which is commonly used in GPU ODE solving optimization
[Ackermann et al. 2009; Hong and Kim 2009].

Unfortunately, communications are necessary between blocks, because a physical
model is often globally connected. The only method to do inter-block communication/
synchronization is through the GPU’s global memory [CUDA Programming Guide
2011]. After each step, all the model variables need to be written back to the global
memory. Thus for each step, a new function kernel invocation is necessary.

6.3.2. Performance Comparison. The performance and throughput results for different
platforms are shown in Figure 17. To give slacks for future debugging and monitoring
purposes, we define a performance constraint as 500ms or the pure emulation speed
must be at least 2x faster than real time. The single-threaded PC or PC(1) just meets
the performance constraint of the Lutchen 4000 model, while running slower than the
performance constraint for other three models. The single-threaded ARM and DSP run
on average 8.4x and 6x slower than the single-threaded PC, respectively, and both fail
to meet the performance constraint for all four models. The GPU runs on average 3.4x
faster than PC(1) due to parallel execution on multiple cores. The GPU runs on average
2.1x faster than the performance constraint.
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Fig. 17. Performance/throughput (GOPS) comparisons between several general-purpose processors, a GPU,
and the network of PEs. The numbers in the parentheses indicate the number of threads. Note that thee
ARM(1) and the DSP(1) numbers extend off the chart top.

The network of PEs runs on average 10x faster than the performance constraint
and 15x faster than the single-threaded PC for the four models. Compared to the
performance upper bound of multicore processors, our approach is still 3.6x faster than
the 4-core PC, 30x faster than the 4-core ARM, and 14x faster than the 6-core DSP.
Although the optimal PC(4) runs every model faster than the performance constraint,
the implementation of a multithreaded ODE solver is nontrivial. For reference, we also
reported the throughput of each platform in terms of giga-operations per second. The
network of PEs has an average 34 GOPS, which is approximately 4x faster than GPU
and PC(4).

Comparing to the GPU, the network of PEs is on average 4.4x faster. Although the
GPU has a higher clock frequency (763 MHz), the general-purpose memory architecture
in the GPU may not match the physical model’s requirements. An ODE kernel function
invocation is necessary at each step. The overhead of frequent ODE kernel invocation
consumed 40%–70% of total GPU execution time.

We also compared our GPU results with other GPU ODE solvers for physical systems
[Ackermann et al. 2009; Amorim et al. 2010; Mosegaard and Sørensen 2005]. Those
papers use much larger physical models of around one million ODEs, and the execution
speed is usually more than 100x slower than real time. The larger model executes each
time step longer, thus hiding the penalty of the frequent kernel invocation, and gains
larger speedups over CPU than our results. However, this article emphasizes real-
time emulation. We note the GPU results may be further optimized, and we strongly
encourage other researchers to strive to create faster implementations of our physical
models on GPUs.

6.3.3. Total Implementation Time. To give a fair comparison to different approaches, we
spent comparable amount of time for each approach. The C implementation took around
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Fig. 18. Normalized speedup per dollar of different approaches, using optimistic (no communication over-
head) estimates for all multicore devices except the PE approach.

2–3 hours to optimize the code for each model. The GPU approach took about 3–4 hours
to optimize each model. The optimization includes the GPU parameter tuning (number
of blocks, number of threads per block), choosing different mapping of the ODEs to the
GPU blocks, and utilizing shared memory in each block. Our approach took 20 minutes
to generate a custom network, and took another 2–3 hours to synthesize. Although all
three approaches took comparable amount of time to implement, the network of PEs’
design flow is fully automated.

6.3.4. Cost Comparison. Although comparing costs of the various compute platforms
is difficult due to diverse pricing policies and rapidly changing costs, we nevertheless
include some approximate cost comparisons, in particular to acknowledge that our
FPGA-based approach is currently costlier, though within reason. We consider minimal
required components for each approach; as such components would contain a complete
system that could be used for purposes of physical modeling in scenarios suggested
in this article. The approximate cost (as of January 2012, obtained via Web-based
distributor pricing) of each board is as follows:

(1) CPU (I7-950 + Intel X58 board): $480
(2) ARM (Cortex 9A 4-core board): $300
(3) DSP (TI C6472 board): $350
(4) GPU (GTX460 + I3-540 + H55 board): $380
(5) FPGA (Xilinx Virtex6 240T-2 board): $1800

To compare these costs fairly, we consider the term: (speedup over real time)/(cost),
written as speedup/dollar in Figure 18. One can see that, although the FPGA board
itself is currently more expensive, the speedup obtained by that board is greater, lead-
ing to speedup/dollar that is competitive with the GPU and PC(4). However, we note
again that the general-purpose processor and the GPU speedups are optimistic; com-
munication overheads will degrade these speedups. In other words, five GTX460 GPUs
will probably perform worse than our PE solution due to the communication overhead,
though the two approaches have similar total cost. Furthermore, an FPGA may better
support custom interfaces to the real physical world [Miller et al. 2011]. Also, FPGA
cost trends may continue to improve the FPGA speedup/dollar relative to the other
approaches, although the FPGA trend versus PC and GPU trends is hard to predict.

6.4. Case Study
This section highlights a case study of synthesizing an 11-generation Weibel lung model
to a custom network of PEs. We also compare the computation accuracy of the simula-
tion results between the network of PEs and a desktop floating-point implementation.
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(a) PE-dependency graph                                   (b) Placement and routing results 

Fig. 19. Weibel 11 200-PE network on a Xilinx Virtex6 240T-2 FPGA.

The Weibel 11 model contains 2047 branches and each branch is captured with two
ODEs (volume and flow), thus Weibel 11 contains 4094 ODEs. We input the specification
file of Weibel 11 to the PE compiler and specify to use 200 PEs in the design (around
20 ODEs per PE). The PE compiler performed automatic ODE-to-PE mapping and
generated the PE-dependency graph in Figure 19(a). Note that the custom network
of PEs has a similar tree structure compared to the physical structure of the Weibel
lung. This tree-like communication structure is quite scalable on FPGAs without wire
congestion problems.

We implemented the VHDL code generated by the PE compiler onto the target FPGA.
The final placement and routing results are shown in Figure 19(b), with the darker
regions (blue if viewed in color) representing the regions used for implementation. Note
the circuits of the network of PEs are almost evenly distributed on the target FPGA,
representing the local connectivity of the physical model. The 200 PE implementation
of Weibel 11 uses 57,586 of the available 150,720 LUTs (38%), 372 of the 416 BRAMs
(89%), and 186 of the 768 DSPs (24%) of the target FPGA. The average size of each PE
is 310 LUTs, 1 DSP, and 2 BRAMs. The maximal clock frequency is 164 MHz. Each PE
contains 1590 instructions for each step, thus the network simulates 1 second of real
time in 97ms, or 10.3x faster than real time.

Earlier we stated that all models used fixed-point computation rather than floating
point. Fast floating-point computation is readily available on some general-purpose
processors like PCs, but less so on FPGAs on some other general-purpose processors.
To validate that the conversion to fixed point did not hurt the model accuracy, we
compared the simulation results of the Weibel 11 lung model between our approach and
a desktop PC floating-point implementation. The volumes of the first branch under a
square wave and a sine wave pressure are illustrated in Figure 20. The total simulated
time is 10 seconds. The fixed-point PE implementation has almost identical results
compared to the desktop implementation. From the figures on the right, we notice
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Fig. 20. First branch volume.

that the network of PEs’ results has errors within 0.2% compared to the desktop
implementation.

7. CONCLUSIONS
We described a general Processing Element (PE) for efficient solving of physical model
ordinary differential equations, introduced a custom network of general PEs for paral-
lelized solution of large models, and described a fully automated approach for imple-
menting physical model ODEs on modern FPGAs. Comparing to a commercial high-
level synthesis tool on several models, the networks of PEs were on average 2.1x
faster with 2x fewer LUTs, 2x fewer DSPs, but 3.5x more BRAMs. Our approach was
also 15x faster than a single-core Intel I7 processor and 4.4x faster than an NVIDIA
GTX460 GPU. The speedups are obtained due to the excellent match between the local
computation/communication structure of most physical models and the local compu-
tation/communication capabilities of FPGAs, avoiding the common routing or memory
bottlenecks for many applications mapped to FPGAs. These speedups are from the
first version of our physical model to FPGA approach; we anticipate that continued
improvements will improve speedups versus the other more mature approaches. Cur-
rently, the network of PEs can handle around 5000 ODEs on the target FPGA, limited
by the block RAM resource. Our future work includes reducing PE instruction and
data storage overhead, such that our approach can handle larger models. To further
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accelerate PE execution speed, a custom PE that specifically solves certain ODEs can
be investigated. We also plan to add runtime control and debug capabilities into the
network of PEs, so we can integrate the FPGA physical models into the cyber-physical
system testing framework described in Miller et al. [2011].
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