
IET Cyber-Physical Systems: Theory & Applications

Research Article

Adaptive embedded control of cyber-physical
systems using reinforcement learning

ISSN 2398-3396
Received on 18th March 2017
Accepted on 28th June 2017
doi: 10.1049/iet-cps.2017.0048
www.ietdl.org

Hamid Mirzaei Buini1 , Steffen Peter1, Tony Givargis1

1Center for Embedded and Cyber-Physical Systems, University of California, Irvine, USA
 E-mail: mirzaeib@uci.edu

Abstract: Embedded control parameters of cyber-physical systems (CPS), such as sampling rate, are typically invariant and
designed with a worst case scenario in mind. In an over-engineered system, control parameters are assigned values that satisfy
system-wide performance requirements at the expense of excessive energy and resource overheads. Dynamic and adaptive
control parameters can reduce the overhead but are complex and require in-depth knowledge of the CPS and its operating
environment – which typically is unavailable during design time. The authors investigate the application of reinforcement
learning (RL) to dynamically adapt high-level system parameters, at run time, as a function of the system state. RL is an
alternative approach to the classical control theory for CPSs that can learn and adapt control properties without the need of an
in-depth controller model. Specifically, we show that RL can modulate sampling times to save processing power without
compromising control quality. We apply a novel statistical cloud-based evaluation framework to study the validity of our
approach for the cart-pole balancing control problem as well as the well-known mountain car problem. The results show an
improved real-world power efficiency of up to 20% compared with an optimal system with fixed controller settings.

 Nomenclature
x cart position
θ pole angle
l pole length
mc cart mass
mp pole mass
T kinematic energy
U potential energy
k1 cart viscous friction coefficient
k2 pole angular viscous friction coefficient
f applied force to the cart
tr processing time
hi ith sampling time
pr processing power in run mode
ps processing power in idle mode
N total number of sampling times (steps) before the battery

energy ends
T total time before the battery energy ends
Eproc total processing power

1 Introduction
In a cyber-physical system (CPS), most generally, a physical
system is controlled by an embedded control system (ECS). The
ECS is the cyber part of the CPS. The ECS contains the control
programme that periodically processes sensor inputs and generates
actuator outputs to achieve the stability, quality and performance
goals of the CPS. The performance of the ECS is determined not
only by hardware decisions, such as the applied computation
platform, but also by software-defined decisions such as sampling
rate and resource allocation.

Most of today's embedded control design approaches assume
the ECS parameters to be fixed quantities, which are set at design
time. Using classical control theory, the system parameters are set
to work in the most challenging (worst case) scenario, for which
the designer validates the stability of the system. Such over-
engineering results in resource usage inefficiency, for example
when the sampling rate designed for temporary high-bandwidth
disturbances or non-linear dynamics exceeds the required value for
the current system state.

In this paper, we investigate the feasibility and the effect of
online adaptation of ECS parameters to improve the resource
utilisation and energy consumption of the ECS and the entire CPS.
Adaptive parameters have already been applied in isolated cyber
systems, for instance to dynamically tune the voltage and
frequency of a system [1]. However, the approaches do not
consider the effect of the changes on the physical part of the CPS.
Different sampling rates and computation settings influence the
stability and correctness of the CPS, as well as its overall power
consumption, with non-trivial trade-offs [2].

Therefore one of the main challenges of adaptive ECSs (A-
ECSs) is to model and understand the effects of parameter tuning
of the ECS on the physical system dynamics and control
performance. Existing approaches [3, 4] rely on classical control
theory and require complex application-specific models. To reduce
the modelling complexity, the work in our paper relies on
reinforcement learning (RL). In RL methods, the prior knowledge
about the system dynamics is not required because RL can learn
the optimal control policies just by experiencing the environment
and observing the reward signal. Therefore, RL is a promising
candidate to control time-varying and non-linear systems with
uncertainties in the model or system states. RL has already been
successfully demonstrated to control real-world physical systems,
such as autonomous transportation [5], smart grids [6] and robotics
[7], however, without considering the effects of the ECS
parameters.

In our work, we investigate if the benefits of RL are applicable
not only to learn properties of the control part of the system but
also to adapt attributes of the ECS at run time to improve usage of
system resources. Specifically, we present the A-ECS framework
that utilises RL to control the sampling time depending on the
system state, i.e. at each sampling time the controller determines
the next sampling time. Using A-ECS, we show that processing
time and consumed energy can be reduced by 20% for the classical
cart-pole example, compared to an optimal implementation with
fixed controller settings. At the same time, A-ECS improves the
control quality in the presence of model uncertainties, compared to
fixed controllers and event-triggered controllers (ETC). Our results
are obtained with a novel cloud-based co-simulation framework.
Theoretical and experimental results for two benchmark
applications indicate the practical suitability of RL to control
online parameters of ECSs as part of CPSs.

IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

1

This paper is structured as follows: We review related work in
Section 2 and introduce RL in Section 3. In Section 4, we present
our framework for the online adaptation of ECS properties.
Sections 5 and 6 present experimental setups and our results,
before we conclude the paper.

2 Related work
The impact of design decisions of the ECS to the overall CPS
system performance has been discussed in a range of works [2, 4,
8]. For instance, the authors in [2, 8] applied holistic cyber-
physical design-space exploration to show the existence of optimal
design points regarding control quality and power consumption.
Specifically, Buini et al. [2] showed that long sampling rates might
increase the power consumption of the physical part of the system,
while short sampling rates increase the average power consumption
of the ECS. However, the works do not consider multi-mode
system or time-variance yet.

Time-varying control has been discussed directly [3, 4] or in
form of schedule planning [9, 10]. For instance, the optimal
sampling time assignment in feedback controllers was studied in
[4]. The result is that online sampling period assignment can
deliver significantly better control performance than the state of the
art, static period assignment. However, computing the optimal rate
either requires complex online computations or large look-up tables
which in turn reduces the power efficiency of the system. Sala [3]
realised time-varying sampling periods and delayed actuation by
time-varying observers and Kalman-filter-based state-feedback
controllers. While the approach demonstrates the feasibility of
variable sampling periods, the implementation requires complex
application-specific control knowledge to be feasible.

The works in [9, 10] extended the idea to develop an optimal
scheduling strategy for multiple control tasks on a shared
computation platform that uses feedback from the physical system
to optimise the control quality. While [9] still requires a complex
application-specific online optimisation strategy, the work in [10]
added a dedicated feedback scheduler to control the computation
resources. On a higher system level, multi-rate control and time-
varying sampling were investigated in [11, 12]. However, the aim
of the work in [11] is not to improve the efficiency of the ECS, but
more generally to cope with variable sampling times as they occur
in distributed and wireless sensor systems. The motivation in these
works is to cope with timing uncertainty of sampled values, while
our work aims to add time variance in order to improve
computation performance without degradation the control quality
of the CPS.

Non-uniform sampling time in digital-only control is studied in
[13] and the proposed method is applied for tracking control of a
linear actuator. Khan [13] applies non-uniform sampling time for a
lower average sampling rate to achieve a lower average processing
time. The proposed method is based on an adaptive change of
digital controller coefficients as the sampling time changes, while a
number or simplifying assumptions have been made such as
linearity and time-invariance of the physical system dynamics.

In [14], different non-uniform sampling schemes, such as
variable sampling period, non-synchronous sampling and multi-
rate sampling are discussed for heterogeneous sensor systems. The
solution, however, relies on linear dynamics in the physical system,
which is not applicable to many CPSs.

In [15], authors have shown that optimal adaptive control
algorithms can be developed using RL. The authors also have used
practical examples that RL-based controller can achieve desirable
results in real time. While our work does not aim to optimise the

control quality as shown in [15], we apply the RL technique to
control the properties of the ECS.

Event-triggered control and its variants also can realise non-
uniform sampling in control systems [16]. However, in event-
triggered control, a number of restricting assumptions have to be
made such as explicit modelling of the physical system and
existence of the Lyapunov control function. We have used an
event-triggered method as baseline solution in one of the case
studies.

3 Reinforcement learning
In this section, we briefly review RL and introduce the notations
used in the rest of paper. In Fig. 1, the agent–environment model of
RL is shown. The ‘agent’ interacts with the ‘environment’ by
applying ‘actions’ that influence the environment state at the future
time steps and observes the state and ‘reward’ in the next time step
resulting from the action taken. The ‘return’ is defined as sum of
all the rewards from the next steps to the end of current ‘episode’:

Gt = ∑
i = t + 1

T
ri (1)

where Gt is the return at time t, ri are future rewards and T is total
number of steps in the episode. An ‘episode’ is defined as a
sequence of agent–environment interactions. In the last step of an
episode the control task is ‘finished.’ Episode termination is
defined specifically for the control task of the application.

For example, in the cart-pole balancing task that we discuss in
more detail in Section 5, the agent is the controller, the
environment is the cart-pole physical system, the action is the force
command applied on the cart, and the reward can be defined as r = 
1 as long as the pole is nearly in upright position and a large
negative number when the pols falls. The system states are cart
position, cart speed, pole angle and pole angular speed. The agent
task is to maximise the expected return Gt, which is equivalent to
preventing pole from falling for the longest possible time duration.

In RL, a control policy is defined as a mapping of the system
state to the actions:

a = π(s) (2)

where a is the action, s is the state and π is the policy. An optimal
policy is one that maximises the expected return for all the states,
i.e.:

vπ ∗(s) >= vπ(s), forall s, π (3)

where v is the expected return (value) function. Equation (3) means
that the expected return under optimal policy π ∗ is equal or greater
than any other policy for all the system states.

Another important concept in RL is the action-value function,
Qπ(s, a) defined as the expected return (value) if action a is taken at
state s under policy π. This function is related to the optimal value
function introduced in (3) by the following equation:

vπ ∗(s) = max
a

Q
π∗(s, a) (4)

To develop algorithms to find the optimal policy, π ∗, the
environment dynamics need to be modelled. Contrary to most of
the control design methods, many RL algorithms do not require the
models to be known beforehand. The elimination of the need of
modelling the system under control is a major strength of RL. The
main assumption about the environment is that it has the Markov
property. A system has the Markov property if at a certain time
instant, t, the system history can be captured in a set of state
variables. By the Markov property assumption, the RL problem
can be expressed as Markov decision process (MDP). The MDP
problem can be modelled with the following conditional property:

Fig. 1  Agent–environment interaction model in RL

2 IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

p{s(t + 1), r(t + 1) | system history up to time t}
= p{s(t + 1), r(t + 1) |s(t), a(t)}, (5)

which means that the reward and the next state only depend on the
current state and action. Markov property holds for many of CPS
application domains and therefore MDP and RL can be applied as
the control algorithm.

Q-learning [17] is an important example of RL solution
methods and it is used in this paper as the optimal policy learning
method. The Q-learning control algorithm is shown in Algorithm 1
(see. Fig. 2). In Q-learning, to find the optimal policy, we start
from an arbitrary initial action-value function Q0 and update it at
each step of MDP by observing the reward gained by the taken
action. Therefore, the optimal policy can be learned by the agent
just by interacting with the environment. At each learning
algorithm step, the greedy policy πQ

∗ corresponding to learned
action-value Q function can be defined as

πQ
∗ (s) = arg max

a
Q(s, a) (6)

As the learning algorithm proceeds, the learned Q(s, a) function
converges to the optimal Q ∗ (s, a) and therefore the greedy policy
converges to optimal policy π ∗ defined in (3). However, to explore
the action-state space for the optimal solution, an exploratory
policy should be used. One example of such policies is ϵ-greedy
policy defined as

πϵ, Q(s) =
f ai, i ∈ {1, …, Na} with probability ϵ/Na

πQ
∗ (s), with probability 1 − ϵ

(7)

where Na is the number of available actions. Equation (7) means
that a random action is picked instead of the greedy action with
small probability ϵ in ϵ-greedy policy. In CPS applications, we
choose ϵ depending on the uncertainty level in the application
domain. For example, in our case study, a very small value is
chosen for ε since the system is deterministic.

In Q-learning (Algorithm 1, Fig. 2), the agent starts from the
initial state, takes action using ϵ-policy and observes the reward.
The incremental optimal policy learning is done in line 7. α is the
step size parameter used to update current action-value function
towards greedy target value at each iteration.

3.1 Linear approximation of continuous value functions

The Q-learning algorithm described in Algorithm 1 (see Fig. 2) is
applicable to a discrete state space where the action-value function
can be defined in a tabular representation. However, in most CPS
applications, the state space is continuous and cannot be expressed
by a finite number of states. To be able to use methods mentioned
in previous subsection, one approach is to approximate the
continuous space with a linear combination of feature functions of
the state variable. Coefficients of the mentioned linear combination
can be expressed as the parameter vector:

θ = (θ1 … θNf)
⊺ . (8)

In this case, the action-value function can be expressed as

Q(s, a) = θa
⊺ f (s) = θa

⊺ f 1(s) … f Nf
(s) ⊺

a ∈ 𝒜 (9)

where f i(s) are the feature functions of the continuous state space,
Nf is the number of functions and 𝒜 is the finite action set. Here
we assume that only the state variables are continuous and the
action space is still discrete and finite.

The objective of the learning algorithm is to estimate the
parameter vector θ. The gradient-descent method can be used for
this purpose. Assuming that f i are binary functions, the Q-learning
for linear approximate value function can be described as shown in
Algorithm 2 (see Fig. 3).

An example of binary features is tile coding [18] where each
dimension of the continuous state space is divided into a number of
disjoint intervals. For example, if the state space has d dimensions
and each dimension is divided into k intervals, the whole space is
divided into dk hyper-cubes (tiles). Each tile i defines a feature as

f i(s) = 1 s resides in tile i
0 otherwise (10)

Algorithm 2 (Fig. 3) with tile coding function approximation
requires low computational overhead and can be readily
implemented in an embedded controller because we update the
parameters towards the greedy value only for the activated features
(lines 8 and 10 of Algorithm 2, Fig. 3).

4 A-ECS based on RL
In this section, first, we explain our proposed A-ECS framework to
extend the adaptive control concept to change embedded system
parameters (e.g. sampling time or voltage) in real time based on RL
methods. We apply the term adaptive not only for the controller but
also in a broader sense, that is changing ECS system parameters,
such as sampling time or memory allocation, based on the online
system state. We also introduce the specific variable sampling time
ECS (VS-ECS) as an example of A-ECSs where the controller
sampling time is changed in real time to realise more efficient
embedded control in CPS applications.

In the second part of this section, we discuss our cloud-based
evaluation framework as an extension to facilitate simulation-based
design and evaluation of A-ECS. Further, we explain the steps to
apply our methods on a generic CPS application.

Fig. 2  Algorithm 1: Q-learning control

Fig. 3  Algorithm 2: Q-learning control for linear approximated value
function and binary features

IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

3

4.1 A-ECS RL environment and actions

The A-ECS can be realised by the following two extensions to the
conventional RL-based control algorithm:

• Since RL does not require prior assumptions about the
environment and the available action set, RL can be used on a
broader definition of an environment that includes the physical
system along with elements of the embedded controllers.

• We can extend the action set to include actions that change ECS
parameters such as sampling time and memory allocation in real
time.

Once the extended RL control problem is solved, the optimal
policy will include the ECS parameter real-time adaptation and
physical system control commands at the same time. This idea is
outlined in Fig. 4 where the environment/agent boundary is
crossing the ECS so that system parameters of ECS are included in
the environment.

To realise the explained A-ECS, we augment the action vector
by parameter change actions. Formally, we can represent RL action
vector as

a = (ap
⊺ ac

⊺)⊺ (11)

where ap is a vector containing the actions that influence the
physical system such as force applied to cart in cart-pole balancing
task and ac is the vector of actions that change the ECS parameters,
such as sampling time. The remaining RL elements correspond to
conventional RL approaches, as discussed in Section 3. Therefore,
we can define a reward so that the agent optimise the objectives of
CPS system using conventional RL algorithms. Hence, the reward
calculation based on the system state and the online learning
algorithm can be integrated in the ECS.

Now, we can describe VS-ECS as an example of A-ECS
described above. In VS-ECS, the sampling time is changed in a
fine grained manner, i.e. in each sample time the controller decides
about the very next sampling time. The controller can choose from
a limited number of available sampling times. Using a variable
sampling time scheme, we expect to reduce processing time and

system power by decreasing the sampling rate whenever fast
sampling is not required to stabilise the system. There is a trade-off
in selecting number of available sampling times. If this number
increased we have more flexibility and possibly better
performance. On the other hand, larger number of selections
degrade the performance of the learning algorithm due to the
optimisation problem that needs to be solved in each time step
which scales exponentially with the number of possible actions.

For the VS-ECS, the only controller parameter is sampling time
h. Therefore, the action vector defined in (11) can be rewritten as

a = (ap
⊺ h)⊺ (12)

In Algorithm 3 (see Fig. 5), the RL algorithm for VS-ECS based on
RL and Q-learning is described.

4.2 Cloud-based evaluation framework

While A-ECS can be used to develop algorithms to control the
physical system and change ECS parameters online with no prior
modelling of the system, model-based simulations help to learn
preferable parameters and policies, and test identified settings
before deployment. Furthermore, with efficient simulation models
we can speed up the learning process.

To improve the performance of those simulations, we propose a
parallel cloud-based evaluation process using a simulation model
of the physical system, the ECS and the RL algorithm. The
approach helps to find a superior policy by running multiple
instances of the simulation and picking the learned parameters of
the instance with maximum performance. In all discussed cases,
the RL-based ECS can apply the learned parameters to change ECS
parameters online.

Our simulation approach is shown in Fig. 6. While the Q-
learning algorithm is an iterative and therefore a sequential
algorithm inherently, we still can leverage recent cloud-based
parallel platforms to run multiple instances of the simulation model
for statistical evaluation of overall CPS performance. To realise
this requirement, we require the physical model, ECS and Q-
learning algorithm expressed as ordinary differential equations
(ODEs). ODEs can be efficiently solved utilising C++ and the
Boost odeint library [19] to create a native executable binary file
for the simulation. We can launch multiple instances to run the
simulation with different random seeds. Then we can run a
‘reduce’ script that aggregates simulation results of multiple
instances, i.e. training curves (RL return versus training step
number) and episode trajectories. The reduce script also generates
evaluation statistical results. For example, we can pick the learned
parameters of the instance that achieves the maximum
performance. Fig. 6 shows the flow of the evaluation framework.
In this figure, some examples are given for each block inside the
parenthesis.

Although the described evaluation framework is not strictly
‘model free’, for many complex systems it is a considerably easier
task to build simulation models instead of explicit models needed
in conventional control design methods. Even if we can develop
explicit or the analytical models of challenging systems (e.g. non-
linear, hybrid, time-varying etc.), control algorithm design is not
trivial using conventional methods.

4.3 A-ECS development workflow

To summarise this section, we provide a list of required steps to
apply our framework for a CPS. The steps are:

1. Identify the RL elements in the CPS, i.e. environment and
actions. Especially, it should be decided which parts of the
ECS can be changed in real time and what are the actions that
apply these changes.

2. Design a reward formulation based on the performance
objectives. In contrast to conventional control theory, we can
address actual design objectives directly, by rewarding the
agent (controller) proportional to the most important

Fig. 4  Proposed RL-based A-ECS

Fig. 5  Algorithm 3: variable sampling-time embedded control

4 IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

performance metrics and penalise it with large negative
rewards in case of failures.

3. Choose an RL algorithm to learn the optimal policy. For
example, Q-learning algorithm explained in Section 3 can be
used.

4. Choose an approximation method for the continuous state
space. For example, the tile coding described in Section 3 is
one of the possible approaches. Recent deep neural network
representation method is an alternative for more complex
systems [7].

5. Develop the simulation codes for the physical system and ECS.
Also, implement the RL algorithm and reward calculations.
Next, integrate all the mentioned components and performance
measure output generation codes.

6. Choose system and RL parameters based on available
heuristics or by iterative design-space exploration using
proposed framework. Some example of these parameters are ϵ,
α, number of tilings and number of grids for each continuous
state-space dimension.

7. Build executable of the simulation, launch independent parallel
instances to run the simulation models for different random
seeds.

8. Use the ‘reduce’ script to extract statistical information such as
average or maximum performance.

5 Case study 1: cart-pole swing up task
In this section, we follow the steps listed in A-ECS workflow for
the cart-pole swing up task. We apply the cloud-based evaluation
framework described in Section 5.3 to show the performance
improvement using the variable sampling time.

Consider the cart-pole system depicted in Fig. 7. The processor,
powered by a battery, can generate force commands applied to the
cart. The control task is to swing up the pole from fall position to
upright position and keep the pole upright for the longest time
period possible using the limited energy in the battery. We explain
the steps to develop the VS-ECS to balance this system using a
digital controller.

The first step is to define different elements of the RL
framework:

Environment: In RL, the environment is defined as the part of
system which can be influenced by the agent. By this definition,
the environment is the physical system in the classical cart-pole
example because the applied force is the only action available to
the agent. In A-ECS, the concept of environment had to be
extended to include properties of the controller itself because the
agent can change the controller parameters dynamically.

Agent: In A-ECS, the agent is the embedded controller. More
precisely, the ‘fixed’ elements of the controller is the agent and the
‘varying ‘ elements are considered part of the environment as
explained before.
Actions: A-ECS supports two set of actions: physical system
actions and controller parameter tuning actions. In the cart-pole
example, the force command to the cart is the physical action and
the sampling time is the controller parameter action. Both actions
are continuous variables, but for simplicity they are defined as
discrete quantities in the case study. The force can be zero, or
maximum force in any of two directions (right and left in Fig. 7).
The sampling time can be chosen from some bounded number of
available choices. Therefore, we define the action vector consisting
of force command and sampling time as

a = (f h)⊺ (13)
System state variables: The system state variables are

s = (x ẋ θ θ̇ e)⊺ (14)

where x is the cart position, θ is the pole angle and e is the current
battery energy.
Policy π: The policy π is defined as mapping of system state to
optimal actions, that is the force applied to cart and the next
sampling time as a function of current physical system state and the
battery storage.
Reward: In the classical cart-pole example, the reward is defined as
positive value (e.g. one) if the pendulum is in the upright position
with some tolerance (π − δ < θ < π + δ) and a large negative value
if the pole falls. In our example, we define the reward as the time
period that the controller can keep the pole in upright position. By
this definition, the agent tries to use longer sampling times to save
processing power to be able to balance the pole for a longer time.
We also add a term proportional to the angular distance of pole to
the upward position to encourage swinging the pole.

Next, we chose Q-learning and tile coding approximation
function to implement the RL algorithm as described earlier in this
paper, while other state-of-the-art approaches can be used as well.

The next step is to simulate the physical system and processing
power consumption. In the next subsections, we describe the
details of simulation models that we implemented in C++ to use
them in the cloud-based evaluation process. The final steps apply
the simulation code in the cloud computing platform and
summarise the results by the analysis scripts. In Section 4, the
results of proposed VS-ECS applied on the cart-pole case study are
given.

5.1 Cart-pole dynamics

Now we explain the modelling of the physical system that is
implemented in the simulation model used in the evaluation
framework in Section 5.3. The cart-pole system is modelled using
dynamics differential equations. The kinematic and potential of the
cart-pole system is derived by

T = 1
2mcẋ

2 + 1
2mp (ẋ + lθ̇cos θ)2 + l2θ̇2sin2 θ (15)

U = − mpglcos θ (16)

Fig. 6  Cloud-based evaluation framework

Fig. 7  Cart-pole case study

IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

5

The Lagrangian using (16) can be written as

L = 1
2(mc + mp)ẋ

2 + mplθ̇ẋcos θ + 1
2mpl

2θ̇2 + mpglcos θ (17)

We can write the differential equations of the pole motion as

(mc + mp)ẍ + mplθ̈cos θ − mplθ̇
2sin θ = F − k1ẋ (18)

mplẍcos θ + mpl2θ̈ + mpglsin θ = − k2θ̇ (19)

Finally, solving (19) for the linear acceleration of cart and angular
acceleration of pole we have

ẍ = 1
mc + mpsin2 θ

× f − k1ẋ + mpsin θ(lθ̇2 + gcos θ) + k2θ̇cos θ θ̈
(20)

θ̈ = 1
l2(mc + mpsin2 θ)
× (− (mc + mp)k2θ̇/mp − l f cos θ + lk1ẋcos θ

−(mc + mp)glsin θ − mpl
2θ̇2sin θcos θ)

(21)

Equations (20) and (21) are highly non-linear but we can still RL
framework to control the physical system with this non-linear
dynamics.

5.2 Processing power modelling

Now we explain the simulation modelling of processing power,
which is directly applied for the results provided in Section 5.3. We
assume that the processor of the ECS is in sleep mode between

each two successive control routine invocations. The mentioned
idle time can be used to do other processing tasks, but as we are
focused on the power consumption of the control task we can
simply assume that the controller is in sleep mode in idle time to
save energy. The power consumption scheme with this assumption
is shown in Fig. 8. The total processing energy is modelled by

Eproc = ∑
i = 1

N
prtr + ps(hi − tr)

= N(pr − ps)tr + psT
(22)

while the total time T is defined as sum of all N sampling times:

T = ∑
i = 1

N
hi (23)

For a fixed total time T, that means that longer sampling times,
hi results in lower total steps N, and lower N value in (22) results in
lower Eproc which means higher power efficiency.

5.3 Simulation results

In this subsection, we describe the results for two experimental
setups to investigate the efficiency of the proposed VS-ECS
approach. The first setup is a swing-up and balance task, the
second setup addresses the balance only of the cart-pole example.
We also implement and simulate ETC for the first setup as the
baseline method. We will compare the results with our proposed
method in the next subsection. For each setup, we conducted three
experiments with different sampling schemes:

• Fixed sampling time (with value h1),
• Fixed sampling time (with value h2), and
• Variable sampling time (with values either h1 or h2 decided in

real time and in each control step).

We use the simulation models and the Q-learning algorithm
explained previously to run the experiments. Table 1 lists system
parameters that are used in the experiments. All experiments are
done for 25 million steps. After every batch of 10,000 steps, the
framework evaluates the control policy learned by the RL agent.
This is done by running the greedy policy and calculating the
return which is defined as the time period in which the agent was
able to keep the pole almost in upward position
(π − 0.1 ≤ θ ≤ π + 0.1) before the battery energy is completely
depleted. An additional term in the return function encourages the
agent to swing up the pole. The overall return is determined by the
following equation:

r = 10−6(π − |π − θ |) +
hi |π − θ | ≤ 0.1
0 otherwise

(24)

where hi is selected sampling time at time step i.
For each experiment, we study the average balancing time and

the identified maximum balancing time. Due to the invariant
energy supply, a longer balancing time indicates a lower average
power consumption, and therefore is desirable.

5.3.1 Swing-up and balance task: For the swing-up and balance
experiment, each episode starts from the state where cart-pole
system is still with x = 0 and θ = 0 and ends whenever the battery
energy is fully depleted or one of x or θ passes the allowable range
listed in Table 1. h1 = 10 and h2 = 100 ms are used for the
experiments. Conventional fixed sampling-time approaches have a
desirable performance for the h1 and fail in most cases when using
h2. We expect that the variable sampling time can achieve a higher
performance by switching between the two sampling times in real
time.

Fig. 8  Processing power temporal modelling

Table 1 Parameter value settings for the experiment
Parameter Value
x range ±6 m
θ range ±2π, rad
θ balance range π ± 0.1, rad
L 20 cm
mc 1 kg

mp 0.1 kg

k1 0, N/m/s
k2 0, Nm/1/s
ϵ 0.001
α 0.7
f max 200 N

tr 200 µs

pr 220 mW

ps 16 µW

battery capacity 0.3 J
No. of tiling grids/dimension 7
No. of tilings 40

6 IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

Fig. 9a shows the learning curves for the average balancing
time for the swing-up and balance task. The plots are generated by
averaging results of 200 runs on 32 instances launched by the
cloud-based evaluation tool. The total simulation time was around
6 h on Intel Xeon E5-2600 processors. We see that the larger fixed
sampling time results in a short total balancing time. The reason is
the severe instability due to the large sampling time. The VS-ECS
performance is lower at short term, but starts to outperform the fast
fixed sampling time after around 19 × 106 learning steps, since it
can utilise the two modes of operations.

At the beginning, the agent should act fast to move to pole to
upright position quickly, but after that the system dynamics is slow
around the balancing point and the agent should do small
corrections with a slower rate that the swing up phase (Fig. 10).
Therefore the probability of selecting longer sampling time is
higher in the balancing state.

The benefit of VS-ECS is more obvious when we look at the
maximum balancing time, shown in Fig. 9b. VS-ECS identifies
better settings already after less than 10 × 106 learning steps and is
able to balance the pole about 2 s longer than with the fast fixed
sampling rate.

5.3.2 Balance-only task: The second setup considers the upright
balancing time only. The control problem in this case is less
complex since the pole is already close to upright positions at the
start (π − 0.04). In contrast to the previous example, both applied
fixed sampling times (hslow = 10 and hslow = 1 ms) can be used to
control the system. In the new experiment setup, the allowable
balance range is tighter (π − 0.05 ≤ θ ≤ π + 0.05).

Fig. 11 shows the learning curves for the average and maximum
balancing time. It can be seen that the faster fixed sampling time
exhausts the battery earlier, caused by the higher processing power.
However, the results also show that in average the slower fixed
sampling time outlasts VS-ECS, while the maximum balancing
time in both cases are equal. The results confirm that a fixed
sampling scheme is more suited in system with unimodal

dynamics, since the system does not need to switch between
modes. In these cases, VS-ECS requires learning to converge to the
static behaviour of the optimum static systems.

5.4 Comparison to ETC

In this subsection, we compare the performance of proposed RL-
based VS-ECS controller with an event-triggered controller (ETC)
as the state-of-the-art non-uniform sampling solution for the cart-
pole example. The performance metric is the balancing time as
discussed in the previous subsection. The ETC for cart-pole system
designed based on the method described in [16, 20]. ETC is
realised by implementation of two functions, event function and
feedback function. The event function, ε: χ × χ → ℝ, where χ is
the state space indicates if a new control calculation is needed
(ε ≤ 0) or not (ε > 0). The first argument of ε is the memorised
state of the system at last control update and the second argument
is the current state. The feedback function, γ: χ → 𝒰, is the state-
feedback control law, where 𝒰 is the control input space.
Shortcoming of ETC is the required evaluation of the event
function on a regular basis to detect the control update event,
whereas in VS-ECS the embedded controller can go to sleep
between successive control updates.

Fig. 9  Learning curves for the average balancing time for the swing-up
and balance task
(a) Average, (b) Maximum balancing time (return) achievable by the ECS in swing-up
and balance task

Fig. 10  Two modes in swing-up and balance task shown by the pole angle
time plot. Probability of selecting longer sampling time by A-ECS is shown
in the lower time plot

Fig. 11  Learning curves for the average and maximum balancing time
(a) Average, (b) Maximum balancing time (return) achievable by the ECS in balance
only task

IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

7

The controller which is proposed in [20] has two modes: Swing
up and Stabilisation. The controller starts at Swing up mode and
after it reaches a specific angle (close enough to upright position)
switches to stabilisation mode. The controller uses energy control
in swing up mode and linear quadratic regulator in the stabilisation
mode using a linearised model. The event and feedback functions
are derived for both modes in [20]. The ETC controller has a
number of tunable parameters. We selected the optimal settings by
exhaustive search of the design space in each case.

The physical parameters of the cart-pole systems are the same
as for the previous experiments (Table 1). To study the
improvement of control object metric by using ETC, the
experiment is also repeated for an invariant sampling time
controller with fixed period of 10 ms same as VR-ECS
experiments. The results of the ETC simulations are compared with
the VS-ECS maximum performance (Section 5.3.1) in Table 2.
ETC's extended balancing time is caused by ETCs continuous
control signal, while in RL approach, discrete control is used to
limit the state-space dimension, resulting in more variation of the
pendulum angle. However, in the RL-based approach adaptive rate
results in more balancing time improvement comparing to ETC
which is the main contribution of this paper.

The robustness of VS-ECS and ETC is also compared by an
experiment where the system is designed for cart weight of 1 kg
but the actual cart weight 0.7 kg. The results are also shown in
Table 2. Here we see that ETC cannot stabilise the system, since
ETC relies on an exact system model, while CS-ETC stabilises the
system. It should be noted that the reduced balancing time for VS-
ECS is not caused by model errors but by the additional weight of
the pole.

6 Case study 2: Mountain Car problem
6.1 Problem definition

The Mountain Car example [21], discussed in this section,
evaluates VS-ECS for a system with non-linear dynamics. In the
original Mountain Car example, the goal is to control the
acceleration of a car inside a valley in order to move it to the top of
the mountain (Fig. 12). However, the maximum acceleration of the
car is limited and it cannot be driven to the top of mountain in a
single pass and the car has to go back and forth a number of times
to get enough momentum to reach to the desired destination.

In the original Mountain Car problem, there is no computational
overhead limitation and the car has not to stop at the destination
and the goal is to reach to the destination on top of mountain in
minimum time. Therefore, the RL reward is defined as follows:

r = −1 car has not reached to the destination
0 otherwise (25)

In this experiment, we define two different goals to the original
problem to make it a more difficult control task: (i) reach the
destination with minimum computational overhead. (ii) car should
almost be stopped (i.e. its speed should be less than a threshold) at
the destination. To realise the minimum computational objective, a
computational budget is defined that is decreased by one each
sample time. Hence, once the car nearly stops at the destination the
higher remaining computational budget means less computational
overhead and should be rewarded. Using the explained problem

definition, the reward defined in (25) is modified to the following
reward function:

r =

0 x > 0.5
0 b ≤ 0
b |v | < 0.1 and 0.44 < x < 0.45

−10−4 otherwise

(26)

where x is the car position, v is the car speed and b is the
computational budget. The small negative reward in the last case
included to encourage faster task completion.

6.2 Simulation results

We run the Q-learning algorithm with tile coding function
approximation for three different sampling schemes: (i) fixed 0.1 s,
(ii) fixed 1 s and (iii) variable 0.1 or 1 s chosen by RL agent.
Fig. 13 shows the results of simulation for these scenarios. The y-
axis shows the return which is the remaining computational budget
in the case of successful task completion and the y-axis is the
training step number. All simulations are performed with starting
computational budget of 60. For the fixed 1 s, the agent is unable to
command the car to reach and stop at the destination since fixed
time step of 1 s is too coarse for the precise control needed to
accomplish the problem objective. The agent is able to accomplish
the task by the finer time precision of 0.1 s. However, using a VS-
ECS in which sampling time is chosen among the fine and coarse
sampling times, we can get higher efficiency of around 17%.

7 Conclusions
In this paper, we demonstrated the suitability of RL to adapt
software properties of the ECS at run time. The benefit of our
adaptable online approach is a reduced average power consumption
of the ECS and the overall CPS, which leads to an extended life
time of battery powered CPSs. Specifically for the cart-pole
example we determined an extension of the life time by up to 20%
compared to a system with optimal fixed settings. While our
approach could not improve the power efficiency of a fixed optimal
system in every case, all our experiments could achieve at least an
equivalent performance. We further could outperform all sub-
optimal fixed settings in all investigated scenarios, and improve the
tolerance of the system to model uncertainties.

Table 2 Comparison of VS-ECS (proposed in this paper)
and ETC designed by the concepts proposed in [16]

Balancing time, s
Accurate physical model Inaccurate physical model

Single
sampling

time

Adaptive
sampling

time

Single
sampling

time

Adaptive
sampling

time
VS-
ECS

11.2 14.1 9.6 13.2

ETC 14.1 14.7 unstable 9.25

Fig. 12  Mountain Car example

Fig. 13  Training curves for three different scenarios in Mountain Car
example

8 IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

We presented a framework that facilitates the application of our
approach to generic CPSs. We also presented an exploration tool
that allows a designer to systematically evaluate the impact of
different system settings and control modes.

While the work at hand is a very promising first step to use RL
for the online software configuration of ECS, the work contains a
range of limitations that might be interesting to address in future
work. In our experiments, we used a dual-modal system. Adding
more modes might further improve the system properties. Also
applying our framework to consider voltage and frequency settings
as well as resource allocations in addition to sampling rates is a
promising next step. Finally, combining our approach with existing
RL frameworks that focus on control properties [15] could further
improve the overall design quality and system performance of
CPSs, while reducing the complexity of designing the system.

8 References
[1] Juan, D.C., Garg, S., Park, J., et al.: ‘Learning the optimal operating point for

many-core systems with extended range voltage/frequency scaling’. 2013 Int.
Conf. Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2013, pp. 1–10

[2] Buini, H.M., Peter, S., Givargis, T.: ‘Including variability of physical models
into the design automation of cyber-physical systems’. 2015 52nd ACM/
EDAC/IEEE Design Automation Conf. (DAC), 2015, pp. 1–6

[3] Sala, A.: ‘Computer control under time-varying sampling period: an LMI
gridding approach’, Automatica, 2005, 41, (12), pp. 2077–2082

[4] Cervin, A., Velasco, M., Martí, P., et al.: ‘Optimal online sampling period
assignment: theory and experiments’, IEEE Trans. Control Syst. Technol.,
2011, 19, (4), pp. 902–910

[5] El Tantawy, S., Abdulhai, B., Abdelgawad, H.: ‘Multiagent reinforcement
learning for integrated network of adaptive traffic signal controllers (marlin-
atsc): methodology and large-scale application on downtown Toronto’, IEEE
Trans. Intell. Transport. Syst., 2013, 14, (3), pp. 1140–1150

[6] Kara, E.C., Berges, M., Krogh, B., et al.: ‘Using smart devices for system-
level management and control in the smart grid: A reinforcement learning

framework’. 2012 IEEE Third Int. Conf. Smart Grid Communications
(SmartGridComm), 2012, pp. 85–90

[7] Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al.: ‘Continuous control with deep
reinforcement learning’. 2015 arXiv preprint arXiv:150902971

[8] Neema, H., Lattmann, Z., Meijer, P., et al.: ‘Design space exploration and
manipulation for cyber physical systems’. IFIP First Int. Workshop on Design
Space Exploration of Cyber-Physical Systems (IDEAL), 2014

[9] Henriksson, D., Cervin, A.: ‘Optimal on-line sampling period assignment for
real-time control tasks based on plant state information’. 44th IEEE Conf.
Decision and Control, 2005 and 2005 European Control Conf. CDC-ECC'05,
2005, pp. 4469–4474

[10] Simon, D., Robert, D., Sename, O.: ‘Robust control/scheduling co-design:
application to robot control’. 11th IEEE Real Time and Embedded
Technology and Applications Symp., 2005. RTAS 2005, 2005, pp. 118–127

[11] Albertos, P., Salt, J.: ‘Non-uniform sampled-data control of MIMO systems’,
Annu. Rev. Control, 2011, 35, (1), pp. 65–76

[12] Balluchi, A., Murrieri, P., Sangiovanni Vincentelli, A.L.: ‘Controller synthesis
on non-uniform and uncertain discrete–time domains’, in Morari, M. (Ed.),
‘Hybrid systems: computation and control’ (Springer, 2005), pp. 118–133

[13] Khan, S., Goodall, R.M., Dixon, R.: ‘Non-uniform sampling strategies for
digital control’, Int. J. Syst. Sci., 2013, 44, (12), pp. 2234–2254

[14] Albertos, P., Crespo, A.: ‘Real-time control of non-uniformly sampled
systems’, Control Eng. Pract., 1999, 7, (4), pp. 445–458

[15] Khan, S.G., Herrmann, G., Lewis, F.L., et al.: ‘Reinforcement learning and
optimal adaptive control: an overview and implementation examples’, Annu.
Rev. Control, 2012, 36, (1), pp. 42–59

[16] Marchand, N., Durand, S., Castellanos, J.F.G.: ‘A general formula for the
stabilization of event-based controlled systems’. 2011 50th IEEE Conf.
Decision and Control and European Control Conf., 2011, pp. 8199–8204

[17] Watkins, C.J., Dayan, P.: ‘Q-learning’, Mach. Learn., 1992, 8, (3-4), pp. 279–
292

[18] Sutton, R.S., Barto, A.G.: ‘Reinforcement learning: an introduction’ (MIT
Press, 1998)

[19] Ahnert, K., Mulansky, M.: ‘Odeint-solving ordinary differential equations in
C++’, arXiv preprint arXiv:11103397, 2011

[20] Durand, S., Castellanos, J.F.G., Marchand, N., et al.: ‘Event-based control of
the inverted pendulum: swing up and stabilization’, J. Control Eng. Appl.
Inform., 2013, 15, (3), pp. 96–104

[21] Moore, A.W.: ‘Efficient memory-based learning for robot control’. 1990

IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

9

