
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Priority Neuron: A Resource-Aware Neural
Network for Cyber-Physical Systems

Maral Amir , Graduate Student Member, IEEE, and Tony Givargis, Senior Member, IEEE

Abstract—Advances in sensing, computation, storage, and1

actuation technologies have entered cyber-physical systems2

(CPSs) into the smart era where complex control applications3

requiring high performance are supported. Neural networks4

(NNs) models are proposed as a predictive model to be used in5

model predictive control (MPC) applications. However, the ability6

to efficiently exploit resource hungry NNs in embedded resource-7

bound settings is a major challenge. In this paper, we propose8

priority neuron network (PNN), a resource-aware NNs model that9

can be reconfigured into smaller subnetworks at runtime. This10

approach enables a tradeoff between the model’s computation11

time and accuracy based on available resources. The PNN model12

is memory efficient since it stores only one set of parameters13

to account for various subnetwork sizes. We propose a train-14

ing algorithm that applies regularization techniques to constrain15

the activation value of neurons and assigns a priority to each16

one. We consider the neuron’s ordinal number as our priority17

criteria in that the priority of the neuron is inversely propor-18

tional to its ordinal number in the layer. This imposes a relatively19

sorted order on the activation values. We conduct experiments to20

employ our PNN as the predictive model of a vehicle in MPC for21

path tracking. To corroborate the effectiveness of our proposed22

methodology, we compare it with two state-of-the-art methods for23

resource-aware NN design. Compared to state-of-the-art work,24

our approach can cut down the training time by 87% and reduce25

the memory storage by 75% while achieving similar accuracy.26

Moreover, we decrease the computation overhead for the model27

reduction process that searches for n neurons below a threshold,28

from O(n) to O(logn).29

Index Terms—Cyber-physical system, model predictive control30

(MPC), neural networks (NNs), resource-aware.31

I. INTRODUCTION32

CYBER-PHYSICAL systems (CPSs) are composed of33

cyber and physical components in a feedback loop, where34

physical processes affect computations and vice versa [1]–[3].35

With the recent developments in CPS, cloud computing,36

machine learning, and artificial intelligence technologies, it37

is just a matter of time before autonomous drivers replace38

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. This work was supported by the National Science
Foundation under NSF Grant 1563652. This article was presented in
the International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS) 2018 and appears as part of the ESWEEK-TCAD
special issue. (Corresponding author: Maral Amir.)

The authors are with the Department of Computer Science, University
of California at Irvine, Irvine, CA 92697 USA (e-mail: mamir@uci.edu;
givargis@uci.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857319

Fig. 1. MPC loop.

humans on the road. Vehicles are now embedded with intel- 39

ligent devices that enable the vehicle to respond to various 40

factors and obstacles, sudden acceleration or braking, etc., 41

in real-time. The control and prediction of system dynamics 42

are important factors in autonomous driving [4], [5]. Model 43

predictive control (MPC), also known as receding horizon con- 44

trol, is an advanced control method. MPC makes explicit use 45

of a model of the physical system to estimate its behavior for 46

a given stream of inputs in a predetermined prediction hori- 47

zon. The predicted outputs depend on the past inputs/outputs, 48

and the future control signals [6]. As shown in Fig. 1, these 49

future control signals are calculated by the optimizer taking 50

into account the cost function and enforced constraints. The 51

cost function usually takes the form of a quadratic function 52

of errors between the predicted output signal and the refer- 53

ence trajectory. In the standard approach, ordinary differential 54

equations (ODEs) are employed as the predictive model to 55

represent the dynamic behavior of a physical system. Iterative 56

methods to approximate a solution for nonlinear ODEs have 57

introduced challenges in the design of embedded MPCs in 58

terms of scalability, performance, and power consumption [7]. 59

The computational overhead in traditional MPC grows 60

exponentially with the length of the prediction horizon [8]. 61

Research shows that a stable MPC controller requires a suffi- 62

ciently large prediction horizon [9]. On the other hand, short 63

prediction horizons are preferred for improved prediction accu- 64

racy of predictive models. This is because harmful effects 65

of the poor estimates are amplified over a long prediction 66

horizon time. Here, the problem is addressed by proposing 67

an MPC approach that uses an adaptive prediction horizon 68

with respect to quality measures [10]. However, the numerical 69

effort needed in order to solve the optimal control problem 70

for a long prediction horizon still remains significant. One 71

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4686-6606

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

approach to overcome the computational burden of long hori-72

zon predictions is by implementing multirate prediction. In73

this approach, each look-ahead has a separate weight in the74

estimation of the steering input, where the furthest look-ahead75

point has the lowest weight [8].76

Another method that is proposed to handle the computa-77

tional issue associated with MPC systems is to use accelerated78

predictive models of the physical system. Different variants79

of neural networks (NNs) (e.g., recurrent NNs (RNNs) [11])80

hold promising performance for time-series prediction as they81

can easily be built to predict multiple steps ahead all at82

once. These models are well-known to have the ability to83

learn linear and nonlinear relations between input and output84

variables without prior knowledge [12]. However, the use of85

NN models for long prediction horizon MPC problems could86

raise scalability and computational complexity challenges.87

The state-of-the-art methodologies are focused on reducing88

the size of the NN models without significantly affecting89

the performance [13]–[15]. These methodologies leverage the90

intrinsic error tolerance property of the NN models due to their91

parallel and distributed structure. Therefore, model reduction92

schemes could be exploited to employ the NN as the predictive93

model in the MPC loop. Several recent studies have focused94

on rescaling the size of the NN to adjust the resource usage on95

the embedded platform with respect to response time, power,96

and accuracy targets [16]. In other words, several sizes of the97

NN are available at runtime to manage resources for inference98

time-, safety-, and energy-constrained tasks. Moreover, contin-99

uous learning of NNs in data-driven modeling [17], transfer100

learning techniques [18], and adaptive modeling [19] impose101

significant training-time constraints at runtime.102

A. Our Contribution103

In this paper, we propose priority neuron network (PNN),104

a novel NN model that is featured with a reconfigurable105

architecture. Our objective is to design a resource-aware recon-106

figurable NN model that not only computes the future outputs107

as time series data in constant time, but is also memory effi-108

cient. The summary of our contributions in this paper are109

as follows.110

1) We develop a reconfigurable NN model to fit the111

dynamic behavior of the physical systems for multistep-112

ahead prediction in receding horizon problems. Our113

resource-aware NN model can be reconfigured to var-114

ious network sizes at runtime while storing only one set115

of weight parameters for memory efficiency.116

2) We propose a training algorithm that controls the pri-117

ority of each neuron in the computation of the model’s118

output. We regulate the priority of each neuron using119

regularization techniques enforced on weight parame-120

ters. We consider the neuron’s ordinal number as our121

priority criteria in that the priority of the neuron is122

inversely proportional to its ordinal number. We can123

reconfigure our NN model to smaller sizes by elimi-124

nating low priority neurons. This approach allows the125

tradeoff between the model’s computation time and126

accuracy in resource-constrained systems.127

3) We implement our reconfigurable NN model that con- 128

tains multiple subnetworks using one-time training, 129

hence reducing overall training time. 130

4) Our priority-based training algorithm enforces a sorted 131

distribution on activation values of neurons. This helps 132

to reduce the computation complexity of the model 133

reduction process when searching for n neurons below 134

the pruning threshold, from O(n) to O(logn). It needs 135

to be pointed out that we are not proposing a pruning 136

methodology, but a memory efficient NN model that can 137

be reconfigured to smaller sizes with less computation 138

complexity at runtime. 139

5) We apply our method to train a three-layer fully con- 140

nected NN model to be employed as the predictive 141

model of a vehicle in MPC for path tracking applica- 142

tion. We conduct closed-loop simulation of MPC using 143

ODE predictive models to collect the training data. 144

To evaluate the efficacy of our methodology, we com- 145

pare it with two state-of-the-art approaches-Inc [20] 146

and Big/Little [16]—that are targeted for resource-aware 147

NN design in embedded systems. We show that our 148

proposed PNN model outperforms the BL method with 149

89% reduction in training time and 78% saving in 150

memory storage. The PNN model shows similar results 151

to Inc method in terms of memory and model reduc- 152

tion complexity. However, we show that PNN follows 153

a single training process to adjust weight parameters as 154

opposed to Inc method that is based on multiple retrain- 155

ing. Therefore, the PNN model can cut down the training 156

time by 86% with respect to Inc method while main- 157

taining a better prediction performance from 0.25% to 158

0.21%. 159

The rest of this paper is organized as follows. In Section II, 160

we summarize the state-of-the-art approaches to solve the 161

computational complexity of MPC systems and design 162

resource-efficient NN models. We describe our proposed 163

method in Section III. We demonstrate the effectiveness of 164

our framework for path following application in Section IV. 165

Finally, we give our conclusions in Section V. 166

II. BACKGROUND AND RELATED WORK 167

Advanced control methodologies have emerged for path 168

planning and path following applications in modern vehicles. 169

Nonlinear MPC is leveraged to develop path following con- 170

trol systems while handling model uncertainties, constraints 171

and nonlinearities. A predictive model of the physical plant 172

is used to estimate the future outputs for a prediction horizon 173

within a window of time and with respect to known input and 174

output values (Fig. 1). Mathematical descriptions in the form 175

of ODEs are used to model the linear/nonlinear behavior of 176

the physical system [21]. ODE solvers are applied to estimate 177

solutions that converge to the exact solution of an equation 178

or system of equations [22]. A runtime optimization routine 179

is evaluated as a parametric quadratic function to calculate 180

a set of future control inputs subject to constraints enforced 181

by the environment and system dynamics. These routines are 182

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 3

computationally intensive, and for nonlinear physical mod-183

els, the computational overhead grows with complexity of the184

model [23].185

One of the challenges in classic MPC is that the compu-186

tational overhead increases with the length of the prediction187

horizon [8]. One approach to overcome the computational bur-188

den of long horizon predictions is by implementing a multirate189

prediction control strategy, where the prediction horizon is190

sampled in nonequidistant way [24]. In this approach, for a191

determined prediction horizon of n time steps, the initial steps192

have a shorter sampling period than the ones in the more dis-193

tant future. In other words, fine tuning the control in such194

a way as to reduce the importance of predictions that con-195

tribute to time steps further in the future. Novel approaches196

are proposed for nonlinear dynamic system modeling and iden-197

tification, where the NN realizes the behavior of a set of ODEs198

with smaller computation overhead [12], [25]. Moreover, data-199

driven NNs are increasingly in demand. Data-driven NNs are200

based on direct use of input-output observations collected from201

various real-world processes to perform system optimization,202

control and/or modeling [26]. Classic NNs have a three-layer203

structure, namely input, hidden, and output layers. Each layer204

contains a set of neurons with edges to pass the information.205

The edges entering the neurons are associated with weight206

parameters. The weight parameters are adjusted in a training207

algorithm (e.g., by back propagation) so that the difference208

between the network’s prediction and the target output is209

minimized.210

Developing resource-efficient NNs for embedded systems211

with limited hardware resources is a challenging task. To solve212

the memory complexity of NN models, many model com-213

pression approaches are proposed based on the claim that214

NN models have natural error tolerance because NNs usu-215

ally contain more neurons than necessary to solve a given216

problem [27]. Many network pruning and model reduction217

techniques are proposed in the previous work with promising218

results [28]–[30]. However, finding an optimal pruning solu-219

tion is NP-hard and requires a costly retraining process [31].220

Many works have focused on selecting weight parameters for221

pruning based on criteria such as magnitude of the weight,222

activation value for the respective neuron, and increase in223

training error [32]–[34]. Han et al. [35] proposed an iterative224

pruning method that removes all neuron connections whose225

weight is lower than a certain threshold. This approach con-226

verts a dense fully connected layer into a sparser layer. The227

pruning is followed by a retraining process to boost the228

performance of the trimmed NN. A common approach to229

reduce the size of the “parameter intensive” fully connected230

layers is to reduce the magnitude of the overall weight param-231

eters by including regularization terms in the model’s cost232

function. Pan et al. [15] exploited regularization terms during233

the training process to simplify the NN model. At the end of234

the training, the NN is trimmed by dropping neurons below a235

certain threshold.236

Another approach to address resource-constrained deploy-237

ment of NNs for embedded systems is to adapt the size of the238

NN model to the performance requirements. Park et al. [16]239

addressed the energy complexity of NNs using a novel240

big/little implementation, whereby a score margin metric is 241

employed to select between the two sizes. This approach is 242

memory intensive such that it requires storing separate sets of 243

weights for different sizes of NNs. Tann et al. [20] addressed 244

the memory complexity problem by proposing a multistep 245

incremental training algorithm such that the weights trained in 246

earlier steps are fixed. In this method, multiple subnetworks 247

with different sizes are formed while storing and using only 248

one sets of weight parameters. Although this approach is close 249

to ours, our proposed method is more computationally flexible 250

in generating multiple subnetwork sizes and does not suffer 251

from a time-consuming retraining process. In the following 252

section, we describe PNN, our proposed reconfigurable NN 253

model and its training algorithm. 254

III. METHOD 255

A. Application of Neural Networks in Model Predictive 256

Control 257

MPC exploits a predictive model of the physical system to 258

produce an optimized control input sequence. The predictive 259

model computes the output of the system, a number of time 260

steps into the future based on the current output and future con- 261

trol input values. Therefore, the predictive model to estimate 262

future outputs at time k in the next n time steps—Y(k+n|k)— 263

can be formulated as a time series prediction function f of 264

future control inputs I(k + n|k) and a vector of current state 265

variables S(k|k) for S = [S0, S1, . . . , SNs]. Time-series data is 266

a sequence of time-ordered values as measurements of some 267

physical process [36] 268

Y(k + n|k) = f (S(k|k), I(k + n|k)). (1) 269

The prediction function in (1) can be fitted in a multiple 270

input multiple output NN model with future control inputs and 271

current state of the physical system as its input features and 272

the future outputs in the next n time steps as its target outputs. 273

Once the function is learned, the acyclic NN model computes 274

the future outputs as a time-series data in constant computing 275

time [12]. We use a three-layer fully connected feed-forward 276

NN (FFNN) to fit (1) and approximate the dynamic behavior 277

of the physical system. The FFNN is a class of NNs, where the 278

input signal feeds forward through the network layers to the 279

output in a single direction. Here, each layer of the network 280

consists of computing neurons with edges that typically have 281

a weight parameter. The output ŷi of the NN model can be 282

computed as follows given xk input features for i ∈ {1 · · ·No} 283

and k ∈ {1 · · ·Ni}: 284

ŷi =
Nh∑

j=1

[
w2

ji σ

(Ni∑

k=1

w1
kjxk + θ1

j

)
+ θ2

i

]
(2) 285

where Ni, Nh, and No denote the numbers of input-layer, 286

hidden-layer, and output-layer neurons, respectively. The 287

parameters w1
kj and w2

ji are weights connecting the first layer 288

to hidden layer and connecting the hidden layer to the output 289

layer, respectively, and are adjusted in the learning process. 290

The threshold offsets for the hidden and output layers are 291

represented as θ1 and θ2. The function σ(.) represents an 292

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

activation functions, e.g., sigmoid, or rectified linear unit293

(ReLU), that limits the variation to output values with respect294

to changes in NN parameters.295

B. Architecture of Priority Neuron Neural Network As296

Predictive Model in MPC297

We propose PNN, a resource-aware reconfigurable NN such298

that the full model can be reconfigured to smaller sizes for less299

computation time and relatively comparable accuracy. Here,300

we deploy our proposed NN model for multistep ahead time-301

series prediction in constant time for an MPC application.302

However, the proposed NN model can be generalized for other303

prediction applications, e.g., computer vision. As stated in304

Section III-A, the nonlinear model in (1) is used by MPC to305

compute future behavior of the physical system can be fitted306

into a three-layer fully connected FFNN. The future control307

inputs and current state of the physical system are given as308

the input features to the FFNN to approximate the future out-309

puts in the next n time steps. The proposed NN model can be310

described as in (2) for Ni = (# of state variables(Ns) + No)311

and Nh = No = (# of time steps in the prediction horizon(n)).312

The value for Nh is set empirically equal to No. We have two313

weight matrices W1 and W2 with sizes (Ni×Nh) and (Nh×No)314

containing connecting weights of our hidden and output lay-315

ers, respectively. We use the ReLU activation function which316

is one of the most widely used activation functions and is317

defined as318

σ(z) = max(0, z). (3)319

During the prediction process of the NN, we would ideally320

want a few neurons in the network to not activate, thereby321

making the activations sparse and efficient. The ReLU activa-322

tion function gives us the ability to design a sparser NN model323

because it outputs 0 for negative input values and imposes no324

constraint on the positive inputs. Equation (2) is broken down325

into (4a) and (4b) to compute the outputs of hidden and output326

neurons, respectively. Here, for brevity, the bias parameters are327

deleted328

hj = σ

(Ni∑

k=1

w1
kjxk

)
(4a)329

ŷi =
Nh∑

j=1

(
w2

ji hj

)
. (4b)330

Hereafter, we are seeking a methodology for an architec-331

ture of an NN that stores one set of weight parameters yet332

can be reconfigured to smaller sizes of the NN with small333

drop in accuracy. To adopt the reconfigurability feature in334

our model, we exploit the multirate prediction idea suggested335

by [8] that assigns lower accent to further look-ahead points336

in the computation of the future dynamic behavior of the337

system. Therefore, the proposed PNN model follows a sequen-338

tial priority-based architecture. This means we consider the339

neurons’ ordinal numbers as our priority criteria such that the340

priority of each neuron is inversely proportional to its ordi-341

nal number in the given layer. Therefore, the model can be342

Fig. 2. PNN model.

reduced starting from the neuron with the highest ordinal num- 343

ber. Our goal is to synchronize the priority level of the output 344

and hidden neurons so that the model reduction process is 345

more computationally efficient for runtime applications. We 346

will elaborate more on this in Section III-D. In Fig. 2, we show 347

the architecture of the proposed PNN as a three-layer FFNN 348

where higher priority neurons are colored darker. We can 349

deploy PNN as a resource-aware predictive model for closed- 350

loop MPC to estimate the future outputs [Y0, Y1, . . . , YNh]. 351

Here, we use the future control inputs [I0, I1, . . . , INh] and cur- 352

rent state variables [S0, S1, . . . , SNs] as input features. In the 353

following section, we describe our proposed training algorithm 354

and the associated cost function to develop the priority-based 355

NN model. 356

C. Training Algorithm to Prioritize Neurons 357

During the training process of an NN, an optimization algo- 358

rithm is exploited to minimize an objective function E0(.), 359

which is simply a mathematical function based on the model’s 360

learning parameters (e.g., weights and biases). We might use 361

sum of the squared deviations of our neuron’s output ŷi from 362

the target output yi as the loss function for No number of 363

outputs denoted as 364

E0(w, b) = 1

2No

No∑

i=1

(
yi − ŷi

)2
. (5) 365

The learning parameters are optimized and updated in an 366

iterative training process toward a solution that minimizes 367

the loss function. A learning rate η is assigned to the train- 368

ing algorithm that determines the size of the steps we take 369

at each iteration to reach a (local) minimum. For a convex 370

optimization problem like this, we use derivatives of the loss 371

function ∇E. Therefore, the following updating rule is for- 372

mulated for the weight parameters to be updated after (t+1)th 373

update iteration: 374

wt+1 ← wt − η∇E0. (6) 375

For our optimization algorithm, we employ a variant of gra- 376

dient descent called adaptive moment estimation (Adam) [37] 377

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 5

which computes individual adaptive learning rates for different378

parameters from estimates of first and second moments of the379

gradients. In the proposed PNN model, the priority of the neu-380

ron determines how important the value of that neuron is in the381

overall performance of the NN. In order to control the prior-382

ity of each neuron, we enforce constraints on the computation383

of its output value. This can be done through regulariza-384

tion techniques that restrain the growth of weight parameters.385

From (4), we see that the weight parameters used to com-386

pute the hidden neuron hj are W1[:, j] = [w1
1j, w1

2j, . . . , w1
Nij

].387

The output neuron ŷi is computed using weight parameters388

W2[:, i] = [w2
1i, w2

2i, . . . , w2
Nhi]. We call the weight parameters389

of each neuron its associated weights.390

1) Regularization: A common approach to reduce the com-391

plexity and size of NN models is to constrain the magnitude392

of the overall weight parameters by including regularization393

terms in the model’s cost function. The L1 norm is one of the394

most commonly used regularization techniques that penalizes395

weight values by adding the sum of their absolutes to the error396

term. Therefore, the cost function E with the L1 regularization397

term is398

E(w, b) = E0(w, b)+ 1

2
λ

2∑

l=1

Nl∑

i=1

|Wl
i | (7)399

where λ is the weight decay coefficient for which larger values400

lead to larger cost, and causes the training algorithm to gen-401

erate small weight values. Existing work sets the same weight402

decay coefficient for all layers to avoid the computational costs403

required to manually fine-tune each coefficient. However, to404

train our priority-based NN model, we penalize each weight405

with a specific weight decay coefficient so that the value of406

the corresponding weight is constrained to grow up only to a407

desired threshold point. Hence, the activation of each neuron408

is governed by the weight decay coefficients of its associated409

weights. As shown in Algorithm 1, we use a new cost function410

for our three-layer fully connected feed-forward PNN411

E(w, b) = E0(w, b)+ 1

2

Ni∑

k=1

Nh∑

j=1

|λ1
kjw

1
kj| +

1

2

Nh∑

j=1

No∑

i=1

|λ2
jiw

2
ji|412

(8)413

for λ1 ∈ �1 and λ2 ∈ �2, where �1 and �2 are two weight414

decay matrices of our hidden and output layers, respectively.415

Therefore, the new updating rule for weight parameters is416

wt+1 ← wt − η
(
∇E0 +�1W1 +�2W2

)
. (9)417

In the following section, we describe our heuristic algorithm418

used to assign values to weight decay coefficients such that a419

sorted priority-based architecture is enforced on the proposed420

NN model.421

D. Model Reconfiguration of PNN Model422

In PNN, we want to force a priority onto each neuron during423

the computation of model output so that the accuracy is main-424

tained after reconfiguring the network to smaller subnetworks425

by removing low priority neurons. Therefore, we consider426

larger weight decay coefficients for associated weights of427

Algorithm 1: Priority Neuron Training Algorithm
Input: input features - x
Input: output targets - y
Output: trained NN - PNN
Output: estimated outputs - ŷ
// initialize NN weights

1 init_random W
// estimate outputs given W weights

2 ŷ = PNN (x) [W]
// evaluate residual error

3 err =∑No
i=0(yi − ŷi)

2

// evaluate regularization penalty
4 reg =∑ |�1

Ni×Nh
.W1

Ni×Nh
| +∑ |�2

Nh×No
.W2

Nh×No
|

// evaluate loss function
5 loss = err+ reg
// optimize W weights for minimal loss

6 W = AdamOptimizer (loss)
// estimate outputs given optimal W

7 ŷ = PNN (x) [W]
8 return [PNN, ŷ]

neurons that are desired to have lower level of priority and 428

vice versa. We are following the multirate prediction scheme 429

that allocates less stress on accuracy of further look-ahead 430

points. We design our weight decay matrices so that a sorted 431

priority-based architecture for our PNN is developed during 432

the training process. The intuition behind the sorted priority- 433

based architecture of the PNN is to reduce the complexity 434

of the model reconfiguration and reduction process. Model 435

pruning approaches to constrain the complexity of NN models 436

by applying regularization techniques, have been around for a 437

while [28], [38]. These approaches are based on an exhaustive 438

search process to remove neurons with activation values below 439

a certain threshold. In our proposed priority-based architecture, 440

we enforce a sorted priority on hidden neurons to compute the 441

overall performance of the model. This helps reduce the time 442

complexity for searching neurons below a certain activation 443

value as we can employ a binary search algorithm. Therefore, 444

the worst-case time complexity for the model pruning pro- 445

cess in our PNN model with n number of hidden neurons is 446

O(logn) as opposed to standard architectures that require O(n) 447

worst-case time complexity to prune the network. Moreover, 448

the model can be reduced to smaller subnetworks at constant 449

time O(1) due to its reconfigurability feature that is adopted 450

throughout the training process. 451

There is always a tradeoff between the number of subnet- 452

works and the accuracy of the model. We assign the same 453

level of priority to the number of neurons that are deleted 454

at each level of model reduction. We call this number the 455

priority size and denote it as p. Fig. 3 illustrates the recon- 456

figuration process of the original NN model where neurons 457

are sorted and colored in terms of priority and importance. At 458

each level of reconfiguration, p number of hidden neurons with 459

the least level of priority are deleted from the end of the hid- 460

den layer. Hence, their input and output weight connections 461

are also removed from the weight space of the NN. These 462

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Model reduction process for a three-layer fully connected NN with
priority size p = 4.

subnetworks can be deployed separately while reducing the463

memory complexity to a single network. In other words, only464

one set of weight parameters are stored for multiple subnet-465

works of different sizes. We consider neuron’s ordinal number466

as our priority criteria which can be mapped into index values467

for neuron’s associated weights. Therefore, the weight decays468

vary with respect to row and column indices of the weight469

matrix where r and c denote the row and column indices,470

respectively. Equations (10) and (11) are expanded from (4).471

In (11), we see No number of output formulas that are used to472

estimate the future output behavior of the physical system in473

the next No time steps, hence the size of the prediction hori-474

zon is No. It needs to be noted that, here we do not include475

the bias terms for simplification purposes476

h0 = w1
00s0 + w1

10s1 + · · · + w1
Ni0INi (10a)477

h1 = w1
01s0 + w1

11s1 + · · · + w1
Ni1INi (10b)478

. . .479

hNh = w1
0Nh

s0 + w1
1Nh

s1 + · · · + w1
NiNh

INh (10c)480

y0 = w2
00h0 + w2

10h1 + · · · + w2
Nh0hNh (11a)481

y1 = w2
01h0 + w2

11h1 + · · · + w2
Nh1hNh (11b)482

. . .483

yNo = w2
0No

h0 + w2
1No

h1 + · · · + w2
NhNo

hNh . (11c)484

Let us assume that the model is trained for a priority-485

based architecture where the priority of neurons decreases486

inversely with their ordinal number. For a pretrained model487

with priority size p = 1, we want to reduce the size488

of the model by removing hidden neuron hNh with the489

least priority level from the hidden layer. While removing490

the hidden neuron hNo , its associated weight connections491

W1[:, Nh] = [w1
0Nh

, w1
1Nh

, . . . , w1
NiNh

] and W2[Nh, :] =492

[w2
Nh1, w2

Nh2, . . . , w2
Nh(No−1)] are removed from W1 and W2,493

respectively. In the next section, we describe the selection of494

weight decay coefficients to enforce a sorted priority on hid-495

den and output neurons. For a simple implementation we use496

the same number of hidden and output neurons. Therefore, the497

W2 weight matrix is squared.498

E. Decay Matrix499

A graphical illustration of our W1 and W2 weight matri-500

ces for hidden and output layers with p = 1 is shown501

Fig. 4. Weight parameters of hidden layer.

Fig. 5. Weight parameters of output layer.

in Figs. 4 and 5, respectively. The weight matrices in 502

Figs. 4 and 5 are darker colored based on the value of their cor- 503

responding weight decay coefficients. This helps to visualize 504

the selected distribution pattern for weight decay coefficients 505

where a priority-based architecture for our PNN model is 506

developed. In order to maintain the accuracy of the model 507

after the removal of hidden neuron hNh [computed in (10c)], 508

we want the model reduction to affect the least number of out- 509

put neurons possible. Therefore, we seek to adjust the weight 510

parameters so that removing the hidden neuron hNh mostly 511

impacts the least priority output neuron yNo . Hence, we select 512

weight decay coefficients for the weight parameters in the vec- 513

tor [w2
Nh1, w2

Nh2, . . . , w2
NhNo

] in a descending order so that the 514

least weight decay value is assigned for w2
NhNo

. Smaller weight 515

decay coefficients push the training algorithm to assign greater 516

values for the weight parameters. In this method, we try to 517

zero out [w2
Nh1, w2

Nh2, . . . , w2
Nh(No−1)] as much as possible such 518

that the removal of hNh has minimal impact on the values 519

[y1, y2, . . . , y(No−1)]. 520

To expand this idea to other neurons in the hidden layer, we 521

should change the weight decay coefficients above the main 522

diagonal of W2, in descending order per column and in ascend- 523

ing order per row, so that the least weight decay coefficients 524

are placed on the main diagonal. Moreover, we should adjust 525

the weight decay coefficients below the main diagonal of W2
526

in ascending order per column and in a descending order per 527

row. We use ascending order per column so that the priority 528

level of output neurons decreases for larger ordinal numbers 529

and descending order per row forces the weight parameters 530

on the diagonal to contribute the most to the computation of 531

their corresponding output neuron. We propose (12) to com- 532

pute the weight decay coefficient for each weight parameter 533

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 7

in order to regulate the sorted priority order of PNN neurons.534

Here, r and c denote the row and column index of the weight535

matrix, respectively. The parameter p stands for the number536

of neurons deleted at each model reduction process, hence the537

priority size538

f (x) =
⎧
⎨

⎩

[
λrc : λr(c+p)

] = βf
(r

c

)
, r ≥ c

[
λrc : λ(r+p)c

] = βf
(c

r

)
, r < c.

(12)539

Here, f (.) can be considered as a linear, exponential, or loga-540

rithmic, etc. growth function considering the target application.541

The type of function f (.) determines the variance of the pri-542

ority distribution among various neurons at each layer. The543

greater the variance of the priority distribution is, the more544

ways the original NN can be reconfigured into subnetworks.545

That means less neurons (p) are deleted per model reconfigura-546

tion (reduction) process. Larger variance for the priority order547

of neurons decreases the model accuracy as it enforces more548

constraints on weight parameters. Therefore, the function f (.)549

is assigned based on design requirements of the target applica-550

tion and the tradeoff between the model accuracy and number551

of subnetworks embedded in one NN model. The parameter β552

maps the computed value of weight decay from (12) to a range553

as λ ∈ [λmin:λmax]. This range is empirically selected based554

on the tradeoff between the model accuracy and the number555

of hidden neurons deleted per reconfiguration of the model-556

priority size. For our future work, we plan to automate the557

optimal selection of ranges for the weight decay coefficient.558

F. Other Types of Neural Networks559

The proposed priority-based approach is applied to a fully560

connected FFNN architecture. This is because state-of-the-561

art methods proposed fully connected FFNN as a predictive562

model to approximate dynamic behavior of physical systems in563

an MPC application. Previous state-of-the-art approaches has564

mostly focused on reducing the size of the fully connected565

layers in other NN architectures because these layers are well566

known to be parameter intensive and occupy more than 90%567

of the model size [15]. Another popular architecture of NNs568

for time series forecasting is RNN which is distinguished569

from FFNN by having signals traveling in both directions570

and introducing loops in the network. The RNN architecture571

can be converted into an FFNN by unfolding over time [11].572

Therefore, in our future work, we plan to expand our method573

to other NN architectures. Although we evaluate the effec-574

tiveness of our methodology for MPC applications, it can be575

generalized to other applications of NN models.576

IV. EXPERIMENTAL RESULTS577

A. Experimental Setup578

Our implementation is based on the TensorFlow frame-579

work [39] executed on a PC with a quad-core Intel Core i7580

and 16 GB of DDR3 RAM. The MPC formulation is imple-581

mented in software using the ACADO Toolkit framework [40],582

which is open source software written in C++ for automatic583

control and dynamic optimization. To evaluate the efficacy of584

our proposed methodology, we exploit the PNN as a predictive585

Fig. 6. Schematic of the vehicle model.

model in an MPC system for the path following application. 586

We describe the process on how we collect our training dataset 587

in the following section. 588

B. Simulation to Collect Training Data 589

As mentioned in Section II, the dynamic behavior of a 590

physical system formulated as ODE can be fitted into a fully 591

connected FFNN. The future control inputs and current state of 592

the physical system are fed as the input features to the FFNN 593

in order to predict the future outputs in the next n time steps. 594

To collect the training dataset, we exploit the following ODE 595

model of a vehicle [41] as shown in (13) and Fig. 6 to conduct 596

offline simulation of MPC for a path following application: 597

ṡ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v sin(θ)

v cos(θ)

cos(δ)a− 2

m
Fy,f sin(δ)

φ
1

J
(La(masin(δ)+ 2Fy,f cos(δ))− 2LbFy,r)

ω

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13) 598

Here, s = [x, y, v, θ, φ, δ] is the vector of state variables with 599

acceleration a and steering angular speed ω as control inputs. 600

The variables x and y stand for longitudinal and lateral posi- 601

tions, and v and θ are velocity and the azimuth. The variables 602

δ and φ represent the steering angle and speed, respectively. 603

The distance from sprung mass center of gravity to the front 604

and rear axles are denoted as La and Lb, respectively, and J is 605

the angular momentum. The variables Fy,f and Fy,r stand for 606

front and rear tire lateral forces. These forces are computed 607

from the following equations: 608

Fy,f = Cy

(
δ − Laφ

v

)
(14a) 609

Fy,r = Cy

(
Lbφ

v

)
(14b) 610

where Cy is the lateral tire stiffness. We applied real-world 611

parameters of a 2011 Ford Fusion as La = Lb =1.5 m, mass 612

m = 1700 kg, and tire stiffness data for our experiments. The 613

MPC formulation to follow the reference path xr, yr is the 614

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 7. Performance of PNN for different ranges of weight decay coefficients.

solution to the following optimization problem:615

min.
x,y

Tp∑

t=0

‖x̂(k + 1|k)− xr(k + 1|k)‖2Qc
(15a)616

+ ‖ŷ(k + 1|k)− yr(k + 1|k)‖2Qc
(15b)617

s.t. δmin ≤ δ ≤ δmax (15c)618

ωmin ≤ ω ≤ ωmax (15d)619

amin ≤ a ≤ amax. (15e)620

We simulate the MPC to predict 101 time steps in the621

future with time intervals of 5.05 s for a vehicle with an622

average speed of v = 10 (m/s). The appropriate value for623

the prediction horizon and step size is bounded by some624

factors such as stability and accuracy requirements and it625

varies based on plant dynamic characteristics. We implement626

an FFNN with input size Ni = 6 + 102 for six values of627

current state variables and future control inputs in the next628

101 time steps. We select No = 102 as the output size for our629

NN to predict the future output of the physical system in the630

next 101 time steps. The number of hidden neurons in our631

three-layer FFNN are Nh = No.632

C. PNN Training633

In order to fine tune the range of weight decay coefficients634

λ ∈ [λmin:λmax] and select an appropriate value for the con-635

stant factor β in (12), we empirically pick the values that636

yield the best performance on a held-out dataset. Therefore,637

we conducted experiments based on five different ranges of638

coefficients. Fig. 7 shows the error rate of the PNN model with639

respect to variations in the range of weight decay coefficients.640

The optimal range of weight decay coefficients for each layer641

may change with respect to the size of the next layer. In642

back propagation training, the gradient term in (9) is scaled643

with the size of the next layer [42]. Therefore, to compen-644

sate for the rescaling in the gradient term of the update rule,645

the optimal range for weight decay coefficients might change.646

These results are derived for priority size of p = 10, which647

denotes the number of hidden neurons that are removed at each648

reconfiguration of the model to a smaller subnetwork. Greater649

values of p restrict the original NN model to be reconfigured650

to less number of subnetworks. Naturally, there is always a651

tradeoff between the accuracy of the model and the number652

of subnetworks as shown in Fig. 8. Considering this trade-653

off, the user might select an optimal priority size based on the654

design requirements for the target application. The error values655

Fig. 8. Performance of PNN for different priority sizes.

in this figure are collected while reducing the size of the NN 656

to 50% of its original size. A tradeoff still remains between the 657

number of subnetworks with acceptable error values and the 658

percentage at which the size of the model is reduced. With 659

respect to the application and design requirements, the user 660

may select the appropriate value for the hyper parameter p. 661

D. Comparison to State-of-the-Art Methodologies 662

We evaluate the performance of our methodology in train- 663

ing a resource-aware NN model with two state-of-the-art 664

approaches that are proposed as solutions to implement 665

resource efficient NN in embedded system. By using the nota- 666

tion resource-aware NN model, we are implying that these 667

NN models are targeted for systems that monitor the resource 668

usage and dynamically manage the allocated resources to the 669

NN model with respect to runtime constraints. The results are 670

collected for a three-layer fully connected NN of 108×102 and 671

102× 102 inputs to its hidden and output layers, respectively. 672

The Big/Little approach [16], suggests multiple implemen- 673

tations of an NN model with small to bigger sizes. In the 674

Incremental method [20], which is the most similar to ours, 675

the NN is trained based on an iteratively incremental train- 676

ing algorithm where the weights computed in the earlier 677

steps are fixed. The Big/Little approach would require sep- 678

arate memory storage to hold model parameters of different 679

sizes. Moreover, a retraining process is mandatory to gener- 680

ate multiple sizes for the NN model. The Inc method is more 681

memory efficient such that only one set of model parameters 682

are stored to implement an NN model that can be recon- 683

figured into subnetworks with different sizes. However, this 684

approach suffers from the retraining overhead per increment 685

of size. In today’s embedded systems, where runtime contin- 686

uous learning of NNs is required, retraining process overhead 687

is prohibitive [17]. Our proposed PNN model is memory effi- 688

cient such that only one set of weights are computed for 689

multiple subnetworks. Furthermore, we compute the model 690

parameters for PNN in a single-training process. Throughout 691

the examples, we use the following abbreviation to indicate the 692

three models: 1) PNN: priority-based; 2) Inc: Incremental; and 693

3) BL: Big/Little. 694

Emerging research is based on developing approaches to 695

estimate the number of neurons and hidden layers required 696

for an NN [43]. However, these approximations also depend 697

on the type of the database samples for which the network is 698

designed. Therefore, it is still challenging to determine a good 699

network topology for different applications. Therefore, exhaus- 700

tive pruning and model reduction methodologies are in demand 701

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 9

(a)

(b)

(c)

Fig. 9. Comparing activation values of neurons with respect to their ordinal
number. Activation values for neurons in (a) PNN, (b) Inc., and (c) Big/Little.

to reduce the over-sized NN models. One advantage of our702

proposed priority-based training algorithm is that it enforces a703

relatively sorted distribution to the activation values. We com-704

pare the activation value of hidden neurons for our proposed705

PNN model with respect to the incrementally trained model706

and the Big/Little model that is trained with no constraint on707

its weight parameters in Fig. 9. For fairness of comparison,708

all experiments are conducted with the same size for all three709

models. The ordinal number of the neuron denotes the position710

of the respective neuron in the layer. The dotted red line shows711

the trend for linear changes in activation values with respect to712

ordinal number of the neuron. As shown in Fig. 9(a), the acti-713

vation values for the hidden neurons in PNN with priority size714

p = 10 is following a sorted order. The trend line shows that the715

density of the model is mostly populated throughout the first716

neurons and the activation values for the neurons further in the717

end of the layer are forced to be very small. This is as opposed718

to the two other methods that show a more uniform distribu-719

tions of activation values for the neurons. The incremental720

approach in Fig. 9(b) also shows slight sorted order among721

activation values. However, as represented by the trend line,722

the rate of change for neuron’s activation value with respect723

to its ordinal number is very slow compared to PNN method.724

In other words, in incremental approach, the weight param-725

eters are adjusted more uniformly throughout the network.726

This decreases the number of subnetworks and the number727

TABLE I
COMPARING THE TRAINING PROCESS

of hidden neurons that can be pruned from the model without 728

major drop in accuracy. 729

Table I compares the training process for a three layer 730

fully connected FFNN using the three aforementioned meth- 731

ods. The data is collected to train six separate subnetworks of 732

various sizes using the three methods. As we can see in the 733

table, our proposed method can generate six separate subnet- 734

works in single training process. This is as opposed to the two 735

other methods that require retraining for each of the subnet- 736

works. The performance of these six subnetworks is evaluated 737

in Fig. 10(a) and (b) where the x-axis represents the num- 738

ber of hidden neurons at each subnetwork. The retraining 739

process imposes additional computation complexity to retune 740

the parameters and hyper parameters. We can see that our 741

proposed model reduces the computation overhead for the 742

training process substantially. The training time is a critical 743

matter especially in embedded systems for CPS applications 744

where many NN models are trained on the fly. 745

In Fig. 10(a), we show the prediction time values over 746

six different subnetwork sizes. The results show similar 747

performance for all three approaches in terms of runtime 748

prediction overhead which increases for larger network size. 749

As shown in the figure, by reducing the number of hidden 750

neurons to half of its original size, we can improve the compu- 751

tation overhead by 30%. However, this saving in computation 752

time comes as a tradeoff for model accuracy. Fig. 10(b) shows 753

the percentage prediction error values for different subnetwork 754

sizes. The results for the BL [16] method that trains the subnet- 755

works separately with no additional constraints show that after 756

a certain point the model error does not change with growth in 757

the NN size. This justifies the over-parameterization phenom- 758

ena in training the NN that urges pruning and model reduction 759

methodologies. Moreover, the mean of prediction error for 760

six different subnetworks using our proposed PNN method 761

and Inc. [20] are 0.2% and 0.25%, respectively. Therefore, 762

our proposed PNN method outperforms the Inc approach for 763

better prediction performance with no additional retraining 764

process needed. 765

In order to evaluate the comparability of model accuracy 766

among the three methods, we also show the probability distri- 767

bution of prediction error values in Fig. 10(c). These results 768

are collected for a full-size NN with no model reduction 769

process performed. We can see in the figure that the low 770

variation in prediction errors using our proposed PNN model, 771

confirms its stable performance in prediction of various test 772

data. Moreover, the average of prediction errors for the PNN 773

model is very close to that of BL method. This experiment 774

ensures that our proposed model is validated as a memory 775

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a)

(b)

(c)

Fig. 10. Performance comparison of three resource-aware approaches.
(a) Execution time. (b) Prediction error. (c) Probability distribution of
prediction error for full-size NN.

TABLE II
COMPARING MEMORY REDUCTION WITH RESPECT TO ERROR

efficient architecture for NN models with small drop in accu-776

racy and comparable performance can be acquired using all777

three methods.778

We compare the efficiency of the three resource-aware meth-779

ods in terms of memory requirements and model reduction780

complexity in Table II. The PNN and Inc methods are both781

memory efficient in that they need one set of weight parame-782

ters to store multiple subnetwork sizes. This is as opposed to783

the BL method that requires separate memory to store each784

subnetwork. Therefore, we can achieve 78% saving in memory785

to store six subnetworks with very small loss in accuracy.786

To summarize, our proposed PNN model outperforms the787

BL method with 89% reduction in training time and 78% sav-788

ing in memory storage. Moreover, the computation complexity789

of the model reduction process to search for n neurons below790

the pruning threshold is improved from O(n) to O(logn). The791

PNN model shows similar results to Inc method in terms of792

memory and model reduction complexity. However, we show 793

that PNN follows a single training process to adjust weight 794

parameters as opposed to Inc method that is based on multiple 795

retraining. Therefore, The PNN model can cut down the train- 796

ing time by 86% with respect to Inc method while maintaining 797

a better prediction performance from 0.25% to 0.21%. 798

V. CONCLUSION 799

In this paper, we proposed PNN, a resource-aware NN 800

model with a reconfigurable architecture. We proposed a train- 801

ing algorithm to exploit regularization constraints on each 802

neuron based on their ordinal number at a given layer. This 803

enforces a sorted order distribution for the activation value of 804

the neurons. We implemented our model for a three-layer fully 805

connected NN architecture to be employed as the predictive 806

model of a vehicle in MPC for path tracking application. 807

To corroborate the effectiveness of our proposed methodol- 808

ogy, we compared it with two state-of-the-art methods for 809

resource-aware NN design. We showed that compared to cur- 810

rent state-of-the-art, our approach achieves 75% reduction in 811

memory usage and 87% less training time with no significant 812

drop in accuracy. Moreover, we improve the computational 813

complexity of the model reduction process in order to prune 814

n number of neurons, from O(n) to O(logn). 815

REFERENCES 816

[1] F. Cicirelli, L. Nigro, and P. F. Sciammarella, “Model continuity 817

in cyber-physical systems: A control-centered methodology based on 818

agents,” Simulat. Model. Pract. Theory, vol. 83, pp. 93–107, Apr. 2017. 819

[2] K. Vatanparvar and M. A. A. Faruque, “Eco-friendly automotive cli- 820

mate control and navigation system for electric vehicles,” in Proc. 821

ACM/IEEE 7th Int. Conf. Cyber. Phys. Syst. (ICCPS), Vienna, Austria, 822

2016, pp. 1–10. 823

[3] K. Vatanparvar and M. A. A. Faruque, “Design and analysis of battery- 824

aware automotive climate control for electric vehicles,” ACM Trans. 825

Embedded Comput. Syst., vol. 17, no. 4, p. 74, 2018. 826

[4] M. Amir and T. Givargis, “Hybrid state machine model for fast model 827

predictive control: Application to path tracking,” in Proc. IEEE 36th Int. 828

Conf. Comput.-Aided Design, Irvine, CA, USA, 2017, pp. 185–192. 829

[5] M. Amir and T. Givargis, “HES machine: Harmonic equivalent state 830

machine modeling for cyber-physical systems,” in Proc. IEEE Int. High 831

Level Design Validation Test Workshop (HLDVT), Santa Cruz, CA, USA, 832

2017, pp. 31–38. 833

[6] E. F. Camacho and C. Bordons, Model Predictive Control in the Process 834

Industry, 2nd ed. London, U.K.: Springer-Verlag, 2007. 835

[7] A. N. Gorban and D. Roose, Coping With Complexity: Model Reduction 836

and Data Analysis, vol. 75. Heidelberg, Germany: Springer, 2011. 837

[8] J. S. Barlow, “Data-based predictive control with multirate prediction 838

step,” in Proc. IEEE Amer. Control Conf. (ACC), Baltimore, MD, USA, 839

2010, pp. 5513–5519. 840

[9] A. Jadbabaie and J. Hauser, “On the stability of receding horizon control 841

with a general terminal cost,” IEEE Trans. Autom. Control, vol. 50, no. 5, 842

pp. 674–678, May 2005. 843

[10] G. Droge and M. Egerstedt, “Adaptive time horizon optimization in 844

model predictive control,” in Proc. IEEE Amer. Control Conf. (ACC), 845

San Francisco, CA, USA, 2011, pp. 1843–1848. 846

[11] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. 847

Jenssen, An Overview and Comparative Analysis: Recurrent Neural 848

Networks for Short Term Load Forecasting. New York, NY, USA: 849

Springer, 2017. 850

[12] J. Fojdl and R. W. Brause, “The performance of approximating ordinary 851

differential equations by neural nets,” in Proc. 20th IEEE Int. Conf. Tools 852

Artif. Intell. (ICTAI), vol. 2. Dayton, OH, USA, 2008, pp. 457–464. 853

[13] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con- 854

volutional neural networks using energy-aware pruning,” in Proc. IEEE 855

Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, 2017, 856

pp. 6071–6079. 857

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 11

[14] A. Mujika, F. Meier, and A. Steger, “Fast-slow recurrent neural858

networks,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 5915–5924.859

[15] W. Pan, H. Dong, and Y. Guo, “DropNeuron: Simplifying the structure of860

deep neural networks,” arXiv:1606.07326 [cs, stat], Jun. 2016. [Online].861

Available: http://arxiv.org/abs/1606.07326862

[16] E. Park et al., “Big/little deep neural network for ultra low power infer-863

ence,” in Proc. 10th Int. Conf. Hardw. Softw. Codesign Syst. Synth.,864

Amsterdam, The Netherlands, 2015, pp. 124–132.865

[17] K. Vatanparvar and M. A. A. Faruque, “ACQUA: Adaptive and coop-866

erative quality-aware control for automotive cyber-physical systems,”867

in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Irvine,868

CA, USA, 2017, pp. 193–200.869

[18] W. Hu, Y. Qian, F. K. Soong, and Y. Wang, “Improved mispronunciation870

detection with deep neural network trained acoustic models and transfer871

learning based logistic regression classifiers,” Speech Commun., vol. 67,872

pp. 154–166, Mar. 2015.873

[19] W. He, Y. Chen, and Z. Yin, “Adaptive neural network control of an874

uncertain robot with full-state constraints,” IEEE Trans. Cybern., vol. 46,875

no. 3, pp. 620–629, Mar. 2016.876

[20] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, “Runtime configurable877

deep neural networks for energy-accuracy trade-off,” in Proc. Int. Conf.878

Hardw. Softw. Codesign Syst. Synth. (CODES+ISSS), Pittsburgh, PA,879

USA, 2016, pp. 1–10.880

[21] K. Vatanparvar and M. A. A. Faruque, “Battery lifetime-aware881

automotive climate control for electric vehicles,” in Proc. 52nd882

ACM/EDAC/IEEE Design Autom. Conf. (DAC), San Francisco, CA,883

USA, 2015, pp. 1–6.884

[22] C. T. Kelley, Solving Nonlinear Equations With Newton’s Method.885

Philadelphia, PA, USA: SIAM, 2003.886

[23] P. Krauthausen and U. D. Hanebeck, “A model-predictive switching887

approach to efficient intention recognition,” in Proc. IEEE/RSJ Int. Conf.888

Intell. Robots Syst. (IROS), Taipei, Taiwan, 2010, pp. 4908–4913.889

[24] U. Halldorsson, M. Fikar, and H. Unbehauen, “Nonlinear predictive con-890

trol with multirate optimisation step lengths,” IEE Proc. Control Theory891

Appl., vol. 152, no. 3, pp. 273–284, May 2005.892

[25] N.-B. Hoang and H.-J. Kang, “Neural network-based adaptive tracking893

control of mobile robots in the presence of wheel slip and external894

disturbance force,” Neurocomputing, vol. 188, pp. 12–22, May 2016.895

[26] D. Solomatine, L. M. See, and R. J. Abrahart, “Data-driven modelling:896

Concepts, approaches and experiences,” in Practical Hydroinformatics.897

Heidelberg, Germany: Springer, 2009, pp. 17–30.898

[27] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural899

networks: A review,” IEEE Access, vol. 5, pp. 17322–17341, 2017.900

[28] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and901

acceleration for deep neural networks: The principles, progress, and902

challenges,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 126–136,903

Jan. 2018.904

[29] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen,905

“Compressing neural networks with the hashing trick,” in Proc. Int.906

Conf. Mach. Learn., 2015, pp. 2285–2294.907

[30] S. Han et al., “EIE: Efficient inference engine on compressed deep neural908

network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.909

(ISCA), Seoul, South Korea, 2016, pp. 243–254.910

[31] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks911

via layer-wise optimal brain surgeon,” in Proc. Adv. Neural Inf. Process.912

Syst., 2017, pp. 4860–4874.913

[32] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured914

sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.915

Syst., 2016, pp. 2074–2082.916

[33] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very917

deep neural networks,” in Proc. Int. Conf. Comput. Vis. (ICCV), vol. 2,918

2017, pp. 1389–1397.919

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing920

deep neural networks with pruning, trained quantization and Huffman921

coding,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016.922

[35] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con- 923

nections for efficient neural network,” in Proc. Adv. Neural Inf. Process. 924

Syst., 2015, pp. 1135–1143. 925

[36] Z. Tang and P. A. Fishwick, “Feedforward neural nets as models for 926

time series forecasting,” ORSA J. Comput., vol. 5, no. 4, pp. 374–385, 927

1993. 928

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 929

in Proc. Int. Conf. Learn. Represent. (ICLR), 2015. 930

[38] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data- 931

driven neuron pruning approach towards efficient deep architectures,” 932

arXiv preprint arXiv:1607.03250, 2016. 933

[39] M. Abadi et al., “TensorFlow: A system for large-scale machine learn- 934

ing,” in Proc. OSDI, vol. 16. Savannah, GA, USA, 2016, pp. 265–283. 935

[40] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit—An open 936

source framework for automatic control and dynamic optimization,” Opt. 937

Control Appl. Methods, vol. 32, no. 3, pp. 298–312, 2011. 938

[41] K. Zhang, J. Sprinkle, and R. G. Sanfelice, “Computationally aware 939

control of autonomous vehicles: A hybrid model predictive control 940

approach,” Auton. Robots, vol. 39, no. 4, pp. 503–517, 2015. 941

[42] M. Ishii and A. Sato, “Layer-wise weight decay for deep neural 942

networks,” in Proc. Pac.-Rim Symp. Image Video Technol., Wuhan, 943

China, 2017, pp. 276–289. 944

[43] S. Karsoliya, “Approximating number of hidden layer neurons in 945

multiple hidden layer BPNN architecture,” Int. J. Eng. Trends Technol., 946

vol. 3, no. 6, pp. 714–717, 2012. 947

Maral Amir (GS’15) received the first M.S. degree 948

in embedded electrical and computer systems from 949

San Francisco State University, San Francisco, CA, 950

USA, in 2014, and the second M.S. degree in com- 951

puter science from the University of California at 952

Irvine, Irvine, CA, USA, in 2018, where she is 953

currently pursuing the Ph.D. degree in computer 954

science. 955

Her current research interests include model 956

reconfiguration/compression methods for resource- 957

aware cyber-physical systems and machine learning 958

applications. 959

Tony Givargis (SM’98) received the B.S. and Ph.D. 960

degrees in computer science from the University of 961

California at Riverside, Riverside, CA, USA, in 1997 962

and 2001, respectively. 963

He is a Professor of Computer Science with 964

the School of Information and Computer Sciences, 965

University of California at Irvine, Irvine, CA, USA. 966

He has authored over 100 peer reviewed papers. 967

He is a named inventor on 11 U.S. patents and 968

has co-authored two popular textbooks on embedded 969

system design. His current research interests include 970

embedded systems with an emphasis on embedded and system software. 971

Prof. Givargis was a recipient of numerous teaching, service, and research 972

awards, including the Frederick Emmons Terman Award, presented annu- 973

ally to an outstanding young electrical engineering educator by the Electrical 974

and Computer Engineering Division of the American Society for Engineering 975

Education. 976

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Priority Neuron: A Resource-Aware Neural
Network for Cyber-Physical Systems

Maral Amir , Graduate Student Member, IEEE, and Tony Givargis, Senior Member, IEEE

Abstract—Advances in sensing, computation, storage, and1

actuation technologies have entered cyber-physical systems2

(CPSs) into the smart era where complex control applications3

requiring high performance are supported. Neural networks4

(NNs) models are proposed as a predictive model to be used in5

model predictive control (MPC) applications. However, the ability6

to efficiently exploit resource hungry NNs in embedded resource-7

bound settings is a major challenge. In this paper, we propose8

priority neuron network (PNN), a resource-aware NNs model that9

can be reconfigured into smaller subnetworks at runtime. This10

approach enables a tradeoff between the model’s computation11

time and accuracy based on available resources. The PNN model12

is memory efficient since it stores only one set of parameters13

to account for various subnetwork sizes. We propose a train-14

ing algorithm that applies regularization techniques to constrain15

the activation value of neurons and assigns a priority to each16

one. We consider the neuron’s ordinal number as our priority17

criteria in that the priority of the neuron is inversely propor-18

tional to its ordinal number in the layer. This imposes a relatively19

sorted order on the activation values. We conduct experiments to20

employ our PNN as the predictive model of a vehicle in MPC for21

path tracking. To corroborate the effectiveness of our proposed22

methodology, we compare it with two state-of-the-art methods for23

resource-aware NN design. Compared to state-of-the-art work,24

our approach can cut down the training time by 87% and reduce25

the memory storage by 75% while achieving similar accuracy.26

Moreover, we decrease the computation overhead for the model27

reduction process that searches for n neurons below a threshold,28

from O(n) to O(logn).29

Index Terms—Cyber-physical system, model predictive control30

(MPC), neural networks (NNs), resource-aware.31

I. INTRODUCTION32

CYBER-PHYSICAL systems (CPSs) are composed of33

cyber and physical components in a feedback loop, where34

physical processes affect computations and vice versa [1]–[3].35

With the recent developments in CPS, cloud computing,36

machine learning, and artificial intelligence technologies, it37

is just a matter of time before autonomous drivers replace38

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. This work was supported by the National Science
Foundation under NSF Grant 1563652. This article was presented in
the International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS) 2018 and appears as part of the ESWEEK-TCAD
special issue. (Corresponding author: Maral Amir.)

The authors are with the Department of Computer Science, University
of California at Irvine, Irvine, CA 92697 USA (e-mail: mamir@uci.edu;
givargis@uci.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857319

Fig. 1. MPC loop.

humans on the road. Vehicles are now embedded with intel- 39

ligent devices that enable the vehicle to respond to various 40

factors and obstacles, sudden acceleration or braking, etc., 41

in real-time. The control and prediction of system dynamics 42

are important factors in autonomous driving [4], [5]. Model 43

predictive control (MPC), also known as receding horizon con- 44

trol, is an advanced control method. MPC makes explicit use 45

of a model of the physical system to estimate its behavior for 46

a given stream of inputs in a predetermined prediction hori- 47

zon. The predicted outputs depend on the past inputs/outputs, 48

and the future control signals [6]. As shown in Fig. 1, these 49

future control signals are calculated by the optimizer taking 50

into account the cost function and enforced constraints. The 51

cost function usually takes the form of a quadratic function 52

of errors between the predicted output signal and the refer- 53

ence trajectory. In the standard approach, ordinary differential 54

equations (ODEs) are employed as the predictive model to 55

represent the dynamic behavior of a physical system. Iterative 56

methods to approximate a solution for nonlinear ODEs have 57

introduced challenges in the design of embedded MPCs in 58

terms of scalability, performance, and power consumption [7]. 59

The computational overhead in traditional MPC grows 60

exponentially with the length of the prediction horizon [8]. 61

Research shows that a stable MPC controller requires a suffi- 62

ciently large prediction horizon [9]. On the other hand, short 63

prediction horizons are preferred for improved prediction accu- 64

racy of predictive models. This is because harmful effects 65

of the poor estimates are amplified over a long prediction 66

horizon time. Here, the problem is addressed by proposing 67

an MPC approach that uses an adaptive prediction horizon 68

with respect to quality measures [10]. However, the numerical 69

effort needed in order to solve the optimal control problem 70

for a long prediction horizon still remains significant. One 71

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

approach to overcome the computational burden of long hori-72

zon predictions is by implementing multirate prediction. In73

this approach, each look-ahead has a separate weight in the74

estimation of the steering input, where the furthest look-ahead75

point has the lowest weight [8].76

Another method that is proposed to handle the computa-77

tional issue associated with MPC systems is to use accelerated78

predictive models of the physical system. Different variants79

of neural networks (NNs) (e.g., recurrent NNs (RNNs) [11])80

hold promising performance for time-series prediction as they81

can easily be built to predict multiple steps ahead all at82

once. These models are well-known to have the ability to83

learn linear and nonlinear relations between input and output84

variables without prior knowledge [12]. However, the use of85

NN models for long prediction horizon MPC problems could86

raise scalability and computational complexity challenges.87

The state-of-the-art methodologies are focused on reducing88

the size of the NN models without significantly affecting89

the performance [13]–[15]. These methodologies leverage the90

intrinsic error tolerance property of the NN models due to their91

parallel and distributed structure. Therefore, model reduction92

schemes could be exploited to employ the NN as the predictive93

model in the MPC loop. Several recent studies have focused94

on rescaling the size of the NN to adjust the resource usage on95

the embedded platform with respect to response time, power,96

and accuracy targets [16]. In other words, several sizes of the97

NN are available at runtime to manage resources for inference98

time-, safety-, and energy-constrained tasks. Moreover, contin-99

uous learning of NNs in data-driven modeling [17], transfer100

learning techniques [18], and adaptive modeling [19] impose101

significant training-time constraints at runtime.102

A. Our Contribution103

In this paper, we propose priority neuron network (PNN),104

a novel NN model that is featured with a reconfigurable105

architecture. Our objective is to design a resource-aware recon-106

figurable NN model that not only computes the future outputs107

as time series data in constant time, but is also memory effi-108

cient. The summary of our contributions in this paper are109

as follows.110

1) We develop a reconfigurable NN model to fit the111

dynamic behavior of the physical systems for multistep-112

ahead prediction in receding horizon problems. Our113

resource-aware NN model can be reconfigured to var-114

ious network sizes at runtime while storing only one set115

of weight parameters for memory efficiency.116

2) We propose a training algorithm that controls the pri-117

ority of each neuron in the computation of the model’s118

output. We regulate the priority of each neuron using119

regularization techniques enforced on weight parame-120

ters. We consider the neuron’s ordinal number as our121

priority criteria in that the priority of the neuron is122

inversely proportional to its ordinal number. We can123

reconfigure our NN model to smaller sizes by elimi-124

nating low priority neurons. This approach allows the125

tradeoff between the model’s computation time and126

accuracy in resource-constrained systems.127

3) We implement our reconfigurable NN model that con- 128

tains multiple subnetworks using one-time training, 129

hence reducing overall training time. 130

4) Our priority-based training algorithm enforces a sorted 131

distribution on activation values of neurons. This helps 132

to reduce the computation complexity of the model 133

reduction process when searching for n neurons below 134

the pruning threshold, from O(n) to O(logn). It needs 135

to be pointed out that we are not proposing a pruning 136

methodology, but a memory efficient NN model that can 137

be reconfigured to smaller sizes with less computation 138

complexity at runtime. 139

5) We apply our method to train a three-layer fully con- 140

nected NN model to be employed as the predictive 141

model of a vehicle in MPC for path tracking applica- 142

tion. We conduct closed-loop simulation of MPC using 143

ODE predictive models to collect the training data. 144

To evaluate the efficacy of our methodology, we com- 145

pare it with two state-of-the-art approaches-Inc [20] 146

and Big/Little [16]—that are targeted for resource-aware 147

NN design in embedded systems. We show that our 148

proposed PNN model outperforms the BL method with 149

89% reduction in training time and 78% saving in 150

memory storage. The PNN model shows similar results 151

to Inc method in terms of memory and model reduc- 152

tion complexity. However, we show that PNN follows 153

a single training process to adjust weight parameters as 154

opposed to Inc method that is based on multiple retrain- 155

ing. Therefore, the PNN model can cut down the training 156

time by 86% with respect to Inc method while main- 157

taining a better prediction performance from 0.25% to 158

0.21%. 159

The rest of this paper is organized as follows. In Section II, 160

we summarize the state-of-the-art approaches to solve the 161

computational complexity of MPC systems and design 162

resource-efficient NN models. We describe our proposed 163

method in Section III. We demonstrate the effectiveness of 164

our framework for path following application in Section IV. 165

Finally, we give our conclusions in Section V. 166

II. BACKGROUND AND RELATED WORK 167

Advanced control methodologies have emerged for path 168

planning and path following applications in modern vehicles. 169

Nonlinear MPC is leveraged to develop path following con- 170

trol systems while handling model uncertainties, constraints 171

and nonlinearities. A predictive model of the physical plant 172

is used to estimate the future outputs for a prediction horizon 173

within a window of time and with respect to known input and 174

output values (Fig. 1). Mathematical descriptions in the form 175

of ODEs are used to model the linear/nonlinear behavior of 176

the physical system [21]. ODE solvers are applied to estimate 177

solutions that converge to the exact solution of an equation 178

or system of equations [22]. A runtime optimization routine 179

is evaluated as a parametric quadratic function to calculate 180

a set of future control inputs subject to constraints enforced 181

by the environment and system dynamics. These routines are 182

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 3

computationally intensive, and for nonlinear physical mod-183

els, the computational overhead grows with complexity of the184

model [23].185

One of the challenges in classic MPC is that the compu-186

tational overhead increases with the length of the prediction187

horizon [8]. One approach to overcome the computational bur-188

den of long horizon predictions is by implementing a multirate189

prediction control strategy, where the prediction horizon is190

sampled in nonequidistant way [24]. In this approach, for a191

determined prediction horizon of n time steps, the initial steps192

have a shorter sampling period than the ones in the more dis-193

tant future. In other words, fine tuning the control in such194

a way as to reduce the importance of predictions that con-195

tribute to time steps further in the future. Novel approaches196

are proposed for nonlinear dynamic system modeling and iden-197

tification, where the NN realizes the behavior of a set of ODEs198

with smaller computation overhead [12], [25]. Moreover, data-199

driven NNs are increasingly in demand. Data-driven NNs are200

based on direct use of input-output observations collected from201

various real-world processes to perform system optimization,202

control and/or modeling [26]. Classic NNs have a three-layer203

structure, namely input, hidden, and output layers. Each layer204

contains a set of neurons with edges to pass the information.205

The edges entering the neurons are associated with weight206

parameters. The weight parameters are adjusted in a training207

algorithm (e.g., by back propagation) so that the difference208

between the network’s prediction and the target output is209

minimized.210

Developing resource-efficient NNs for embedded systems211

with limited hardware resources is a challenging task. To solve212

the memory complexity of NN models, many model com-213

pression approaches are proposed based on the claim that214

NN models have natural error tolerance because NNs usu-215

ally contain more neurons than necessary to solve a given216

problem [27]. Many network pruning and model reduction217

techniques are proposed in the previous work with promising218

results [28]–[30]. However, finding an optimal pruning solu-219

tion is NP-hard and requires a costly retraining process [31].220

Many works have focused on selecting weight parameters for221

pruning based on criteria such as magnitude of the weight,222

activation value for the respective neuron, and increase in223

training error [32]–[34]. Han et al. [35] proposed an iterative224

pruning method that removes all neuron connections whose225

weight is lower than a certain threshold. This approach con-226

verts a dense fully connected layer into a sparser layer. The227

pruning is followed by a retraining process to boost the228

performance of the trimmed NN. A common approach to229

reduce the size of the “parameter intensive” fully connected230

layers is to reduce the magnitude of the overall weight param-231

eters by including regularization terms in the model’s cost232

function. Pan et al. [15] exploited regularization terms during233

the training process to simplify the NN model. At the end of234

the training, the NN is trimmed by dropping neurons below a235

certain threshold.236

Another approach to address resource-constrained deploy-237

ment of NNs for embedded systems is to adapt the size of the238

NN model to the performance requirements. Park et al. [16]239

addressed the energy complexity of NNs using a novel240

big/little implementation, whereby a score margin metric is 241

employed to select between the two sizes. This approach is 242

memory intensive such that it requires storing separate sets of 243

weights for different sizes of NNs. Tann et al. [20] addressed 244

the memory complexity problem by proposing a multistep 245

incremental training algorithm such that the weights trained in 246

earlier steps are fixed. In this method, multiple subnetworks 247

with different sizes are formed while storing and using only 248

one sets of weight parameters. Although this approach is close 249

to ours, our proposed method is more computationally flexible 250

in generating multiple subnetwork sizes and does not suffer 251

from a time-consuming retraining process. In the following 252

section, we describe PNN, our proposed reconfigurable NN 253

model and its training algorithm. 254

III. METHOD 255

A. Application of Neural Networks in Model Predictive 256

Control 257

MPC exploits a predictive model of the physical system to 258

produce an optimized control input sequence. The predictive 259

model computes the output of the system, a number of time 260

steps into the future based on the current output and future con- 261

trol input values. Therefore, the predictive model to estimate 262

future outputs at time k in the next n time steps—Y(k+n|k)— 263

can be formulated as a time series prediction function f of 264

future control inputs I(k + n|k) and a vector of current state 265

variables S(k|k) for S = [S0, S1, . . . , SNs]. Time-series data is 266

a sequence of time-ordered values as measurements of some 267

physical process [36] 268

Y(k + n|k) = f (S(k|k), I(k + n|k)). (1) 269

The prediction function in (1) can be fitted in a multiple 270

input multiple output NN model with future control inputs and 271

current state of the physical system as its input features and 272

the future outputs in the next n time steps as its target outputs. 273

Once the function is learned, the acyclic NN model computes 274

the future outputs as a time-series data in constant computing 275

time [12]. We use a three-layer fully connected feed-forward 276

NN (FFNN) to fit (1) and approximate the dynamic behavior 277

of the physical system. The FFNN is a class of NNs, where the 278

input signal feeds forward through the network layers to the 279

output in a single direction. Here, each layer of the network 280

consists of computing neurons with edges that typically have 281

a weight parameter. The output ŷi of the NN model can be 282

computed as follows given xk input features for i ∈ {1 · · ·No} 283

and k ∈ {1 · · ·Ni}: 284

ŷi =
Nh∑

j=1

[
w2

ji σ

(Ni∑

k=1

w1
kjxk + θ1

j

)
+ θ2

i

]
(2) 285

where Ni, Nh, and No denote the numbers of input-layer, 286

hidden-layer, and output-layer neurons, respectively. The 287

parameters w1
kj and w2

ji are weights connecting the first layer 288

to hidden layer and connecting the hidden layer to the output 289

layer, respectively, and are adjusted in the learning process. 290

The threshold offsets for the hidden and output layers are 291

represented as θ1 and θ2. The function σ(.) represents an 292

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

activation functions, e.g., sigmoid, or rectified linear unit293

(ReLU), that limits the variation to output values with respect294

to changes in NN parameters.295

B. Architecture of Priority Neuron Neural Network As296

Predictive Model in MPC297

We propose PNN, a resource-aware reconfigurable NN such298

that the full model can be reconfigured to smaller sizes for less299

computation time and relatively comparable accuracy. Here,300

we deploy our proposed NN model for multistep ahead time-301

series prediction in constant time for an MPC application.302

However, the proposed NN model can be generalized for other303

prediction applications, e.g., computer vision. As stated in304

Section III-A, the nonlinear model in (1) is used by MPC to305

compute future behavior of the physical system can be fitted306

into a three-layer fully connected FFNN. The future control307

inputs and current state of the physical system are given as308

the input features to the FFNN to approximate the future out-309

puts in the next n time steps. The proposed NN model can be310

described as in (2) for Ni = (# of state variables(Ns) + No)311

and Nh = No = (# of time steps in the prediction horizon(n)).312

The value for Nh is set empirically equal to No. We have two313

weight matrices W1 and W2 with sizes (Ni×Nh) and (Nh×No)314

containing connecting weights of our hidden and output lay-315

ers, respectively. We use the ReLU activation function which316

is one of the most widely used activation functions and is317

defined as318

σ(z) = max(0, z). (3)319

During the prediction process of the NN, we would ideally320

want a few neurons in the network to not activate, thereby321

making the activations sparse and efficient. The ReLU activa-322

tion function gives us the ability to design a sparser NN model323

because it outputs 0 for negative input values and imposes no324

constraint on the positive inputs. Equation (2) is broken down325

into (4a) and (4b) to compute the outputs of hidden and output326

neurons, respectively. Here, for brevity, the bias parameters are327

deleted328

hj = σ

(Ni∑

k=1

w1
kjxk

)
(4a)329

ŷi =
Nh∑

j=1

(
w2

ji hj

)
. (4b)330

Hereafter, we are seeking a methodology for an architec-331

ture of an NN that stores one set of weight parameters yet332

can be reconfigured to smaller sizes of the NN with small333

drop in accuracy. To adopt the reconfigurability feature in334

our model, we exploit the multirate prediction idea suggested335

by [8] that assigns lower accent to further look-ahead points336

in the computation of the future dynamic behavior of the337

system. Therefore, the proposed PNN model follows a sequen-338

tial priority-based architecture. This means we consider the339

neurons’ ordinal numbers as our priority criteria such that the340

priority of each neuron is inversely proportional to its ordi-341

nal number in the given layer. Therefore, the model can be342

Fig. 2. PNN model.

reduced starting from the neuron with the highest ordinal num- 343

ber. Our goal is to synchronize the priority level of the output 344

and hidden neurons so that the model reduction process is 345

more computationally efficient for runtime applications. We 346

will elaborate more on this in Section III-D. In Fig. 2, we show 347

the architecture of the proposed PNN as a three-layer FFNN 348

where higher priority neurons are colored darker. We can 349

deploy PNN as a resource-aware predictive model for closed- 350

loop MPC to estimate the future outputs [Y0, Y1, . . . , YNh]. 351

Here, we use the future control inputs [I0, I1, . . . , INh] and cur- 352

rent state variables [S0, S1, . . . , SNs] as input features. In the 353

following section, we describe our proposed training algorithm 354

and the associated cost function to develop the priority-based 355

NN model. 356

C. Training Algorithm to Prioritize Neurons 357

During the training process of an NN, an optimization algo- 358

rithm is exploited to minimize an objective function E0(.), 359

which is simply a mathematical function based on the model’s 360

learning parameters (e.g., weights and biases). We might use 361

sum of the squared deviations of our neuron’s output ŷi from 362

the target output yi as the loss function for No number of 363

outputs denoted as 364

E0(w, b) = 1

2No

No∑

i=1

(
yi − ŷi

)2
. (5) 365

The learning parameters are optimized and updated in an 366

iterative training process toward a solution that minimizes 367

the loss function. A learning rate η is assigned to the train- 368

ing algorithm that determines the size of the steps we take 369

at each iteration to reach a (local) minimum. For a convex 370

optimization problem like this, we use derivatives of the loss 371

function ∇E. Therefore, the following updating rule is for- 372

mulated for the weight parameters to be updated after (t+1)th 373

update iteration: 374

wt+1 ← wt − η∇E0. (6) 375

For our optimization algorithm, we employ a variant of gra- 376

dient descent called adaptive moment estimation (Adam) [37] 377

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 5

which computes individual adaptive learning rates for different378

parameters from estimates of first and second moments of the379

gradients. In the proposed PNN model, the priority of the neu-380

ron determines how important the value of that neuron is in the381

overall performance of the NN. In order to control the prior-382

ity of each neuron, we enforce constraints on the computation383

of its output value. This can be done through regulariza-384

tion techniques that restrain the growth of weight parameters.385

From (4), we see that the weight parameters used to com-386

pute the hidden neuron hj are W1[:, j] = [w1
1j, w1

2j, . . . , w1
Nij

].387

The output neuron ŷi is computed using weight parameters388

W2[:, i] = [w2
1i, w2

2i, . . . , w2
Nhi]. We call the weight parameters389

of each neuron its associated weights.390

1) Regularization: A common approach to reduce the com-391

plexity and size of NN models is to constrain the magnitude392

of the overall weight parameters by including regularization393

terms in the model’s cost function. The L1 norm is one of the394

most commonly used regularization techniques that penalizes395

weight values by adding the sum of their absolutes to the error396

term. Therefore, the cost function E with the L1 regularization397

term is398

E(w, b) = E0(w, b)+ 1

2
λ

2∑

l=1

Nl∑

i=1

|Wl
i | (7)399

where λ is the weight decay coefficient for which larger values400

lead to larger cost, and causes the training algorithm to gen-401

erate small weight values. Existing work sets the same weight402

decay coefficient for all layers to avoid the computational costs403

required to manually fine-tune each coefficient. However, to404

train our priority-based NN model, we penalize each weight405

with a specific weight decay coefficient so that the value of406

the corresponding weight is constrained to grow up only to a407

desired threshold point. Hence, the activation of each neuron408

is governed by the weight decay coefficients of its associated409

weights. As shown in Algorithm 1, we use a new cost function410

for our three-layer fully connected feed-forward PNN411

E(w, b) = E0(w, b)+ 1

2

Ni∑

k=1

Nh∑

j=1

|λ1
kjw

1
kj| +

1

2

Nh∑

j=1

No∑

i=1

|λ2
jiw

2
ji|412

(8)413

for λ1 ∈ �1 and λ2 ∈ �2, where �1 and �2 are two weight414

decay matrices of our hidden and output layers, respectively.415

Therefore, the new updating rule for weight parameters is416

wt+1 ← wt − η
(
∇E0 +�1W1 +�2W2

)
. (9)417

In the following section, we describe our heuristic algorithm418

used to assign values to weight decay coefficients such that a419

sorted priority-based architecture is enforced on the proposed420

NN model.421

D. Model Reconfiguration of PNN Model422

In PNN, we want to force a priority onto each neuron during423

the computation of model output so that the accuracy is main-424

tained after reconfiguring the network to smaller subnetworks425

by removing low priority neurons. Therefore, we consider426

larger weight decay coefficients for associated weights of427

Algorithm 1: Priority Neuron Training Algorithm
Input: input features - x
Input: output targets - y
Output: trained NN - PNN
Output: estimated outputs - ŷ
// initialize NN weights

1 init_random W
// estimate outputs given W weights

2 ŷ = PNN (x) [W]
// evaluate residual error

3 err =∑No
i=0(yi − ŷi)

2

// evaluate regularization penalty
4 reg =∑ |�1

Ni×Nh
.W1

Ni×Nh
| +∑ |�2

Nh×No
.W2

Nh×No
|

// evaluate loss function
5 loss = err+ reg
// optimize W weights for minimal loss

6 W = AdamOptimizer (loss)
// estimate outputs given optimal W

7 ŷ = PNN (x) [W]
8 return [PNN, ŷ]

neurons that are desired to have lower level of priority and 428

vice versa. We are following the multirate prediction scheme 429

that allocates less stress on accuracy of further look-ahead 430

points. We design our weight decay matrices so that a sorted 431

priority-based architecture for our PNN is developed during 432

the training process. The intuition behind the sorted priority- 433

based architecture of the PNN is to reduce the complexity 434

of the model reconfiguration and reduction process. Model 435

pruning approaches to constrain the complexity of NN models 436

by applying regularization techniques, have been around for a 437

while [28], [38]. These approaches are based on an exhaustive 438

search process to remove neurons with activation values below 439

a certain threshold. In our proposed priority-based architecture, 440

we enforce a sorted priority on hidden neurons to compute the 441

overall performance of the model. This helps reduce the time 442

complexity for searching neurons below a certain activation 443

value as we can employ a binary search algorithm. Therefore, 444

the worst-case time complexity for the model pruning pro- 445

cess in our PNN model with n number of hidden neurons is 446

O(logn) as opposed to standard architectures that require O(n) 447

worst-case time complexity to prune the network. Moreover, 448

the model can be reduced to smaller subnetworks at constant 449

time O(1) due to its reconfigurability feature that is adopted 450

throughout the training process. 451

There is always a tradeoff between the number of subnet- 452

works and the accuracy of the model. We assign the same 453

level of priority to the number of neurons that are deleted 454

at each level of model reduction. We call this number the 455

priority size and denote it as p. Fig. 3 illustrates the recon- 456

figuration process of the original NN model where neurons 457

are sorted and colored in terms of priority and importance. At 458

each level of reconfiguration, p number of hidden neurons with 459

the least level of priority are deleted from the end of the hid- 460

den layer. Hence, their input and output weight connections 461

are also removed from the weight space of the NN. These 462

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Model reduction process for a three-layer fully connected NN with
priority size p = 4.

subnetworks can be deployed separately while reducing the463

memory complexity to a single network. In other words, only464

one set of weight parameters are stored for multiple subnet-465

works of different sizes. We consider neuron’s ordinal number466

as our priority criteria which can be mapped into index values467

for neuron’s associated weights. Therefore, the weight decays468

vary with respect to row and column indices of the weight469

matrix where r and c denote the row and column indices,470

respectively. Equations (10) and (11) are expanded from (4).471

In (11), we see No number of output formulas that are used to472

estimate the future output behavior of the physical system in473

the next No time steps, hence the size of the prediction hori-474

zon is No. It needs to be noted that, here we do not include475

the bias terms for simplification purposes476

h0 = w1
00s0 + w1

10s1 + · · · + w1
Ni0INi (10a)477

h1 = w1
01s0 + w1

11s1 + · · · + w1
Ni1INi (10b)478

. . .479

hNh = w1
0Nh

s0 + w1
1Nh

s1 + · · · + w1
NiNh

INh (10c)480

y0 = w2
00h0 + w2

10h1 + · · · + w2
Nh0hNh (11a)481

y1 = w2
01h0 + w2

11h1 + · · · + w2
Nh1hNh (11b)482

. . .483

yNo = w2
0No

h0 + w2
1No

h1 + · · · + w2
NhNo

hNh . (11c)484

Let us assume that the model is trained for a priority-485

based architecture where the priority of neurons decreases486

inversely with their ordinal number. For a pretrained model487

with priority size p = 1, we want to reduce the size488

of the model by removing hidden neuron hNh with the489

least priority level from the hidden layer. While removing490

the hidden neuron hNo , its associated weight connections491

W1[:, Nh] = [w1
0Nh

, w1
1Nh

, . . . , w1
NiNh

] and W2[Nh, :] =492

[w2
Nh1, w2

Nh2, . . . , w2
Nh(No−1)] are removed from W1 and W2,493

respectively. In the next section, we describe the selection of494

weight decay coefficients to enforce a sorted priority on hid-495

den and output neurons. For a simple implementation we use496

the same number of hidden and output neurons. Therefore, the497

W2 weight matrix is squared.498

E. Decay Matrix499

A graphical illustration of our W1 and W2 weight matri-500

ces for hidden and output layers with p = 1 is shown501

Fig. 4. Weight parameters of hidden layer.

Fig. 5. Weight parameters of output layer.

in Figs. 4 and 5, respectively. The weight matrices in 502

Figs. 4 and 5 are darker colored based on the value of their cor- 503

responding weight decay coefficients. This helps to visualize 504

the selected distribution pattern for weight decay coefficients 505

where a priority-based architecture for our PNN model is 506

developed. In order to maintain the accuracy of the model 507

after the removal of hidden neuron hNh [computed in (10c)], 508

we want the model reduction to affect the least number of out- 509

put neurons possible. Therefore, we seek to adjust the weight 510

parameters so that removing the hidden neuron hNh mostly 511

impacts the least priority output neuron yNo . Hence, we select 512

weight decay coefficients for the weight parameters in the vec- 513

tor [w2
Nh1, w2

Nh2, . . . , w2
NhNo

] in a descending order so that the 514

least weight decay value is assigned for w2
NhNo

. Smaller weight 515

decay coefficients push the training algorithm to assign greater 516

values for the weight parameters. In this method, we try to 517

zero out [w2
Nh1, w2

Nh2, . . . , w2
Nh(No−1)] as much as possible such 518

that the removal of hNh has minimal impact on the values 519

[y1, y2, . . . , y(No−1)]. 520

To expand this idea to other neurons in the hidden layer, we 521

should change the weight decay coefficients above the main 522

diagonal of W2, in descending order per column and in ascend- 523

ing order per row, so that the least weight decay coefficients 524

are placed on the main diagonal. Moreover, we should adjust 525

the weight decay coefficients below the main diagonal of W2
526

in ascending order per column and in a descending order per 527

row. We use ascending order per column so that the priority 528

level of output neurons decreases for larger ordinal numbers 529

and descending order per row forces the weight parameters 530

on the diagonal to contribute the most to the computation of 531

their corresponding output neuron. We propose (12) to com- 532

pute the weight decay coefficient for each weight parameter 533

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 7

in order to regulate the sorted priority order of PNN neurons.534

Here, r and c denote the row and column index of the weight535

matrix, respectively. The parameter p stands for the number536

of neurons deleted at each model reduction process, hence the537

priority size538

f (x) =
⎧
⎨

⎩

[
λrc : λr(c+p)

] = βf
(r

c

)
, r ≥ c

[
λrc : λ(r+p)c

] = βf
(c

r

)
, r < c.

(12)539

Here, f (.) can be considered as a linear, exponential, or loga-540

rithmic, etc. growth function considering the target application.541

The type of function f (.) determines the variance of the pri-542

ority distribution among various neurons at each layer. The543

greater the variance of the priority distribution is, the more544

ways the original NN can be reconfigured into subnetworks.545

That means less neurons (p) are deleted per model reconfigura-546

tion (reduction) process. Larger variance for the priority order547

of neurons decreases the model accuracy as it enforces more548

constraints on weight parameters. Therefore, the function f (.)549

is assigned based on design requirements of the target applica-550

tion and the tradeoff between the model accuracy and number551

of subnetworks embedded in one NN model. The parameter β552

maps the computed value of weight decay from (12) to a range553

as λ ∈ [λmin:λmax]. This range is empirically selected based554

on the tradeoff between the model accuracy and the number555

of hidden neurons deleted per reconfiguration of the model-556

priority size. For our future work, we plan to automate the557

optimal selection of ranges for the weight decay coefficient.558

F. Other Types of Neural Networks559

The proposed priority-based approach is applied to a fully560

connected FFNN architecture. This is because state-of-the-561

art methods proposed fully connected FFNN as a predictive562

model to approximate dynamic behavior of physical systems in563

an MPC application. Previous state-of-the-art approaches has564

mostly focused on reducing the size of the fully connected565

layers in other NN architectures because these layers are well566

known to be parameter intensive and occupy more than 90%567

of the model size [15]. Another popular architecture of NNs568

for time series forecasting is RNN which is distinguished569

from FFNN by having signals traveling in both directions570

and introducing loops in the network. The RNN architecture571

can be converted into an FFNN by unfolding over time [11].572

Therefore, in our future work, we plan to expand our method573

to other NN architectures. Although we evaluate the effec-574

tiveness of our methodology for MPC applications, it can be575

generalized to other applications of NN models.576

IV. EXPERIMENTAL RESULTS577

A. Experimental Setup578

Our implementation is based on the TensorFlow frame-579

work [39] executed on a PC with a quad-core Intel Core i7580

and 16 GB of DDR3 RAM. The MPC formulation is imple-581

mented in software using the ACADO Toolkit framework [40],582

which is open source software written in C++ for automatic583

control and dynamic optimization. To evaluate the efficacy of584

our proposed methodology, we exploit the PNN as a predictive585

Fig. 6. Schematic of the vehicle model.

model in an MPC system for the path following application. 586

We describe the process on how we collect our training dataset 587

in the following section. 588

B. Simulation to Collect Training Data 589

As mentioned in Section II, the dynamic behavior of a 590

physical system formulated as ODE can be fitted into a fully 591

connected FFNN. The future control inputs and current state of 592

the physical system are fed as the input features to the FFNN 593

in order to predict the future outputs in the next n time steps. 594

To collect the training dataset, we exploit the following ODE 595

model of a vehicle [41] as shown in (13) and Fig. 6 to conduct 596

offline simulation of MPC for a path following application: 597

ṡ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v sin(θ)

v cos(θ)

cos(δ)a− 2

m
Fy,f sin(δ)

φ
1

J
(La(masin(δ)+ 2Fy,f cos(δ))− 2LbFy,r)

ω

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13) 598

Here, s = [x, y, v, θ, φ, δ] is the vector of state variables with 599

acceleration a and steering angular speed ω as control inputs. 600

The variables x and y stand for longitudinal and lateral posi- 601

tions, and v and θ are velocity and the azimuth. The variables 602

δ and φ represent the steering angle and speed, respectively. 603

The distance from sprung mass center of gravity to the front 604

and rear axles are denoted as La and Lb, respectively, and J is 605

the angular momentum. The variables Fy,f and Fy,r stand for 606

front and rear tire lateral forces. These forces are computed 607

from the following equations: 608

Fy,f = Cy

(
δ − Laφ

v

)
(14a) 609

Fy,r = Cy

(
Lbφ

v

)
(14b) 610

where Cy is the lateral tire stiffness. We applied real-world 611

parameters of a 2011 Ford Fusion as La = Lb =1.5 m, mass 612

m = 1700 kg, and tire stiffness data for our experiments. The 613

MPC formulation to follow the reference path xr, yr is the 614

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 7. Performance of PNN for different ranges of weight decay coefficients.

solution to the following optimization problem:615

min.
x,y

Tp∑

t=0

‖x̂(k + 1|k)− xr(k + 1|k)‖2Qc
(15a)616

+ ‖ŷ(k + 1|k)− yr(k + 1|k)‖2Qc
(15b)617

s.t. δmin ≤ δ ≤ δmax (15c)618

ωmin ≤ ω ≤ ωmax (15d)619

amin ≤ a ≤ amax. (15e)620

We simulate the MPC to predict 101 time steps in the621

future with time intervals of 5.05 s for a vehicle with an622

average speed of v = 10 (m/s). The appropriate value for623

the prediction horizon and step size is bounded by some624

factors such as stability and accuracy requirements and it625

varies based on plant dynamic characteristics. We implement626

an FFNN with input size Ni = 6 + 102 for six values of627

current state variables and future control inputs in the next628

101 time steps. We select No = 102 as the output size for our629

NN to predict the future output of the physical system in the630

next 101 time steps. The number of hidden neurons in our631

three-layer FFNN are Nh = No.632

C. PNN Training633

In order to fine tune the range of weight decay coefficients634

λ ∈ [λmin:λmax] and select an appropriate value for the con-635

stant factor β in (12), we empirically pick the values that636

yield the best performance on a held-out dataset. Therefore,637

we conducted experiments based on five different ranges of638

coefficients. Fig. 7 shows the error rate of the PNN model with639

respect to variations in the range of weight decay coefficients.640

The optimal range of weight decay coefficients for each layer641

may change with respect to the size of the next layer. In642

back propagation training, the gradient term in (9) is scaled643

with the size of the next layer [42]. Therefore, to compen-644

sate for the rescaling in the gradient term of the update rule,645

the optimal range for weight decay coefficients might change.646

These results are derived for priority size of p = 10, which647

denotes the number of hidden neurons that are removed at each648

reconfiguration of the model to a smaller subnetwork. Greater649

values of p restrict the original NN model to be reconfigured650

to less number of subnetworks. Naturally, there is always a651

tradeoff between the accuracy of the model and the number652

of subnetworks as shown in Fig. 8. Considering this trade-653

off, the user might select an optimal priority size based on the654

design requirements for the target application. The error values655

Fig. 8. Performance of PNN for different priority sizes.

in this figure are collected while reducing the size of the NN 656

to 50% of its original size. A tradeoff still remains between the 657

number of subnetworks with acceptable error values and the 658

percentage at which the size of the model is reduced. With 659

respect to the application and design requirements, the user 660

may select the appropriate value for the hyper parameter p. 661

D. Comparison to State-of-the-Art Methodologies 662

We evaluate the performance of our methodology in train- 663

ing a resource-aware NN model with two state-of-the-art 664

approaches that are proposed as solutions to implement 665

resource efficient NN in embedded system. By using the nota- 666

tion resource-aware NN model, we are implying that these 667

NN models are targeted for systems that monitor the resource 668

usage and dynamically manage the allocated resources to the 669

NN model with respect to runtime constraints. The results are 670

collected for a three-layer fully connected NN of 108×102 and 671

102× 102 inputs to its hidden and output layers, respectively. 672

The Big/Little approach [16], suggests multiple implemen- 673

tations of an NN model with small to bigger sizes. In the 674

Incremental method [20], which is the most similar to ours, 675

the NN is trained based on an iteratively incremental train- 676

ing algorithm where the weights computed in the earlier 677

steps are fixed. The Big/Little approach would require sep- 678

arate memory storage to hold model parameters of different 679

sizes. Moreover, a retraining process is mandatory to gener- 680

ate multiple sizes for the NN model. The Inc method is more 681

memory efficient such that only one set of model parameters 682

are stored to implement an NN model that can be recon- 683

figured into subnetworks with different sizes. However, this 684

approach suffers from the retraining overhead per increment 685

of size. In today’s embedded systems, where runtime contin- 686

uous learning of NNs is required, retraining process overhead 687

is prohibitive [17]. Our proposed PNN model is memory effi- 688

cient such that only one set of weights are computed for 689

multiple subnetworks. Furthermore, we compute the model 690

parameters for PNN in a single-training process. Throughout 691

the examples, we use the following abbreviation to indicate the 692

three models: 1) PNN: priority-based; 2) Inc: Incremental; and 693

3) BL: Big/Little. 694

Emerging research is based on developing approaches to 695

estimate the number of neurons and hidden layers required 696

for an NN [43]. However, these approximations also depend 697

on the type of the database samples for which the network is 698

designed. Therefore, it is still challenging to determine a good 699

network topology for different applications. Therefore, exhaus- 700

tive pruning and model reduction methodologies are in demand 701

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 9

(a)

(b)

(c)

Fig. 9. Comparing activation values of neurons with respect to their ordinal
number. Activation values for neurons in (a) PNN, (b) Inc., and (c) Big/Little.

to reduce the over-sized NN models. One advantage of our702

proposed priority-based training algorithm is that it enforces a703

relatively sorted distribution to the activation values. We com-704

pare the activation value of hidden neurons for our proposed705

PNN model with respect to the incrementally trained model706

and the Big/Little model that is trained with no constraint on707

its weight parameters in Fig. 9. For fairness of comparison,708

all experiments are conducted with the same size for all three709

models. The ordinal number of the neuron denotes the position710

of the respective neuron in the layer. The dotted red line shows711

the trend for linear changes in activation values with respect to712

ordinal number of the neuron. As shown in Fig. 9(a), the acti-713

vation values for the hidden neurons in PNN with priority size714

p = 10 is following a sorted order. The trend line shows that the715

density of the model is mostly populated throughout the first716

neurons and the activation values for the neurons further in the717

end of the layer are forced to be very small. This is as opposed718

to the two other methods that show a more uniform distribu-719

tions of activation values for the neurons. The incremental720

approach in Fig. 9(b) also shows slight sorted order among721

activation values. However, as represented by the trend line,722

the rate of change for neuron’s activation value with respect723

to its ordinal number is very slow compared to PNN method.724

In other words, in incremental approach, the weight param-725

eters are adjusted more uniformly throughout the network.726

This decreases the number of subnetworks and the number727

TABLE I
COMPARING THE TRAINING PROCESS

of hidden neurons that can be pruned from the model without 728

major drop in accuracy. 729

Table I compares the training process for a three layer 730

fully connected FFNN using the three aforementioned meth- 731

ods. The data is collected to train six separate subnetworks of 732

various sizes using the three methods. As we can see in the 733

table, our proposed method can generate six separate subnet- 734

works in single training process. This is as opposed to the two 735

other methods that require retraining for each of the subnet- 736

works. The performance of these six subnetworks is evaluated 737

in Fig. 10(a) and (b) where the x-axis represents the num- 738

ber of hidden neurons at each subnetwork. The retraining 739

process imposes additional computation complexity to retune 740

the parameters and hyper parameters. We can see that our 741

proposed model reduces the computation overhead for the 742

training process substantially. The training time is a critical 743

matter especially in embedded systems for CPS applications 744

where many NN models are trained on the fly. 745

In Fig. 10(a), we show the prediction time values over 746

six different subnetwork sizes. The results show similar 747

performance for all three approaches in terms of runtime 748

prediction overhead which increases for larger network size. 749

As shown in the figure, by reducing the number of hidden 750

neurons to half of its original size, we can improve the compu- 751

tation overhead by 30%. However, this saving in computation 752

time comes as a tradeoff for model accuracy. Fig. 10(b) shows 753

the percentage prediction error values for different subnetwork 754

sizes. The results for the BL [16] method that trains the subnet- 755

works separately with no additional constraints show that after 756

a certain point the model error does not change with growth in 757

the NN size. This justifies the over-parameterization phenom- 758

ena in training the NN that urges pruning and model reduction 759

methodologies. Moreover, the mean of prediction error for 760

six different subnetworks using our proposed PNN method 761

and Inc. [20] are 0.2% and 0.25%, respectively. Therefore, 762

our proposed PNN method outperforms the Inc approach for 763

better prediction performance with no additional retraining 764

process needed. 765

In order to evaluate the comparability of model accuracy 766

among the three methods, we also show the probability distri- 767

bution of prediction error values in Fig. 10(c). These results 768

are collected for a full-size NN with no model reduction 769

process performed. We can see in the figure that the low 770

variation in prediction errors using our proposed PNN model, 771

confirms its stable performance in prediction of various test 772

data. Moreover, the average of prediction errors for the PNN 773

model is very close to that of BL method. This experiment 774

ensures that our proposed model is validated as a memory 775

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a)

(b)

(c)

Fig. 10. Performance comparison of three resource-aware approaches.
(a) Execution time. (b) Prediction error. (c) Probability distribution of
prediction error for full-size NN.

TABLE II
COMPARING MEMORY REDUCTION WITH RESPECT TO ERROR

efficient architecture for NN models with small drop in accu-776

racy and comparable performance can be acquired using all777

three methods.778

We compare the efficiency of the three resource-aware meth-779

ods in terms of memory requirements and model reduction780

complexity in Table II. The PNN and Inc methods are both781

memory efficient in that they need one set of weight parame-782

ters to store multiple subnetwork sizes. This is as opposed to783

the BL method that requires separate memory to store each784

subnetwork. Therefore, we can achieve 78% saving in memory785

to store six subnetworks with very small loss in accuracy.786

To summarize, our proposed PNN model outperforms the787

BL method with 89% reduction in training time and 78% sav-788

ing in memory storage. Moreover, the computation complexity789

of the model reduction process to search for n neurons below790

the pruning threshold is improved from O(n) to O(logn). The791

PNN model shows similar results to Inc method in terms of792

memory and model reduction complexity. However, we show 793

that PNN follows a single training process to adjust weight 794

parameters as opposed to Inc method that is based on multiple 795

retraining. Therefore, The PNN model can cut down the train- 796

ing time by 86% with respect to Inc method while maintaining 797

a better prediction performance from 0.25% to 0.21%. 798

V. CONCLUSION 799

In this paper, we proposed PNN, a resource-aware NN 800

model with a reconfigurable architecture. We proposed a train- 801

ing algorithm to exploit regularization constraints on each 802

neuron based on their ordinal number at a given layer. This 803

enforces a sorted order distribution for the activation value of 804

the neurons. We implemented our model for a three-layer fully 805

connected NN architecture to be employed as the predictive 806

model of a vehicle in MPC for path tracking application. 807

To corroborate the effectiveness of our proposed methodol- 808

ogy, we compared it with two state-of-the-art methods for 809

resource-aware NN design. We showed that compared to cur- 810

rent state-of-the-art, our approach achieves 75% reduction in 811

memory usage and 87% less training time with no significant 812

drop in accuracy. Moreover, we improve the computational 813

complexity of the model reduction process in order to prune 814

n number of neurons, from O(n) to O(logn). 815

REFERENCES 816

[1] F. Cicirelli, L. Nigro, and P. F. Sciammarella, “Model continuity 817

in cyber-physical systems: A control-centered methodology based on 818

agents,” Simulat. Model. Pract. Theory, vol. 83, pp. 93–107, Apr. 2017. 819

[2] K. Vatanparvar and M. A. A. Faruque, “Eco-friendly automotive cli- 820

mate control and navigation system for electric vehicles,” in Proc. 821

ACM/IEEE 7th Int. Conf. Cyber. Phys. Syst. (ICCPS), Vienna, Austria, 822

2016, pp. 1–10. 823

[3] K. Vatanparvar and M. A. A. Faruque, “Design and analysis of battery- 824

aware automotive climate control for electric vehicles,” ACM Trans. 825

Embedded Comput. Syst., vol. 17, no. 4, p. 74, 2018. 826

[4] M. Amir and T. Givargis, “Hybrid state machine model for fast model 827

predictive control: Application to path tracking,” in Proc. IEEE 36th Int. 828

Conf. Comput.-Aided Design, Irvine, CA, USA, 2017, pp. 185–192. 829

[5] M. Amir and T. Givargis, “HES machine: Harmonic equivalent state 830

machine modeling for cyber-physical systems,” in Proc. IEEE Int. High 831

Level Design Validation Test Workshop (HLDVT), Santa Cruz, CA, USA, 832

2017, pp. 31–38. 833

[6] E. F. Camacho and C. Bordons, Model Predictive Control in the Process 834

Industry, 2nd ed. London, U.K.: Springer-Verlag, 2007. 835

[7] A. N. Gorban and D. Roose, Coping With Complexity: Model Reduction 836

and Data Analysis, vol. 75. Heidelberg, Germany: Springer, 2011. 837

[8] J. S. Barlow, “Data-based predictive control with multirate prediction 838

step,” in Proc. IEEE Amer. Control Conf. (ACC), Baltimore, MD, USA, 839

2010, pp. 5513–5519. 840

[9] A. Jadbabaie and J. Hauser, “On the stability of receding horizon control 841

with a general terminal cost,” IEEE Trans. Autom. Control, vol. 50, no. 5, 842

pp. 674–678, May 2005. 843

[10] G. Droge and M. Egerstedt, “Adaptive time horizon optimization in 844

model predictive control,” in Proc. IEEE Amer. Control Conf. (ACC), 845

San Francisco, CA, USA, 2011, pp. 1843–1848. 846

[11] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. 847

Jenssen, An Overview and Comparative Analysis: Recurrent Neural 848

Networks for Short Term Load Forecasting. New York, NY, USA: 849

Springer, 2017. 850

[12] J. Fojdl and R. W. Brause, “The performance of approximating ordinary 851

differential equations by neural nets,” in Proc. 20th IEEE Int. Conf. Tools 852

Artif. Intell. (ICTAI), vol. 2. Dayton, OH, USA, 2008, pp. 457–464. 853

[13] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con- 854

volutional neural networks using energy-aware pruning,” in Proc. IEEE 855

Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, 2017, 856

pp. 6071–6079. 857

AMIR AND GIVARGIS: PRIORITY NEURON: RESOURCE-AWARE NN FOR CPSs 11

[14] A. Mujika, F. Meier, and A. Steger, “Fast-slow recurrent neural858

networks,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 5915–5924.859

[15] W. Pan, H. Dong, and Y. Guo, “DropNeuron: Simplifying the structure of860

deep neural networks,” arXiv:1606.07326 [cs, stat], Jun. 2016. [Online].861

Available: http://arxiv.org/abs/1606.07326862

[16] E. Park et al., “Big/little deep neural network for ultra low power infer-863

ence,” in Proc. 10th Int. Conf. Hardw. Softw. Codesign Syst. Synth.,864

Amsterdam, The Netherlands, 2015, pp. 124–132.865

[17] K. Vatanparvar and M. A. A. Faruque, “ACQUA: Adaptive and coop-866

erative quality-aware control for automotive cyber-physical systems,”867

in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Irvine,868

CA, USA, 2017, pp. 193–200.869

[18] W. Hu, Y. Qian, F. K. Soong, and Y. Wang, “Improved mispronunciation870

detection with deep neural network trained acoustic models and transfer871

learning based logistic regression classifiers,” Speech Commun., vol. 67,872

pp. 154–166, Mar. 2015.873

[19] W. He, Y. Chen, and Z. Yin, “Adaptive neural network control of an874

uncertain robot with full-state constraints,” IEEE Trans. Cybern., vol. 46,875

no. 3, pp. 620–629, Mar. 2016.876

[20] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, “Runtime configurable877

deep neural networks for energy-accuracy trade-off,” in Proc. Int. Conf.878

Hardw. Softw. Codesign Syst. Synth. (CODES+ISSS), Pittsburgh, PA,879

USA, 2016, pp. 1–10.880

[21] K. Vatanparvar and M. A. A. Faruque, “Battery lifetime-aware881

automotive climate control for electric vehicles,” in Proc. 52nd882

ACM/EDAC/IEEE Design Autom. Conf. (DAC), San Francisco, CA,883

USA, 2015, pp. 1–6.884

[22] C. T. Kelley, Solving Nonlinear Equations With Newton’s Method.885

Philadelphia, PA, USA: SIAM, 2003.886

[23] P. Krauthausen and U. D. Hanebeck, “A model-predictive switching887

approach to efficient intention recognition,” in Proc. IEEE/RSJ Int. Conf.888

Intell. Robots Syst. (IROS), Taipei, Taiwan, 2010, pp. 4908–4913.889

[24] U. Halldorsson, M. Fikar, and H. Unbehauen, “Nonlinear predictive con-890

trol with multirate optimisation step lengths,” IEE Proc. Control Theory891

Appl., vol. 152, no. 3, pp. 273–284, May 2005.892

[25] N.-B. Hoang and H.-J. Kang, “Neural network-based adaptive tracking893

control of mobile robots in the presence of wheel slip and external894

disturbance force,” Neurocomputing, vol. 188, pp. 12–22, May 2016.895

[26] D. Solomatine, L. M. See, and R. J. Abrahart, “Data-driven modelling:896

Concepts, approaches and experiences,” in Practical Hydroinformatics.897

Heidelberg, Germany: Springer, 2009, pp. 17–30.898

[27] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural899

networks: A review,” IEEE Access, vol. 5, pp. 17322–17341, 2017.900

[28] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and901

acceleration for deep neural networks: The principles, progress, and902

challenges,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 126–136,903

Jan. 2018.904

[29] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen,905

“Compressing neural networks with the hashing trick,” in Proc. Int.906

Conf. Mach. Learn., 2015, pp. 2285–2294.907

[30] S. Han et al., “EIE: Efficient inference engine on compressed deep neural908

network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.909

(ISCA), Seoul, South Korea, 2016, pp. 243–254.910

[31] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks911

via layer-wise optimal brain surgeon,” in Proc. Adv. Neural Inf. Process.912

Syst., 2017, pp. 4860–4874.913

[32] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured914

sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.915

Syst., 2016, pp. 2074–2082.916

[33] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very917

deep neural networks,” in Proc. Int. Conf. Comput. Vis. (ICCV), vol. 2,918

2017, pp. 1389–1397.919

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing920

deep neural networks with pruning, trained quantization and Huffman921

coding,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016.922

[35] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con- 923

nections for efficient neural network,” in Proc. Adv. Neural Inf. Process. 924

Syst., 2015, pp. 1135–1143. 925

[36] Z. Tang and P. A. Fishwick, “Feedforward neural nets as models for 926

time series forecasting,” ORSA J. Comput., vol. 5, no. 4, pp. 374–385, 927

1993. 928

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 929

in Proc. Int. Conf. Learn. Represent. (ICLR), 2015. 930

[38] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data- 931

driven neuron pruning approach towards efficient deep architectures,” 932

arXiv preprint arXiv:1607.03250, 2016. 933

[39] M. Abadi et al., “TensorFlow: A system for large-scale machine learn- 934

ing,” in Proc. OSDI, vol. 16. Savannah, GA, USA, 2016, pp. 265–283. 935

[40] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit—An open 936

source framework for automatic control and dynamic optimization,” Opt. 937

Control Appl. Methods, vol. 32, no. 3, pp. 298–312, 2011. 938

[41] K. Zhang, J. Sprinkle, and R. G. Sanfelice, “Computationally aware 939

control of autonomous vehicles: A hybrid model predictive control 940

approach,” Auton. Robots, vol. 39, no. 4, pp. 503–517, 2015. 941

[42] M. Ishii and A. Sato, “Layer-wise weight decay for deep neural 942

networks,” in Proc. Pac.-Rim Symp. Image Video Technol., Wuhan, 943

China, 2017, pp. 276–289. 944

[43] S. Karsoliya, “Approximating number of hidden layer neurons in 945

multiple hidden layer BPNN architecture,” Int. J. Eng. Trends Technol., 946

vol. 3, no. 6, pp. 714–717, 2012. 947

Maral Amir (GS’15) received the first M.S. degree 948

in embedded electrical and computer systems from 949

San Francisco State University, San Francisco, CA, 950

USA, in 2014, and the second M.S. degree in com- 951

puter science from the University of California at 952

Irvine, Irvine, CA, USA, in 2018, where she is 953

currently pursuing the Ph.D. degree in computer 954

science. 955

Her current research interests include model 956

reconfiguration/compression methods for resource- 957

aware cyber-physical systems and machine learning 958

applications. 959

Tony Givargis (SM’98) received the B.S. and Ph.D. 960

degrees in computer science from the University of 961

California at Riverside, Riverside, CA, USA, in 1997 962

and 2001, respectively. 963

He is a Professor of Computer Science with 964

the School of Information and Computer Sciences, 965

University of California at Irvine, Irvine, CA, USA. 966

He has authored over 100 peer reviewed papers. 967

He is a named inventor on 11 U.S. patents and 968

has co-authored two popular textbooks on embedded 969

system design. His current research interests include 970

embedded systems with an emphasis on embedded and system software. 971

Prof. Givargis was a recipient of numerous teaching, service, and research 972

awards, including the Frederick Emmons Terman Award, presented annu- 973

ally to an outstanding young electrical engineering educator by the Electrical 974

and Computer Engineering Division of the American Society for Engineering 975

Education. 976

	tcad-amir-2857319-proof-c
	tcad-amir-2857319-proof-g

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

