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Advanced control methodologies have helped the development of modern vehicles that are capable of path

planning and path following. For instance, Model Predictive Control (MPC) employs a predictive model to

predict the behavior of the physical system for a specific time horizon in the future. An optimization problem

is solved to compute optimal control actions while handling model uncertainties and nonlinearities. How-

ever, these prediction routines are computationally intensive and the computational overhead grows with the

complexity of the model. Switching MPC addresses this issue by combining multiple predictive models, each

with a different precision granularity. In this artcle, we proposed a novel switching predictive control method

based on a model reduction scheme to achieve various model granularities for path following in autonomous

vehicles. A state-based model with tunable parameters is proposed to operate as a reconfigurable predictive

model of the vehicle. A runtime switching algorithm is presented that selects the best model using machine

learning. We employed a metric that formulates the tradeoff between the error and computational savings

due to model reduction. Our simulation results show that the use of the predictive model in the switching

scheme as opposed to single granularity scheme, yields a 45% decrease in execution time in tradeoff for a

small 12% loss in accuracy in prediction of future outputs and no loss of accuracy in tracking the reference

trajectory.
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1 INTRODUCTION AND BACKGROUND

With the recent developments in autonomous driving and the futuristic vision offered by auto-

mated vehicles, it has been acknowledged that it is just a matter of time before this technology

continues to take over humans in driving autonomous and semi-autonomous vehicles [34].
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Fig. 1. MPC loop.

Advanced control methodologies have emerged to empower the development of modern vehicles

for path planning and path following applications. Nonlinear Model Predictive Control (MPC) is

leveraged to develop path following control systems while handling model uncertainties, con-

straints and nonlinearities. A predictive model of the physical plant is used to estimate the future

outputs for a prediction horizon within a window of time and with respect to known input and

output values as shown in Figure 1. In general, mathematical descriptions in the form of Ordinary

Differential Equations (ODE) are used to mimic the linear/nonlinear behavior of the physical sys-

tem [30]. An example ODE model of the vehicle dynamics [34] is shown in the figure. ODE solvers

are applied to approximate solutions that converge to the exact solution of an equation or system

of equations [18]. A runtime optimization routine is evaluated as a parametric quadratic function

to calculate the set of future control inputs subject to constraints enforced by the environment and

system dynamics. These routines are computationally intensive and for nonlinear physical models,

the computational overhead grows with complexity of the model [21]. With respect to structured

PID controller, MPC has the ability to handle constraints and changes in system parameters for

robust control. Moreover, MPC can be applied to large, multivariable processes. The disadvantage

of MPC arise from its strong dependence on the model. However, improvements in data-driven

modeling and collection of massive amount of sensor data, this may not be as much of a difficulty.

Complex models of physical systems may be composed of thousands of non-linear ODEs, requir-

ing considerable computing power to execute. These ODE models introduce challenges in terms

of scalability, performance, power consumption, and accuracy [12, 25]. Discretization methods

(Euler, zero-order hold, etc.) are applied to transform the continuous-time differential equations

into discrete-time equivalents, appropriate for numerical computing. The discretized differential

equations are solved using numerical algorithms. Iterative solutions are used to solve the non-

linear ODE models of physical systems, where a series of linear equations are solved iteratively

to converge to the solution for the non-linear ODEs [17]. Therefore, the computation complexity

of solving N samples of ordinary differential equations may grow with respect to the type of the

discretization algorithm, numerical ODE solver, and the number and order of the ordinary dif-

ferential equations in the physical model. Moreover, the demand for higher accuracy and more

mathematically sound control solutions causes an increase in resource and energy consumption

that must be taken into account during the design cycle [1, 23, 24, 32].

Autonomous behavior in advanced control systems is desirable so they perform well under

changing conditions in the physical plant and the environment [2, 3]. Therefore, we proposed a

novel switching control methodology to augment the control system to adapt to changes affecting

the operating region of the system. In switching predictive control schemes, the controller switches

between predictive models of different granularities based on a metric that computes the current

dynamic state of the system. An optimal switching control problem consists of (1) a sequence of
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switching events, (2) a sequence of modes, and (3) a sequence of control inputs associated with

each mode [5]. Switched systems are used to model classes of systems with multi-mode features

and switching control schemes may be applied as a solution to address the online computational

complexity [34, 36]. We reviewed the state-of-the-art strategies to address the computational over-

head specifically in MPC systems in the following section.

2 RELATED WORK

Advanced techniques have been proposed to resolve the MPC computational burden. A common

approach to reduce the computational complexity of traditional MPC is the switching MPC [21,

34] methodology. Here, the controller combines the use of predictive models of different granular-

ities in a switching control scheme. The controller switches between the predictive models based

on a metric that computes the tradeoff between the error and computational savings due to model

reduction. Zhang et al. [34] proposed a binary switching controller based on two coarse-grained

and fine-grained predictive models of the vehicle for path planning and path following application.

The proposed method considers only two levels of complexity to be included in the MPC appli-

cation. Gao et al. [11] designed a hierarchical MPC scheme for path planning and path following

application to overcome the computational complexity. The high-level controller is formulated to

plan an obstacle free path using a simplified-point mass model of the vehicle. Moreover, a low-level

controller is designed based on a nonlinear dynamic model of the vehicle to follow the planned

path as the reference. More levels of complexities for the physical model enables the MPC to adapt

its performance to a wider range of environmental constraints and uncertainties [36]. Jadbabaie

et al. [16] suggested that a stable MPC controller requires a sufficiently large prediction horizon.

However, short prediction horizons are preferred for improved prediction accuracy of predictive

models. This is because harmful effects of the poor estimates are amplified over a long prediction

horizon time. Here, the problem is addressed by proposing an MPC approach that uses an adaptive

prediction horizon with respect to quality measures [7]. However, the numerical effort needed to

solve the optimal control problem for a long prediction horizon still remains significant.

Erlien et al. [8] adopted variable length time-steps in the prediction horizon as a solution to

the computational complexity and cost of nonlinear MPCs. This method can associate different

prediction horizons targeted for stabilization and collision avoidance tasks. The approach adjusts

the sampling time to allow longer prediction horizon in obstacle avoidance steering task as well

as short time steps in the prediction horizon for more detailed dynamic behavior prediction. In

Reference [33] the prediction horizon is a function of the vehicle speed and the sample time in

path following applications. Mahadevan et al. [26] suggested flattening the non-linear differen-

tial equation model of the physical system to reduce the computational overhead. For nonlinear

ODE systems, flatness is achieved if all the states and input variables can be written in terms of

a set of variables—flat outputs and their derivatives. For the dynamic ODE systems that can be

recast as a differentially flat system, the runtime optimization problem is reformulated with sim-

pler constraints, and hence smaller computational complexity. Linear Time-Varying (LTV) MPC

is a method that employs a model of the physical system linearized along the simulated path at

each time step [9]. Even though successful applications of this approach have been presented in

the literature, the overhead raised from the linearization over successive time steps is not resolved.

Ferreira et al. [10] proposed a methodology to organize libraries of models for electro-hydraulic

elements with variations in terms of model complexity. The purpose of the work is to use the

appropriate model with regards to the kind of physical domain and the timing requirements for

platform. Specifically, different levels of complexities for the target physical system under test shall

be provided by the user for a specific application. Here, the sudden changes to the physical system

caused by the environment may not be considered at runtime.
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Fig. 2. Comparison of execution time for ODE and HES models.

In general, the main burden in managing the computational complexity of nonlinear MPC ap-

plications is the concurrent solving of a large number of nonlinear ordinary differential equations.

To overcome this computational overhead, we proposed a more general approach that integrates

all the above outlined techniques while eliminating the limitations associated with ODE models.

The following motivational case study will discuss this further.

2.1 Motivational Case Study

The work in Reference [3] presented a framework to generate Harmonic Equivalent State (HES)

machine, a state-based model of the physical system. HES is applied as the predictive model in

the MPC loop to estimate the behavior of the physical system at future time instants based on the

calculated future control inputs. The proposed framework uses the Fast Fourier Transform (FFT)

decomposition and synthesis functions to generate a reconfigurable model of various granulari-

ties. The granularity is adjusted based on the tradeoff between model accuracy and computation

time. A machine-learning model is trained to estimate the dynamic behavior of the target phys-

ical system. MPC simulation is conducted with ODE model of the physical system to collect the

training dataset. A Neural Network (NN) model fits the relation between the future control in-

puts and harmonic frequency information of the predicted outputs in prediction horizon of size

T . Then, a state machine generation algorithm uses the harmonic frequency information to pro-

duce a reconfigurable representation of the model in the form of concurrent state machines. Each

concurrent state machine is executing at the rate of one of the harmonic frequencies to generate a

square-wave output. Tuning parameters are provided to reconfigure the model and tune it for the

desired execution time and granularity level. A band-pass filter is used to translate the generated

square-waves to sinusoidal equivalents. Finally, the sine-wave harmonics are integrated into the

final output signal. Figure 2 compares the execution time of HES model of a vehicle in comparison

with an ODE-based predictive model for MPC in a path following application. The performance of

the models is evaluated over different prediction horizon sizes for a constant time step. To further

analyze the performance of the proposed HES in comparison with the ODE model, we computed

the execution time of the HES model as the sum of its two main components: the Harmonic Pre-

dictor block and State Machine Generator block as shown in Figure 2(a). The wide bars represent

the mean of execution time for each component with respect to changes in the prediction horizon

size. The results in the figure indicate that the mean of execution time for the ODE model is 2 times

more than the State Machine Generator block, and the Harmonic Predictor block has the highest

mean value for the execution time.

To evaluate the performance sensitivity to the size of the prediction horizon, we also computed

the variance of execution time for each component shown as in narrow bars. The interesting ob-

servation here is that even though the Harmonic Predictor block has the highest mean of execu-

tion time, it has a very small variance as opposed to other components and ODE has the highest
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variance. To be exact, the variance of ODE is 4 times higher than the variance of the Harmonic

Predictor block and 2.5 times higher than the state machine component. That is, the small varia-

tions in execution time of the Harmonic Predictor block occurs for different values of prediction

horizon size. However, the performance of the ODE model varies more drastically for different

prediction horizon sizes. Therefore, it can be concluded that for larger values of prediction hori-

zon, known as long prediction horizon problems, the HES model can outperform the ODE model

in terms of execution time. The execution time for both ODE and HES models are compared in

Figure 2(b) with respect to the common parameter, the prediction horizon size. The dotted trend-

lines represent linear changes in the execution time for different values of prediction horizon size.

The results show that the HES model outperforms the ODE equivalent with 32% improvement in

performance for large prediction horizon. The improvement of performance is in a tradeoff for a

minor loss in accuracy for applications that are error tolerant [3].

Conclusion from the observations: The HES model holds promising properties to be em-

ployed as the predictive model in novel control methodologies. The model can be reconfigured

into various levels of granularities at runtime to be employed as the predictive model in switching

MPC approaches. New features may be added to the model to enable runtime reconfiguration sub-

ject to current state of the system. Our observations indicate that the error is mostly caused by the

filter and the challenges associated with automatic tuning of the filter per harmonic component.

Therefore, an alternative solution to replace the filter in the proposed framework is preferred.

2.2 Main Contributions

Based on existing literature and the motivational example described in Section 2.1, we proposed a

computationally efficient MPC methodology. Our contributions in this work can be summarized

as follows:

(1) The performance of the HES model is improved in terms of execution time and model

accuracy. The Neural Network model is modified to better estimate the dynamic behavior

of the physical system. Furthermore, the band-pass filter is eliminated and a Look-Up

Table (LUT) is included to generate sinusoidal signals.

(2) A novel switching model predictive control methodology is proposed based on the recon-

figurable HES model as the predictive model.

(3) Machine-learning techniques are employed to design a runtime switching algorithm that

determines the optimal granularity level of the current predictive model in use.

(4) Simulation experiments are conducted to evaluate the switching controller in a path fol-

lowing application containing curved and straight routes.

The rest of the artcle is organized as follows. In Section 3, the high-level architecture of the

proposed switching predictive controller is described. The HES model is defined in Section 4. The

proposed switching algorithm is described in Section 5. We demonstrated the workings and ef-

fectiveness of our framework for path following application in Section 6. Finally, we stated our

conclusions in Section 8.

3 SWITCHING MODEL PREDICTIVE CONTROL

In general, a switching MPC system can be defined as a family of sub systems and a rule that or-

chestrates the switching among these subsystems as shown in Figure 3. The switching function

can be classified into state dependent or time dependent based on the function that governs the

switching rule [35]. In state-dependent switching, the state space is partitioned into several oper-

ating regions and the switching occurs when the system state reaches a certain switching surface.
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Fig. 3. General switching model predictive control architecture.

Fig. 4. Switching model predictive control loop with HES as the predictive model.

The switching system is defined as time dependent, when a constant function of time decides the

switch among models. The discrete-time linear switched system can be formulated as [35]:

z(k + 1) = Aσ z(k) + Bσ u(k), (1a)

y(k) = Cσ z(k), (1b)

where z is the state vector, u is the input vector, and y is the output vector. At any time instant

k , the switching function σ formulated in Equation (2) may be dependent on time, its past values,

the state/output vectors, and external signal and takes its value from Im = 1, . . . ,M , where M is

the number of subsystems.

σ (ki ) = Φ([k0,kN ),σ ([k0,kN )), z ([k0,kN ))/y ([k0,kN )) i ∈ 0, . . . ,N . (2)

We proposed a state-dependent switching predictive control system based on HES models as

the predictive model. The switching algorithm monitors the current dynamic state of the system

and changes the configuration of the HES as a reconfigurable predictive model at runtime. The

high-level architecture of the proposed switching predictive control methodology is illustrated in

Figure 4. MPC employs a predictive model to compute, at each sampling step, an optimal control

problem over a finite prediction horizon. In switching predictive control, the controller selects

among a library of predictive models with different levels of granularity based on a switching

function σ that considers the control performance tradeoff [34]. The predictive model in a discrete

time domain can be expressed as:

zi (k + n|k) = f m (zi (k|k), ui (k + n|k)), (3)

where n is the number of time steps in the prediction horizon T and i is the index for number of

variables. The notation zi (k + n|k) refers to the value of the state variable zi in time instant k + n,
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estimated at time k . The index m ∈ 1, . . . ,M denotes the level of granularity for the predictive

model currently in use. As depicted in Figure 4, we employed the reconfigurable predictive model

HESm to estimate the state vector variables of the prediction horizonT . The HES model is described

in Section 4. A switching algorithm is designed as a part of the controller to compute the optimal

tuning parameters of a HES model based on the switching function σ , which is a function of state

variables as described in Reference [34]. This switching approach is elaborated in Section 5.

4 HES MODEL AS RECONFIGURABLE PREDICTIVE MODEL

The three main merits of the HES model that makes it a valid candidate for a predictive model in

switching predictive control are as follows:

• Adaptive: The adaptive term means that it can adapt to the behavior of real physical sys-

tems for different inputs. The model incorporates machine-learning blocks. This empowers

the HES model to be adaptive in runtime control applications in that it can fit the relation

between any features and targets with proper training. The neural network model imple-

mented in Section 4.2 and the experiments illustrated in Section 6 validate the working of

machine-learning models to estimate dynamic behavior of physical systems.

• Reconfigurable: Rather than designing a library of models, one HES model can be recon-

figured for different levels of granularities at runtime. The tuning parameters introduced in

Section 4.1 adopt this reconfigurability feature to the model.

• Computationally Efficient and Handling Model Uncertainty: HES model can gener-

ate multiple outputs as time-series data. MPC employs a dynamic model of the physical

system to predict the future outputs in a determined prediction horizon. The HES model

can advantage MPC application in that the future outputs in the specified prediction hori-

zon are generated all at once. This is as opposed to the ODE predictive models, which are

generally required to be solved iteratively to estimate future outputs in a certain prediction

horizon. Moreover, the uncertainty is also handled by HES model as poor estimates are not

accumulated over a long prediction horizon. This is as opposed to iterative methods that

suffer from amplified noise in long prediction horizons.

The high-level architecture of the reconfigurable HES model in the MPC loop is shown in

Figure 4. The model is composed of two main blocks: State Machine Generator and Harmonic

Predictor. The architecture of HES model is based on the concept of signal decomposition and syn-

thesis to generate a reconfigurable state machine model of a target physical system. The process

of calculating the frequency domain information of the signal from time domain representation is

called decomposition and the inverse process is signal synthesis. The State Machine Generator

block captures the harmonic components of the output signal in a prediction horizon T provided

by the Harmonic Predictor. These harmonic components are integrated into the synthesis

function and the future state vector variables are computed as time-series data. The granularity

level of the final output is determined by the switching algorithm during the integration process.

4.1 State Machine Generator Block

This block captures the harmonic components from the Harmonic Predictor block and the tuning

parameters from the switching algorithm to synthesize the future state vector variables zi (k + n|k)
in the form of (N /2+1) concurrent state machines. These state machines are updated at the rate

of frequency harmonics Frz. The synthesis equation of FFT for signal zi (n) of size N is employed

as presented in Equation (4). In this equation, n stands for the index of samples running from 0 to

N -1. The vectors Rz[i] and Iz[i] are the normalized frequency spectrum coefficients for the sine
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Fig. 5. Concurrent state machine architecture.

and cosine waves with index i running from 0 to N /2 for the respective harmonic frequencies [29],

z[n] =

N /2∑
i=0

Rz[i]cos (2πin/N ) +
N /2∑
i=0

Iz[i]sin(2πin/N ). (4)

The State Machine Generator block is established based on this synthesis Equation (4) to gener-

ate the reconfigurable representation of the output signal for models with various levels of granu-

larity. A lookup table (LUT) is employed to collect the sinusoidal values for this equation. The use

of LUT has improved the performance of the block drastically. The level of the granularity for the

generated signal can be adjusted with respect to following model parameters [2].

Machine Size (HESsize): defines the number of harmonic concurrent state machines to be inte-

grated in the synthesis Equation (4) ranging from 1 to (N /2+1).

Time Resolution (Tres): is the global period at which rate the generated state machine will be

executed.

Figure 5 illustrates the concurrent state machine architecture for the proposed methodology.

HESsize concurrent state machines are executed at a global rate Tres , which is configured by the

switching algorithm. This global clock represents the time resolution of the state machine. The

outputs of these state machines are integrated into the synthesis equation (4) to compute

the future state vector variables z(k + n|k) in the form of time-series data. The HES model as

the predictive model of the physical system expressed in Equation (3) should compute future

state variables z(k + n|k) as a function of current state variables z(k|k) and future control inputs

u(k + n|k). Therefore, the Harmonic Predictor block is designed to fit these variables to a function

of machine-learning model as described in the following section.

4.2 Harmonic Predictor Block

Neural Networks (NN) are capable of solving complex nonlinear relations between the input fea-

tures and target outputs [4, 27, 31]. Classic NNs have a three layer structure, namely, input, hidden,

and output layers. Each layer contains a set of nodes with edges to pass forward the information.

Each node carries an activation function, e.g., sigmoid, that limits the variation to output val-

ues with respect to changes in NN parameters. The edges entering the nodes are associated with

weights that are factors to inputs of the nodes—these weights are selected in the neural network
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Fig. 6. Training and prediction for Harmonic Predictor block [3].

framework using a training algorithm that minimizes a cost function. We applied neural networks

to design the proposed Harmonic Predictor block. This block contributes the most to estimate the

dynamic behavior of the physical system as in Equation (3). The input features of the NN model

are control input ui (k + n|k) and current state zi (k|k) vector variables concatenated, respectively.

The target outputs are real and imaginary—Rei (k + n|k) and Imi (k + n|k)—components of state

vector variables zi (k + n|k) in the next n time steps.

To better represent the behavior of the real physical system, we modified this block in [3] to ac-

cept all the current state variables in addition to control inputs as the additional features to the NN

model. Moreover, we increased the number of nodes in the hidden layer to mean of input features

and target outputs sizes according to an empirically derived rules-of-thumb [14]. This is to fit a

more complex pattern and improve the accuracy that comes as a tradeoff for more computational

overhead. However, the HES model with better execution time have space for more complex NN

with better accuracy. This is due to the replacement of the filter with the lookup table that not only

enhances the accuracy but also saves computation time. The results in Section 6.2 evaluate the per-

formance of these two architectures. The Harmonic Predictor block is employed in the following

training and prediction steps:

1. Training: The process of training the NN is performed in two phases. First, the architecture

of NN is determined with respect to the number of hidden layers, hidden neurons and layer types

(e.g., Fully-connected). This part of the design of the architecture is usually done empirically. We

employed all fully-connected layers with one hidden layer for our architecture. Once the architec-

ture is defined, a training algorithm is employed to adjust the weight values until the NN reaches

the performance objective. The weight adjustment is frequently done using the back-propagation

algorithm or some extension of it [22]. For our training algorithm, we used the Damped Least-

Squares (DLS), which is a combination of Gradient Descent and Gauss-Newton methods [28]. This

algorithm is initially designed as a numerical method to minimize computing sums of squares of

nonlinear functions. It also benefits the neural network training, where the performance metric

is the mean squared error. To collect the input features and target output values for the training

datasets, an offline simulation of MPC application is conducted with ODE model of the physical

system as shown in Figure 6(a). That is, the NN model aims to estimate the behavior of the ODE

equivalent. Therefore, this ODE model determines the maximum level of granularity available in

the proposed HES model. We assume that mathematical models are well designed to accurately

capture the dynamic behavior of real physical systems. Here, the proposed method is described

and evaluated in MPC for path following of autonomous vehicle application. It needs to be noted

that the proposed methodology is generic to all MPC applications. The ODE model of the vehicle

dynamics [34] as shown in Figure 7 is formulated as
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Fig. 7. Schematic view of the vehicle model [3].

ẋ = v sin(θ ), (5a)

ẏ = v cos(θ ), (5b)

v̇ = cos(δ )a − 2

m
Fy,f sin(δ ), (5c)

θ̇ = ϕ, (5d)

ϕ̇ =
1

J
(La (masin(δ ) + 2Fy,f cos(δ )) − 2LbFy,r ), (5e)

δ̇ = ω, (5f)

where x and y are longitudinal and lateral positions,v and a are longitudinal velocity and acceler-

ation, θ is the yaw angle, and ϕ is the yaw rate. The variables δ and ω represent the steering angle

and angular speed, respectively. The variables La and Lb are the distance of sprung mass center of

gravity from the front and rear axles respectively, and J is the angular momentum. The variables

Fy,f and Fy,r stand for front and rear tire lateral force. More details regarding the model may be

found in References [3, 34].

These forces are computed from the following equations:

Fy,f = Cy

(
δ − Laϕ

v

)
, (6)

Fy,r = Cy

(
Lbϕ

v

)
, (7)

where Cy is lateral tire stiffness. We applied real-world parameters of 2011 Ford Fusion as La =

Lb = 1.5m, massm = 1700kg and tire stiffness data for our experiments. The MPC formulation to

follow the reference trajectory xr ,yr is the solution to the following optimization problem:

min.
x,y

Tp∑
t=0

‖x̂ (k + 1|k ) − xr (k + 1|k )‖2Qc
, (8a)

+‖ŷ (k + 1|k ) − yr (k + 1|k )‖2Qc
, (8b)

s .t .

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 2. Pub. date: November 2018.



Switching Predictive Control Using Reconfigurable State-Based Model 2:11

−0.75 ≤ δ ≤ 0.75, (8c)

−3 ≤ ω ≤ 3, (8d)

−40 ≤ a ≤ 40, (8e)

MPC is simulated to optimize the control input vector variables ui (k + n|k) for the prediction

horizon T with respect to the cost function and enforced constraints. These control input vector

variables are fed as the feature values to the NN model. To be a better representation of Equation (3),

we included the current state vector variables zc (k|k) from the actual plant as additional features

to the NN model. Therefore, for the ODE example formulated in Equation (5), we considered the

acceleration and steering angular speed as our control input variables ui ∈ {a,ω} to predict future

states zp (k + n|k) ∈ {x ,y}. For current state vector variables zc (k|k), we employed all the state

variables from Equation (5) as zc ∈ {x ,y,v,θ ,ϕ,δ }.
Next, the State Machine Generator block, accepts only frequency domain components as the

input. Therefore, the target outputs of the NN model should be the Rei (k + n|k) and Imi (k + n|k)
as the frequency information of state vector variables zi (k + n|k) in the next n time steps. Recall

that the FFT algorithm on a sample signal of size N decomposes the signal into real and imagi-

nary components of size (N /2+1). Therefore, here the predicted state vector variables zi (k + n|n)
from simulation of ODE are fed into FFT algorithm in time windows of T to derive the frequency

information. The training is performed offline and adds no additional computational complexity

at runtime to the application.

2. Prediction: The mapping function that is established during the training phase where

the NN learns to correctly associate input patterns to output patterns is automatically retrieved

during runtime prediction. Therefore, runtime control input vector variables ui ∈ {a,ω} in the

next n time steps and current state variables zi ∈ {x ,y,v,θ ,ϕ,δ } are fed into the NN predictor

as shown in Figure 6(b) and the harmonic components of the future output vector variables—

Rei (k + n|k) and Imi (k + n|k)—are estimated. The predicted harmonic information is fed into the

State Machine Generator block for output generation—that is, the output of the proposed physical

model zi (k + n|k) ∈ {x ,y} can adapt to variations in control inputs ui (k + n|k) at runtime as in

Equation (3).

Here, we must assume that the predictive model given as in Equation (5) is suitable for the plant

under control. Our approach is neither intended to stabilize systems with a large model mismatch

or guarantee if switching is sufficiently slow. Here, we assume that selecting a model will not drive

the system to a point of instability since otherwise that model would not be selected a suitable

predictive model for our MPC controller.

5 SWITCHING ALGORITHM

We designed a runtime switching algorithm based on the HES model mentioned above. The pur-

pose here, is to choose values for the tuning parameters of HES model that reconfigures the model

for the desired optimal granularity-level in runtime. Research shows that, the optimal granularity

level for the predictive model in MPC applications varies based on a metric that formulates the

tradeoff between the error and computational savings due to model reduction [34]. This metric

can be associated with state variables of the physical system as in Equation (2). For instance, the

work in Reference [6] proposed a multi-model switching predictive control strategy that employs

the speed variable to schedule the switching rules of the controller. Accordingly, in switching pre-

dictive control application, the dynamic state of the system may be monitored to select the optimal

granularity level for the predictive model. For that, we formulated two switching functions: σstate

and σopt . The former that we call the state metric is formulated as a function of dynamic state of
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the system. The latter, optimal granularity metric, is to coordinate the tradeoff between the error

and computation time for optimal configuration of HES model.

We used the following function of steering angle δ and velocity v from Reference [34] as our

switching function σstate to compute the dynamic state of autonomous vehicles for zi (k|k) ∈ {v,δ }:

σstate (k |k ) = Φ (zi (k|k)) = v (k ) − c
����
1

δ

����
. (9)

The optimal granularity metric σopt is defined as the ratio of execution time e to model di-

vergence d . Model divergence captures the error between the current model and the model with

highest level of granularity,

σopt (k |k ) = Φ (e,d ) =
e

d
. (10)

The current dynamic state of the system zi (k |k ) at time instant k defines the range for σstate

switching function. Moreover, the range for σopt switching function is defined by the available

granularity levels m ∈ 1, . . . ,M for the predictive models HESm that are determined by the its

tuning parameters. The switching algorithm computes the current dynamic state of the physical

system from σstate and associates this value to a range for σopt as in Equation (11). That is, the

switching algorithm maps the current dynamic state of the system to an optimal granularity level

for efficient performance throughout the reference trajectory. The switching algorithm determines

the parameter values for HES model with respect to the computed optimal granularity level,

σopt (k |k ) = α × σstate (k|k) + β . (11)

The parameters α and β are adjusted to map the values of state-dependent switching function

σstate to the range for optimal granularity metric σopt . This mapping enables HES model config-

uration based on the current dynamic state of the system for efficient performance. The value

for parameters α and β varies based on the form of the reference path and the number of desired

granularity levels. To compute the values for α and β , Equation (9) is employed to approximate the

range for current dynamic state throughout the reference path r = [ xr , yr ]. The value for σstate

defines higher optimal granularity levels for large steering angles and small velocity values for the

vehicle. However, the optimal granularity level, decreases with smaller values for steering angle

and larger velocities. This relation can associate the optimal granularity level of the predictive

model with the reference path’s degree of curvature. Research shows that the optimal granularity

level needed for curved path where the vehicle is driving with slower speed and larger steering

angle value is higher than in straight routes [34].

We used the following equations to estimate the values of velocity v and steering angle δ to

travel the target reference path in distance intervals of Δs meters:

Δsr =

√
Δx2

r + Δy2
r , (12)

vr =
Δsr

Δtr
, (13)

θ r = arctan
Δxr

Δyr
, (14)

δ r = Δθ r . (15)

These values are employed in Equation (9) to approximate the vector σstate for the reference

path r . To collect values for optimal granularity level as in σopt , the MPC simulation for path

following application is conducted for t seconds with ODE model of a vehicle as the predictive

model. The predicted output values zi (k + n|k) ∈ {x ,y} are recorded for prediction horizon of

size T each representing a vector of size n for n is the number of steps in the prediction horizon.
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Fig. 8. Training and prediction for the switching algorithm.

Then, these vector values are fed to FFT function to generate their harmonic components that are

used as inputs to HES model. The HES model is executed for configurations of tuning parameters

HESsize=[HESmin
size , HESmax

size ] andTres=[Tmin
res ,Tmax

res ] dynamically and generates vectors of predicted

outputs zi (k + n|k) ∈ {x ,y}. The performance metrics—execution time and model divergence—

are recorded for each configuration over different prediction horizons in the simulation time. We

computed the mean of these performance metrics throughout the simulation time. Design space

exploration is performed to select the Pareto optimal points from the possible pairs of model pa-

rameters (HESsize,Tres ) considering the tradeoff between execution time and model error. The ratio

of execution time to model divergence for these Pareto optimal points defines the optimal gran-

ularity metric σopt . Now that ample values for σstate and σopt are collected, the Equation (11) and

its respective parameters α and β from can be computed through data-fitting for later usage. The

optimal granularity values σopt and respective pairs of model parameters (HES
opt
size ,T

opt
res ) are later

employed as the training data in the proposed machine-learning model.

Machine-learning techniques are applied to predict the tuning parameters of the HES model

for the desired optimal granularity level σopt . We employed linear regression machine-learning

models that use i ∈ [1,n] number of feature values дi and their respective weights bi to predict

target outputs si as in Equation (16). The relation can be fitted on a line using least squares method

(LS) that minimizes the sum of the squares of the vertical distance from each data point on the line

[13]. The model is implemented in two training and prediction steps as illustrated in Figure 8,

si = b0 + biдi . (16)

1. Training: The linear regression model is trained to fit the relation between the optimal gran-

ularity level σopt as the input feature and respective HES model parameters—HESsize and Tres—as

the target outputs. The training dataset is collected from the above-mentioned design space ex-

ploration experiment that collects corresponding optimal granularity values σopt and respective

pairs of model parameters (HES
opt
size ,T

opt
res ).
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2. Prediction: As shown in the switching Algorithm 1, the values for current state variables—

velocity v and steering angle δ—are used to calculate the metric σstate from Equation (9) at

runtime. These values are captured from the simulation of predictive controller for path following

application with current HES model as the predictive model. The value of σstate is inserted in Equa-

tion (11) to fit in the range of optimal metric σopt . Then, the σopt value is fed to the linear regres-

sion model as the input feature to predict the corresponding HES model parameter pair (HESsize ,

Tres)—that is, the switching algorithm estimates the values for HES model’s tuning parameters in

that the granularity level of the predictive model is optimal with respect to performance metrics.

ALGORITHM 1: Switching Algorithm for MPC

Input: Current State Variables z
Output: Estimated (HESsize, Tres)

1 define α , β � Equation (11)

2 define b0,b1 � linear regression training function

3 v = z[0] � extract velocity and steering angle

4 δ = z[1]

5 σstate = v − c
δ

� calculate current dynamic state

6 σopt = α σstate + β � find optimal granularity

7 д ← σopt

8 s1 = b0 + b1 д1 � predict using the regression

9 Tres ← s[0] � extract HES parameters

10 MachineSize← s[1]

11 return [Tres,MachineSize]

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

Our experiments are performed on a PC with a quad-core Intel Core i7 and 16 GB of DDR3 RAM.

The MPC formulation is implemented in software using a framework based on the ACADO Toolkit

[15], which is an open source software written in C++ for automatic control and dynamic optimiza-

tion. It provides a self contained environment to implement control algorithms including MPC as

well as state and parameter estimation. The existence of Lyapunov function ensures the stability of

autonomous dynamical systems [19]. Therefore, here the so-called LYAPINT integrator in ACADO

Toolkit as an explicit Runge-Kutta45 integrator with an appropriate step size control is applied.

The State Machine Generator block is implemented using the C++ programming language to en-

able it to be highly portable and compatible with various platforms for compilation and execution.

The Neural Network model is trained by using MATLAB’s neural networks module (nftool). The

regression model in the switching algorithm is also implemented in MATLAB. Figure 9 illustrates

the values for test error of the NN model described in Section 4.2 for 13 simulation experiments.

The Neural Network described in Section 4.2 is trained using 266 training batches for 70 features

in the input layer and prediction horizon of size T = 1.55s. The number of neurons in the hidden

and output layers are 60 and 68, respectively. As shown in the figure, the value for the error is in

micro range that validates the the performance of the NN described in Section 4.2 to predict the

future dynamic behavior of the physical system.

6.2 Comparison to State of the Art

We compared the performance of the HES model described in Section 4 with respect to the ODE

model of a vehicle formulated in Equation (5) in a runtime MPC application in path following.
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Fig. 9. Test error for neural network model in Harmonic Predictor block.

Fig. 10. Performance comparison of ODE and HES models.

Figure 10 illustrates the error and execution time values of MPC using HES and ODE models,

simulated for different prediction horizon sizes. As shown in the figure, the mean of execution

time for ODE model and HES model are 7.63ms and 1.25ms, respectively. This improvement in

performance is gained at the expense of a minor increase in model error from average of 0.22m

to 0.25m. The results indicate average of 83% reduction in MPC return time using HES model for

negligible 13% loss in model accuracy. The improvement in accuracy and execution time compared

with the values reported in Reference [3], is due to the removal of the filter and the use of LUT

and a more complex NN model in the new design.

Figure 11 illustrates the simulation results of MPC application in path following using the HES

model as the predictive model. Here, the HES model estimates the dynamic behavior of the vehicle

for 1.55 (seconds) in the future. The initial velocity of the vehicle is taken as 24 (meters per second)

to follow the reference trajectory as shown in the top left. As shown in the figure, the steering

control inputs {a,ω} demanded by the controller enables the HES model to track the reference

trajectory as the degree of curvature varies.

We conducted simulation experiments to evaluate the performance of the proposed switching

predictive control methodology in a runtime path following application of an autonomous vehicle.

As described in Section 5, we used a linear regression model in the switching algorithm to predict

the parameters of the HES model based on the optimal level of model granularity in need. This

optimal granularity level is aligned with the current dynamic state of the system. To compute the α
and β coefficient in Equation 11, Equations (12)–(15) based on the the reference trajectory r = [ xr ,

yr ] are used. Figure 12(a) shows the estimated values of σstate throughout the reference trajectory.

Figure 12(b) shows the Pareto optimal points of HES model parameters that are computed from the

design space to collect the training data for the regression model. These Pareto optimal points are
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Fig. 11. The simulation results of the MPC using the HES model as the predictive model.

Fig. 12. Computing switching functions σstate and σopt.

associated with pairs of (HESsize,Tres ) ∈ (13 : 17, 0.05) for five levels of granularity. We used these

values to compute the optimal granularity metric σopt as the ratio of execution time e to model

divergence d .

To compute the parameters α and β in Equation (11), we use the data collected in Figure 12(a)

in the following equation.

σopt =

⎧⎪⎪⎨
⎪⎪
⎩

1 σstate > a
0 σstate < b
α × σstate + β a � σstate � b .

(17)
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Fig. 13. Comparing σopt as a function of (e,d ) and as a function of σstatet.

Fig. 14. Switching predictive control application for path tracking. The red line shows the computed position

of HES model in the single granularity control mode and the blue star markers represent the computed

position for HES model in the switching control mode.

Here, we consider α = 0.025 and β = 0.5. As mentioned in Section 5, the α and β parameters

depend on the form of the reference path and the number of desired granularity levels. Figure 13

compares the approximated values of σopt using Equation (17) and actual values computed using

Equation (10). We can further tune the α and β parameters to adjust the over/under estimations

shown in the figure.

The linear regression model fits the relation between the optimal granularity level σopt as the

input feature and respective HES model parameters as the target outputs during the training phase.

To better evaluate the effectiveness of the switching controller, we selected the reference path

to be a combination of straight and curved routes. For this purpose, we applied the Lemniscate of

Bernoulli function to generate our reference path. Figure 14 shows the performance of the pro-

posed switching predictive control methodology for tracking the Bernoulli path. The red line is

representing thex ,y values for the single granularity control mode and star markers are for switch-

ing control mode. The granularity level of the predictive HES model configured by the switching

algorithm is associated with the RGB value of the star markers. That is, higher granularity levels

are color mapped to higher RGB values, hence, lighter blues. The gradual increase in granularity

level (lighter blue) as the vehicle enters the curved route validates the performance of the proposed

switching algorithm in selecting the parameters and reconfiguring the HES model appropriately.

The values for the optimal granularity level σopt calculated from Equation (11) and runtime

steering angle δ throughout the simulation of MPC are depicted in Figure 15. The respective HES

model parameters—HESsize and Tres—are predicted by the regression model to adjust the desired
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Fig. 15. HES model granularity levels.

Fig. 16. Performance analysis of HES model in two switching and single granularity modes.

optimal granularity level. The HES parameter Tres is set to constant value of 0.05s. Higher values

of HESsize reconfigures the model for higher granularity levels. The results show the switching

of model parameter HESsize with respect to the desired σopt value. As we expected, the optimal

granularity level for when the vehicle is driving on a curved route with large steering angle value

is higher than when on straight paths.

We compared the performance of the new improved version of the HES model in single granu-

larity and switching modes in Figure 16. The model in the single granularity mode is configured

for the highest level of granularity with static parameters (HESsize , Tres )= (17, 0.05) in this exam-

ple. However, the switching algorithm is employed to reconfigure the HES model’s parameters

in runtime. Figure 16(a) illustrates the execution time values of the HES model in the switch-

ing and single granularity control modes throughout the simulation. These values represent the
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performance of the HES models in computation of output vectors z (k + n |k ) for the next n steps

in the prediction horizon of sizeT . The execution time values reported for the switching mode are

computed as the sum of the HES model’s execution time and the overhead caused by the switch-

ing process. Since the linear regression model is formulated as a function of one input feature, the

additional computational overhead in the switching mode is O(1) that is negligible. As shown in

the figure, the mean execution time of MPC through the whole path using the HES model in the

switching mode is 45% less than single granularity mode, dropping from 10.52 (μs) to 7.27 (μs).

This is due to the presence of the switching algorithm to reconfigure the HES model for optimal

performance with respect to dynamic state of the vehicle—that is, the switching algorithm selects

higher values for (HESsize parameter and reconfigures the model to maintain high execution time

and granularity level on a curved route with large steering angle value and vice versa.

Figure 16(b) compares the error values for the HES model in the switching and single granularity

control modes throughout the reference path. The results show 0.5 (m) and 0.62 (m) as comparable

mean of error values for the HES model, in the single granularity and switching control schemes,

respectively. This is because the switching algorithm is designed to reconfigure the HES model for

lower levels of accuracy when tolerated, as in tracking a straight curve with high velocity and low

steering angle values. That is, the changes in the range of error values for HES model corresponds

with the optimal granularity level. This range is directly related to curvature of the path. It needs to

e noted that, the drop in accuracy is only observed in the generation of future output vectors z (k +
n |k ). However, the error to track the reference trajectory is comparable between the switching and

single granularity modes with no drop in accuracy. Our experiments indicate that the use of HES

model in the proposed switching scheme acquires 45% decrease in execution time for no loss in

trajectory tracking accuracy. Moreover, our proposed switching control method based on HES

model is capable of choosing the optimal model for different velocity and steering angle values.

7 FUTURE WORK

To further improve the accuracy of the NN in the HES model, we can increase the number of train-

ing data. Moreover, a more complex ODE model can be adopted during the simulation process to

collect the training data. In our future work, we are planning to deploy Recurrent Neural Networks

(RNN) as a predictive model to estimate the behavior of the physical system. RNN is a popular ar-

chitecture for time-series forecasting and is distinguished from feed forward neural networks by

having signals traveling in both directions and introducing loops in the network. Furthermore, we

are planning to exploit a stable adaptive controller to reject controllers leading to instability [20].

8 CONCLUSION

In this artcle, a novel switching predictive control methodology is proposed that uses model re-

duction to achieve a desired performance granularity for autonomous vehicles in path following

applications. This method is based on a state-based model of the physical system that is able to

adjust its granularity level dynamically. We apply machine-learning models to design a switch-

ing algorithm. Experimental results show that our proposed switching control method decreases

the overall execution time of MPC by 45% for a small 12% loss of accuracy in prediction of future

output values and no loss of accuracy in tracking the reference trajectory.
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