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a b s t r a c t 

Cyber-physical systems (CPS) integrate a variety of engineering areas such as control, me- 

chanical, and computer engineering in a holistic design effort. While interdependencies 

between the different disciplines are key attributes of CPS design science, little is known 

about the impact of design decisions of the cyber part on the overall performance qualities 

of the system. To investigate these dependencies, this paper proposes a simulation-based 

Design Space Exploration (DSE) framework that considers detailed cyber system parame- 

ters such as cache size, bus width, and voltage levels in addition to physical and control 

parameters of the CPS. We propose a DSE algorithm that explores the parameter configura- 

tions of the cyber-physical sub-system in order to approximate the Pareto-optimal design 

points with respect to design objectives such as energy consumption and control stabil- 

ity. For validation, we have successfully applied the proposed framework to an inverted- 

pendulum application. Here, our holistic evaluation of the Pareto-optimal points reveals 

the presence of non-trivial trade-offs that are imposed by the control, physical, and de- 

tailed cyber parameters. For instance, the identified energy and control optimal design 

points comprise configurations with a wide range of CPU speeds, sampling rates, and cache 

configurations following non-trivial zigzag patterns. The proposed framework could iden- 

tify and manage these trade-offs and, as a result, is an imperative first step to automate 

the search for superior cyber-physical system configurations. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

1. Introduction 

Cyber-physical systems (CPS) integrate various engineering areas such as control-, computer-, mechanical-, and network 

engineering [7] . The complex and heterogeneous design aspects of CPS beget methodologies to combine the corresponding 

disciplines. For example, in automotive industry, it has been investigated that 80% of the innovations in the design of a car

are attributed to the computer systems [13] . 

Sequential and model-based design methodologies [3,8] are well-established techniques to cope with the complexity of 

designing CPS. The idea is, first, to select a promising physical system, defining the controller, and finally addressing design 

challenges of the embedded computer system. Such sequential separation of decisions reduces the complexity of the design 
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Fig. 1. Y-chart methodology models the design representation from a top-down view. The behavioral, structural and layout views are each a branch of the 

‘Y’. 

 

 

 

 

 

 

 

 

effort. However, like most greedy approaches, the ultimate product is unlikely to be the best possible design due to missed

trade-offs between cyber and physical design knobs. 

Recent work shows that holistic design approaches result in superior products and systems when compared to sequential 

design flows, where the cyber-part is designed independently from the physical-part in a CPS. In this work, the term holistic

implies that the physical, the control, and the cyber attributes of a system are evaluated concurrently. Consequently, a holis- 

tic optimization of the design space can yield ideal performance qualities such as energy consumption or control stability 

[1,2] . 

The large design space, stringent performance objectives, and tight time-to-market requirements create a challenge in de- 

signing CPS systems. Typically, Design Space Exploration (DSE) is performed in early development phases to select between 

multiple high-level design configurations that meet the overall system design requirements. The power to automatically surf 

the design space and explore viable solution candidates is an essential requirement for many engineering tasks, including 

systems integration and optimization. 

In this work, we explicitly investigate if and how specific properties of the cyber system such as cache size, CPU configu-

ration, memory hierarchy, and peripherals interfere with the overall system performance metrics such as precision, stability, 

and power consumption. Similar dependencies have been discovered and utilized between physical properties and control 

parameters, which led to the controller pruning in [2] . Ultimately, the question to be asked is if a connection exist between

physical system (PS) and cyber system (CS) in terms of the overall system performance. We answer this question in this

paper. 

Model-based design provides a flexible environment to identify high-level attributes of the subsystems. Hence, model- 

based design can be used to specify and analyze the system requirements from a semantic-oriented level rather than an 

implementation-oriented level [22] . If dependable models from divers disciplines are assembled at the high level without 

prior heterogeneous analysis and verification, system failures are likely to emerge. Our holistic model of a CPS provides a 

framework to integrate physical entities, environment settings, and computation resources into a single optimized end prod- 

uct. That is, a codependent methodology is proposed that captures the properties of the system, not only at the subsystem

level, but also from a global interoperable point of view. 

The proposed framework implements a DSE methodology based on the Y-chart [5] , as depicted in Fig. 1 . The Y-chart

establishes clear distinction between the application and the architecture of the system that is being designed. This method- 

ology follows a top-down flow in the domains of behavior such as structure and layout. A Y-chart based framework enables

the exploration and analysis of the system configurations for further alteration in architecture, application settings, and 

mapping strategies. 
2 
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Without loss of generality, we have used Simulink as our primary simulation and functional verification tool in develop- 

ing the networked control application used alongside our proposed approach [25] . Alternatively, any of Scilab [24] or Octave

[19] may be used instead of Simulink. In terms of the physical platform, we have used a parameterized System-on-a-Chip

(SoC) called Platune [6] . Platune is specifically designed in a tunable way, having settings for processor caches, peripheral

configurations, voltage scaling, and so on and so forth. More specifically, this tool facilitates: 

• A holistic and comprehensive exploration and analysis of the system design space and its parameters interaction and 

correlation; 

• A compression of the design space into Pareto-optimal design points with regard to system performance metrics; and 

• A derivation of a dependency analysis to reduce the search and support tool-based DSE of CPS. 

It should be clarified that, while the DSE engine of Platune is universal, the default simulation engine of Platune is based

on a fictitious SoC. Given a specific CPS implementation, the SoC (i.e., cyber) model of the Platune would need to be replaced

with an appropriate target simulator. 

CPS are unique in the way they incorporate interactions between the computing and the physical entities. Therefore, the 

design foundations, methods, and tools of CPS engineering should accommodate the interdependency between the physical 

(e.g., mechanical, electrical, etc.) design, the computing hardware (e.g., processors, memories, etc.), and system software (e.g., 

algorithms for control, application logic, etc.). 

Our key contributions in this work are summarized below: 

1. We propose a holistic and interdependent framework for the design of a CPS that optimizes the cyber, physical, and

control subsystems concurrently; 

2. We present a simulation-based framework that integrates the Simulink environment with the Platune SoC for system 

analysis, testing, and verification; and 

3. We present an efficient and concurrent algorithm to prune and explore the design space for CPS, per our holistic

design platform. 

The proposed framework is applied to a real application of control system, namely an automated inverted pendulum, to 

analyze and verify the efficiency and necessity of the suggested work. 

The rest of this paper is organized as follows. A review of the state-of-the-art DSE frameworks for networked control 

systems is reported in Section 2 . Sections 3 outlines the DSE problem and describes a tool-supported holistic methodology. 

We demonstrate the workings and effectiveness of our framework for the inverted pendulum example in Section 4 . We

provide some additional remarks and insight into the proposed methodology in Section 5 . Finally, the conclusions and future

work directions are summarized in Section 6 . 

2. Related work 

DSE techniques evaluate the design points either using a simulation-based approach or an analytical methodology. Tuffin 

et al. [26] compares these two approaches in order to assist the system designers in choosing an appropriate final config-

uration. The analytical methodology applies several restrictions and assumptions such as the Markov property [23] to the 

application model. This class of methodologies which rely on the predictable architectures are appropriate for time critical 

and safety critical applications. Simulation-based techniques are generally used when the aforementioned assumptions made 

by the analytical models are inappropriate. Also, simulation approaches are typically needed where the numerical analysis 

of the system model exceeds the time and space complexity of the development platform. Current state-of-the-art tech- 

niques arbitrarily apply either simulation or analytical methodologies during the system design phases. Depending on the 

application, hybrid approaches that integrate approximate models from the analytical methodology with simulation-based 

frameworks can be very helpful in reducing the design space complexity. 

Holistic and model-based design approaches for CPS have been an active research topic resulting in a range of compelling 

related works. Canedo et al. [3] presented a top-down design framework which applies reusable blueprints of physical and 

cyber models to synthesize efficient CPS. Similarly, Vatanparvar et al. [28,29] have benefited from a top-down system-level 

design approach for CPS in the automotive domain. These works have extracted parameters from the physical systems and 

modeled their behavior for better optimization of the controller in cyber subsystem. Likewise, they have modeled and es- 

timated the dynamic behavior of the electric vehicle components, e.g. power train, hybrid electrical energy storage, and 

automotive climate control, in order to improve the performance of the vehicle in terms of driving range and energy con-

sumption. However, we are suggesting that exploration and analysis of the cyber parameters in the controller design of these 

components may impact the system performance and stability, hence should be considered during the physical subsystem 

design phase. 

Neema et al. [17] proposed a framework for CPS DSE in which the designers can define physical and computational com-

ponents and include constraints on system parameters and assembly processes. Their work outlines the design space as a 

set of hierarchical AND-OR elements with many Boolean constrains included in the design decisions. Furthermore, feasible 

configurations are simulated to analyze the changes of variables-of-interest across different design alternatives. Similarly, 

Aminifar et al. [1] have developed an automatic adaptation of software components in CPS. While these works provide a 
3 
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good motivation and foundation for the research presented in this paper, they do not specifically address the co-optimization 

strategy and rather define schemes to capture all the design configurations from the cyber as well as the physical subsys-

tems. 

In the work presented by Maasoumy et al. [14] , the authors have focused on the control and cyber co-design with

automatic control selection and parameterization. However, the presented methodology does not consider parameterization 

of the physical subsystem and does not evaluate the impact of architectural design decisions on the cyber subsystem. In a

similar manner, Muhleis et al. [16] present a simulation-based framework in Jitterbug to analyze the control quality during 

the DSE phase. The work of these authors is aligned well with our work in terms of including the control quality in the CPS

design decisions. However, these works do not consider the mapping process and the computing platform design alternatives 

for the respective controller applications. 

Larsen et al. [11] have introduced a collaborative modeling and simulation tool to design embedded control systems 

and alongside the physical plant dynamics. Their tool, named Crescendo, incorporates a combination of Discrete-Event (DE) 

controller models with the Continuous-Time (CT) models to allow multidisciplinary system designs. They suggest techniques 

to reduce the number of simulations for rapid DSE applications. While relevant to CPS, this work is very specific to DE/CT

optimization and does not address physical subsystems such as processors and memories. 

Buini et al. [2] have outlined the impact of the physical design decisions in a holistic CPS DSE. However, in their work the

cyber subsystem was represented solely by a single parameter, namely the sampling rate. In a similar vein, the automatic 

adaptation of cyber components is investigated by Otto et al. [21] in the form of an iteration-based exploration for preferable

software parameter configuration, under consideration of product and raw material descriptions. In a more practical setting, 

Michniewicz et al. [15] have proposed a virtual representation of the robot cell, containing its individual physical and cyber 

components. In our work we combine physical and cyber parameters in one framework that is generic rather than specific 

to a sub-domain of CPS. 

Nuzzo et al. [18] introduce a platform-based design methodology that addresses the complexity and heterogeneity of 

cyber-physical systems by using assume-guarantee contracts to formalize the design process and enable realization of con- 

trol protocols in a hierarchical and compositional manner. Given the architecture of the physical plant to be controlled, the 

design is carried out as a sequence of refinement steps from an initial specification to a final implementation, including syn-

thesis from requirements and mapping of higher-level functional and nonfunctional models into a set of candidate solutions 

built out of a library of components at the lower level. Initial top-level requirements are captured as contracts and expressed

using linear temporal logic (LTL) and signal temporal logic (STL) formulas to enable requirement analysis and early detection 

of inconsistencies. 

Zhang et al. [30] conducts extensive research on DSE with a very specific focus on Automotive Systems. Specifically, the 

authors analyze the current state of the art on DSE methods focusing on the assumed architecting process and concerns. 

They further investigate the state of practice in the automotive industry through a literature study and interviews with 

experienced system architects from five different automotive manufacturers. 

Our work is further related to simulation frameworks [4,31] that facilitate collaborative modeling and simulation of em- 

bedded control systems and physical plants, incorporating discrete-event controller models with the continuous-time models 

to allow multidisciplinary systems design. However, our tool-supported methodology extends this idea to combine state-of- 

the art SoC exploration and model-based simulation tools in a single design methodology. 

While DSE has been heavily researched, for example by Vanommeslaeghe et al. [27] , we position our work as being

one that specifically looks at combining Physical parameters (e.g., the length of a pendulum), Control parameters (e.g., the 

sample period for reading the system state and computing an output control value) and Cyber parameters (e.g., configuration 

of various caches, or CPU speed and frequency) in a holistic exploration environment. We explore the interplay between 

these parameters which are typically optimized in isolation and we propose an integrated DSE environment that leverages 

existing tools (e.g., Platune for exploring Cyber systems and Simulink for exploring Physical systems). We further propose 

an algorithm that copes with the DSE state explosion problem via constraint-based pruning. 

3. The DSE methodology 

Our proposed platform integrates Simulink (i.e., to model the networked control application) with Platune (i.e., a system- 

on-a-chip (SoC) framework) to design the CPS architecture. Further descriptions of the aforementioned tools are mentioned 

in the next section. 

3.1. Tools and environments 

In this section, we review the tools and technologies employed in the implementation of the proposed DSE framework. 

3.1.1. Simulink 

The proposed methodology employs the Simulink [25] environment for model-based simulation and analysis. Our choice 

is mainly based on the rapid design and algorithm exploration capabilities of Simulink combined with its code generation 

capabilities (i.e. Simulink Coder). However, other simulation environments may be used in place of Simulink without the 

loss of generality [19,24] . The hierarchical design block representation of the Simulink modeling tool simplifies the design 
4 



M. Amir and T. Givargis Internet of Things 12 (2020) 100308 

 

 

 

 

 

 

 

 

 

complexity and level/language transition [9] . Simulink applies a set of programs, called solvers, to simulate the system 

models. In Simulink, a model is represented as a set of ordinary differential equations. Depending on the nature of the

system (e.g. continuous, discrete, time complexity, etc.) a solver is handpicked to apply a numerical method to the system 

model and compute its states at successive time steps over the simulation time. 

3.1.2. Platune 

System-on-a-chip (SoC) platform manufacturers are increasingly adding configurable features that provide power and 

performance flexibility in order to increase a platform’s applicability. Platune [6] is one such SoC platform simulator fea- 

turing detailed performance and power tuning capabilities. Platune is used to simulate an embedded application that is 

mapped onto the SoC platform and output performance and power metrics for any configuration of the SoC platform. Fur- 

thermore, Platune is used to automatically explore the large configuration space of such an SoC platform. The versatility, 

in terms of accuracy and speed of exploration, of Platune is demonstrated experimentally using a number of large bench- 

marks [6] . The power estimation techniques for processors, caches, memories, buses, and peripherals combined with the 

DSE algorithm deployed by Platune form a methodology for design of tuning frameworks for parameterized SoC platforms 

in general. Platune’s parameters include a parametrized microprocessor, parameterized memory/caches, parameterized in- 

terconnect buses, and parameterized peripherals (e.g. DCT CODEC, UART, etc.). 

3.2. DSE problem formulation 

A DSE problem is one where the intent is to find the optimal combination of values for each of the many system de-

sign parameters (e.g., physical parameters, computing platform parameters, control system parameters, etc.). Exhaustive DSE 

algorithms search all possible combinations of the parameter space to find the optimal configurations. The Pareto-optimal 

design points, with regards to the design objectives (e.g., execution time or power consumption) and constraints (e.g., timing 

constraints) are of particular interest, as they represent the set of optimal tradeoffs that an engineer may select from. Of

particular interest are DSE algorithms that search a multidimensional design space for systems with multiple parameters, 

objectives, and constraints. Such multidimensional searches are challenging simply due to the very large space that must be 

explored. 

If the system’s configuration is comprised of N parameters, each having P i distinct values (i.e., configurable settings), the 

non-linear search space is defined to have P 1 × P 2 . . . × P N design points. Note that the × symbol is a cartesian product

operator in this context. We define this as the ‘design space’ of the system. 

Large and complex systems may include billions of design alternatives to be explored in their design space. Manual 

and inefficient approaches to DSE are considered labor intensive, error prone, and time/space prohibitive. That is, an inter- 

related algorithm is needed not only to reduce the complex design space but also to provide interactive feedback to the

designer during the search process. The power to automatically surf the design space and explore the solution candidates 

promotes DSE tools for many engineering tasks, including systems integration and optimization. This paper suggests a holis- 

tic methodology which combines the subsystem search spaces interactively and structures the global design space in an 

interactive process rather than a sequential approach. 

3.2.1. DSE in networked CPS systems 

In embedded CPS design, the global design space is defined as an integration of local design space configurations, in 

that the local represents the subsystems such as cyber computing platform, physical systems, physical environments, and 

networked control systems. 

We define the parameters of the target system as members of the global design space S CPS . S CPS is defined as the cartesian

product of the local design spaces as: 

S CPS = S Cyber × S Physical × S Control (1) 

S CPS represents the set of global parameters that are available to the designer of the CPS. S Cyber represent the cyber

subsystem parameters. S Physical represent the physical parameters of the CPS and S Control represent the control system pa- 

rameters. Each of the spaces (i.e., S Cyber , S Physical , S Control ) is composed of N parameters, called P i , defined as follows: 

P i = (name, range ) (2) 

Where name is the name or identifier of the parameter and range is a numeric interval of assignable values. Alternatively,

the range may be a set of discrete values. The proposed methodology provides a holistic design space S CPS , that evaluates

multi discipline local design space modules in embedded CPS subsystems interactively. It introduces an abstract design space 

representation and provides a comprehensive interoperable tool-based search strategy. The methodology uses pruning of the 

design space and supports automated DSE activities in order to compute the Pareto-optimal design alternatives. 

The proposed modular representation of the proposed DSE architecture is illustrated in Fig. 2 . The methodology follows 

the Y-chart philosophy to integrate behavioral, structural, and layout abstraction levels using the application, platform, and 

mapping views respectively. 

The local design spaces S Cyber , S Physical and S Control are introduced individually in the following sections. 
5 
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Fig. 2. The proposed DSE architecture integrates S Cyber , S Physical and S Control sub-spaces interactively using the branches of a Y-chart. 

 

 

The Physical and Control Design Spaces: The proposed methodology employs Simulink as the model-based framework 

to surf the physical space S Physical and the networked control space S Control and optimize the overall system in order to meet

a set of predefined performance criteria. The Simulink environment is one of the most popular tools among the researchers 

in various domains. Simulink provides customizable blocks from different domains, such as motors, sensors, actuators, and 

controllers that can be integrated into a single product, i.e., the CPS. This process employs a model as an executable system

specification. The simulation results from the Simulink models in the S Physical × S Control design space configurations, produce 

the design objectives such as the controller performance (e.g., stability) and the computed physical energy consumption for 

the specified design configuration. 

Control engineers are chasing after a control system design which demonstrates stable behavior while meeting the timing 

requirements accommodated by the processing platform. Naturally, computer engineers are obliged to design a computing 

platform that meets the timing requirements of the implemented product. For example, time delays or dead time (DTs) 

are ubiquitous in various system domains. Measurement, analysis, processing, and communication lags impose time delays 

on the control systems [12] . Networked control systems incorporate controllers, sensors, and actuator devices to perform 

several computational tasks. The control delay τ k 
c , includes the computation delay induced by the computation and process- 

ing routines in addition to the communication delay which encompasses the sensor-to-controller and controller-to-actuator 

delays, as shown below: 

τk = τ k 
c + τ k 

sc + τ k 
ca (3) 

Where τ k 
c is the computation delay and τ k 

sc and τ k 
ca represent sensor-to-controller and controller-to-actuator delays re- 

spectively. Embedded system applications that use microprocessors with bounded CPU performance must account for the 
6 
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processing delay, which can be significant and impactful in the design of the control subsystem. Computational delays can 

have substantial impact on the performance of a control system. The closed loop feedback of a control system produces 

unstable and oscillatory behavior if this delay is not compensated. That is, in CPS design, it is crucial to take into account

the computational delay during simulation. The proposed framework captures the computational delay of the control system 

implemented on the processing platform and considers the delay compensation in the overall CPS design. Accordingly, we 

need a processing platform that implements the controller application and tracks the computation delay of the target control 

system. We consider a parametrized processing platform in our design framework to implement the controller application 

as a system-on-a-chip which will be described in the next section. 

The Cyber Design Space : As mentioned in the Section 3.1.2 , we employ Platune as an SoC in order to map the con-

troller algorithm to a physical processor and calculate the cyber power consumption and associated computation delays. 

The platform architecture that represents the cyber design space includes a MIPS R30 0 0 processor, data and instruction 

cache, buses, on chip memory, UART, and CODEC peripherals. Platune supports 26 parameters and each of these parameters 

can be assigned a value from a corresponding range of possibilities, i.e., S Cyber could exceed over one hundred trillion design

points. 

Platune is designed to load C program applications, compile and link these applications with the runtime libraries and 

simulate the SoC at a cycle-accurate granularity. We convert the controller algorithm from the Simulink model into C code to

be mapped on the Platune SoC with user defined specifications and parameters from the local space S Cyber . Platune carries a

MIPS virtual machine to simulate the application software and generates a report on the power consumption and execution 

time for the specified configuration of the SoC platform. 

The CPS Design Space : The integration of the local design spaced is carried out with regards to the interactions and

interdependency between all the parameters P i and objective functions (e.g., time, power consumption, accuracy, etc.). That 

is, we need to perform a global analysis on the local design space parameters and the output metrics to prune the global

design space accordingly and meet the systems requirements and design constrains. 

For each set of possible configurations for some input parameter, there are a set of associated evaluation metrics. We 

consider two metrics that we believe would vary during different design space configurations in networked control CPS 

applications. 

• Energy Consumption: One important requirement that is imposed on a CPS is low energy consumption. The total energy 

consumption E total of a system can be decomposed into the energy consumption of all the relevant subsystems. We 

accumulate the cyber energy consumption E Cyber of the target computing platform and the physical energy consumption 

E Physical of the physical model during the simulation run. Specifically, the cyber energy consumption is measured by 

Platnue on a cycle accurate level. The physical energy consumption of the system model is calculated in the Simulink for

each of the respective simulation runs. The number of cycles in each design configuration are calculated by dividing the 

total simulation time by the respective sample time of simulation. 

E total = E Cyber + E Physical (4) 

• Integral Square Error (ISR): Integral square error (ISR) is a control quality measure that establishes the deviation from 

the desired output (expected value) of the CPS. This metric is applied in the control system applications that are intended

to filter out large error values instantly. It integrates the square of the system error over the simulation time. The error

values are computed as the difference between the desired output (set point) and the actual output of the CPS control

systems. For example, the target output could be the angle of the pendulum in the inverted pendulum example. 

ISR = 

∑ 

(ExpectedV alue − Actual V al ue ) 2 (5) 

3.3. The DSE algorithm 

Our proposed DSE methodology is presented as pseudocode in Algorithm 1 . The algorithm integrates design spaces from 

various domains in several interactive pruning phases. During each pruning phase, we only discard design points that fail 

to meet a system constraint. Otherwise, these points are retained as a candidate until the ultimate Pareto optimal selection. 

This ensures that we take all interdependencies between parameters into account. 

Our approach, (1) reduces the design space drastically in comparison with the exhaustive design space constructed by 

taking a cartesian product of all the parameters, and (2) takes into account the interoperability between systems parameters 

and objectives from different domains in the CPS system. 

In this algorithm, first, the performance metric (e.g. ISR) from the Simulink model is evaluated for the respective design 

configurations and stable designs are selected from the ( C Physical × C Control ) design spaces. Therefore, the first phase of prun-

ing reduces the design space size from ( C Physical × C Control ) to a set of viable points that meet the desired ISR constraint , i.e.,

the stable set of design points. Next, the stable design points are passed on to the Platune platform for a full SoC simula-

tion using all the available configurations of the SoC, i.e., the cyber parameters. For each simulated design point, we discard

those that do not meet the timing requirements, i.e., Time constraint . The resulting pruned set of design points are stored in

S CPS . Next, we sort this pruned space, i.e., sorted _ list . Finally, we compute a set of Pareto-optimal design points by discarding

inferior points with regards to energy consumption obtaining the desired S set. 
Pareto 

7 
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Algorithm 1 Design Space Exploration Algorithm. 

Require: C Physical , C Control , ISR constraint , T ime constraint 

Ensure: S CPS , S Pareto , min _ energy ← INF 

1: for all s ∈ C Physical × C Control do 

2: O PC ← Simulate _ Simulink (s ) 

3: if O PC .ISR < ISR constraint then 

4: stable.push (s ) 

5: for all s ′ ∈ Stable do 

6: temp ← Simulate _ Platune (s ′ ) 
7: if temp.T ime < T ime constraint then 

8: S CPS . push (s ′ ) 
9: sorted _ list ← Sort (S CPS ) 

10: for all s ′ ∈ sorted _ list do 

11: if s ′ .Energy ≤ min _ energy then 

12: min _ energy ← s ′ .Energy 

13: S Pareto . push (s ′ ) 

Fig. 3. The architectural view of the proposed DSE algorithm is illustrated in three steps. The first block performs system modeling and simulation using 

Simulink to produce a set of stable design alternatives. The second block performs application mapping on Platune, simulates and performs DSE with 

pruning. The third block is the optimization stage in which the Pareto optimal design alternatives with regards to energy and ISR objectives are calculated. 

 

 

 

 

 

 

 

Ultimately, the problem is to find a set of parameter configurations for the CPS application in the S Pareto set that optimizes

all design objectives, or what we call the multi-objective design optimization problem. Pareto-optimal curves that depict the 

tradeoff between the design objectives are solutions to multi-objective optimization problems. This design objective can be 

a vector of system responses that we are trying to maximize or minimize. 

Our intention in this paper is to evaluate and analyze the CPS global design space and to demonstrate that the interac-

tion and interdependency between local design space parameters is not trivial and intuitive and should be accounted for 

during the design process. That is, optimal embedded CPS design is in need of a holistic exploration in all the local design

space configurations that inhabits the design constraints imposed by the interdependency between the spaces. Therefore, 

an exhaustive DSE exploration algorithm is afforded to find the Pareto-optimal points with regards to the design objective 

metrics. The pruning steps that integrate the local design spaces C Physical , C Control and C Cyber into the global design space C CPS 

is presented in our algorithm and further illustrated in Fig. 3 . 

As a final remark and practical matter, the set of Pareto design candidates must include the points that fall within a

neighborhood of the Pareto curve defined by the accuracy of the simulation and performance measurement metrics. Points 

falling within this Pareto band may ultimately prove to be desirable in the final implementation. Moreover, lower order 

design decisions that were not considered during the DSE could slightly change the location of a design point within the

Pareto set, hence making it beneficial to not discard points that are close to the Pareto curve. 

4. Experimental results 

A DSE example using a real application of automated networked control system for a state space inverted pendulum 

model, with full state feedback controller, has been developed to evaluate the proposed methodologies of this work. A 

comprehensive description of the inverted pendulum control example is presented by Buini et al. [2] or by Krishna et al.

[10] . In our work, an inverted pendulum has a closed loop control system consisting of a controller, actuator, and pendulum

dynamics. The local design space parameters that we handpicked to vary for different design configurations are illustrated 
8 
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Table 1 

Design parameters in S Control , S Physical and S Cyber design spaces. 

Space S Control S Physical S Cyber 

Parameters P Sample Time P Length { P i$-size , P i$-line , P i$-associate , P d$-size , 

P d$-line , P d$-associte , P CPU Speed } 

P i$-size = ( S platform , i$-size, [128-32k]) 

P i$-line = ( S platform , i$-line, [4:64]) 

Tuples P Sample Time = (S Control , P Length = (S inverted pendulum , P i$-associate = ( S platform , i$-associate, [1:16) 

Sample Time, [1e-4:28]) Length, [1e-4:20]) P d$-size = ( S platform , d$-size, [128:32k]) 

P d$-line = ( S platform , d$-line, [4:64]) 

P d$-associte = ( S platform , d$-associate, [1:16]) 

P CPU Speed = ( S platform , CPU Speed, [4:256]) 

Table 2 

Number of configurations in the design space. 

Design Space # of Configurations 

S Physical × S Control 2,552 

S Cyber 32,400 

S Physical × S Control × S Cyber 82,648,800 

( S Physical × S Control ) Stable 655 

( S Physical × S Control ) Stable × S Cyber 113,975 

S CPS 95,316 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Table 1 . The parameters include the sampling period/time for our control systems, the inverted pendulum length for our

physical system, and a number of hardware parameters for our Cyber system that include size, associativity, and line-length 

for each of the instruction and data caches as well as the CPU speed. To summarize, our physical system is the inverted

pendulum. Our cyber system is an embedded processor executing the controller code. 

The configurations in our experiments are integrated through different filters as described in Section 3 . The number of

configurations for the integrated design space, after each pruning phase, is depicted in Table 2 (note that entries that are

labeled as stable, represent the design space after the pruning phase). As illustrated in the table, the design space for a

holistic networked control inverted pendulum example is reduced compared to the sequentially integrated design space 

from 82 million design points down to approximately 95 thousand design points. 

Our experiments were performed on a PC with an Intel Core i5 Quad processor running on a 64 bit Windows 7 operating

system. First, the networked control system for the inverted pendulum example was modeled in the Simulink (i.e., MATLAB 

R2015a). A Dormand-Prince solver with variable step size was selected to perform the simulation of the model for each 

of the design configurations. Model simulation was iterated for 2252 sets of design alternatives in the ( C Physical × C Control )

spaces with 30 s simulation time per iteration. The sample time of the controller as a control parameter and the length of

the inverted pendulum as a physical parameter were selected to vary between different design points. 

Our DSE algorithm selected 655 sets of configurations with stable behavior to be integrated with the computing platform 

design in Platune. The controller C source code was loaded into Platune to be mapped and simulated on the configured SoC.

While the cyber design space C Cyber using Platune could exceed 10 14 design points, for the inverted pendulum example, 

we limited this space to 32,400 design points by excluding parameters that had no impact on this benchmark (e.g., those

associated with unused sub-systems of the SoC). Combining the 32,400 design points with those from the control space, 

we obtained 113,975 design alternatives, as highlighted in Table 2 . The computing platform architecture altered for cache 

size and CPU speed parameter respectively. Finally, our DSE algorithm applied the final design constraint C CPS to satisfy the

control and software engineers requirements. That is, the algorithm pruned the configurations in which the sampling time 

from the Simulink model was larger than computation delay obtained from Platune. The proposed pruning algorithm had 

the following advantages: 

1. We reduced search space from 83 million design points to 95,316 design points prior to Pareto-optimal configuration 

selection. 

2. We filtered the design space to meet the design decisions of control engineers and software engineers in an interactive

manner. 

The exploration algorithm to find the Pareto-optimal points were implemented to process the 95,316 configurations in 

the global design space of the networked control inverted pendulum application. As mentioned before, the objective metrics 

in our multi-objective optimization problem was the total energy consumption and the control quality ISR. Fig. 4 depicts 

the global design space points C CPS with gray dots and the Pareto-optimal curve as the result of the Pareto optimization

algorithm with red dots. The curve represents the tradeoffs between the energy consumption and ISR values for all the 

design points in the global design space. 

The tradeoff between the ISR and total energy consumption is more prominent for low power numbers in the range of 

0.015–0.025 J. Tradeoff information is extremely important to identify the most preferred design point along the Pareto- 
9 
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Fig. 4. Pareto-optimal points, the red stars, residing in the design space. The grey points, represents the trade-off between the energy and ISR. 

 

 

 

 

 

 

 

 

 

curve. It is evident that the application requirements determine the superior Pareto-optimal point which satisfies the design 

objective accordingly. For example, robotic surgical procedures [20] afford more power consumption in tradeoff for the 

best accuracy and system reliability. On the other hand, embedded mobile applications are desperate for low power design 

decisions. 

Fig. 5 illustrates the variations in cyber, physical, and controller parameters for energy consumption in the Pareto-optimal 

configurations. As depicted by the plots, the respective parameters do not follow a steady pattern in tradeoff with the energy 

consumption metric. The swinging behavior of the parameters before the energy consumption values in the Pareto-optimal 

configurations, accentuates the need for DSE methodologies and frameworks. A holistic and interactive evaluation on design 

alternatives for embedded CPS systems design is, hence, needed. For example, the non-intuitive interaction between the lo- 

cal design space parameter, the length of the pendulum, and the design objective metric, total energy consumption, can be 

obtained from the Length-Total Energy diagram. Plot (a) in the Fig. 5 discloses that increasing the total energy consumption

measurements between the range of 0.018–0.021 J corresponds with an increase in the respective length values. On the 

other hand, the increase in the Pareto-optimal energy consumption measurements in the 0.021 to 0.024 range observes a 

decrease in the corresponding length values. This non-trivial correlation between the system level design parameters and 

metrics plays a significant role in design decisions. That is, we are claiming that embedded CPS designers should take into

account not only the tradeoff between the design objectives to pick the most preferred Pareto-optimal points, but also the 

interdependency between the design space parameters (i.e., cyber parameters, physical parameters, control parameters, etc.) 

and the design metrics (i.e., ISR, Energy, Power, etc.). Accordingly, noticing the interplay between the design parameters 

and design metrics includes the hardware, inventory, and technology constraints in the design decisions. For example, one 

Pareto-optimal point may be preferred due to the inventory availability for the corresponding physical parameter. Conse- 

quently, the engineering of CPS inherently demands collaboration between diverse domains and a holistic computer-aided 

design framework. 

Revisiting an earlier question around the dependencies in the CS, control, and PS parameters, we conducted six experi- 

ments. We set all the parameters of the system to their default (i.e., mid-point) settings and chose a single parameter from

each of the CS, control, and PS space, namely pendulum length (PS), sampling period (control) and instruction cache size 

(CS). For each experiment, we determined a desired setting for one of the control, PS or CS sub-systems and searched for

optimal settings for the remaining two parameters such that power consumption would be minimized. We followed up 

by making a change to the desired setting and repeating the experiment. For example, we arrived at the optimal setting

for the sampling period of 500 milliseconds, and instruction cache line size of 40 bytes, for a desired pendulum length of

0.005 m, which yielded a power consumption of 0.025 J. Changing the desired pendulum length to 0.01 m and reevaluated

the optimal settings for our two parameters, we observed that the optimal value for the sampling period changed to 750

milliseconds and the optimal value for the cache line size changed to 48 bytes. Evaluating the optimal values for each of
10 



M. Amir and T. Givargis Internet of Things 12 (2020) 100308 

Fig. 5. The plots illustrate the behavior of design parameters for the inverted pendulum example with regards to the total Energy consumption. These plots 

include the parameters from the physical (a), control (b) and cyber (c, d, e, f) design spaces. The zigzag patterns of the plots represent a non linear behavior 

for successive design points. Specifically, we observed that as we swept a parameter’s value from the minimum setting toward its maximum setting, we 

often measured extreme swings in energy consumption. Some of these variations may be be explained by the unpredictable nature of processor caches 

while others maybe as a result of simulation inaccuracy and sensitivity. Plot (f) depicts the relation between the instruction cache line and total energy 

values. It can be observed that for two successive Pareto-optimal design points with total Energy between (0.030 to 0.035), we observe an increase in the 

corresponding cache line values. On the other hand, in the (0.035–0.040) range, for two successive Pareto-optimal points we observe a decrease in the 

cache line values. 

 

 

 

 

 

 

our three selected parameters across the six experiments, we could not find a single value that would be a priori optimal.

The instruction cache line size varied from 20 to 46 bytes as control/PS parameters changed, the sampling period varied 

from 100 to 800 milliseconds as CS/PS parameters changed, and the pendulum length varied from 0.003 to 0.01 m as the

control/CS parameters changed. Hence, per our experiments, and for a simple example, we established that a strong con- 

nection exist between these subdomains and the optimality of the overall system can not be guaranteed unless these are 

co-optimized in a holistic DSE approach. 

It should be noted that we modeled the entire system energy consumption. Specifically, we used Platune to obtain the 

Cyber (i.e., computation) energy and combined that with an inverted pendulum analytical power model (i.e., one that in- 

cluded modeling the power supply, DC motor, and the analog drive circuit). We separately validated the efficiency of our 

Inverted Pendulum efficiency by comparing it to an actual implementation and found the results to be accurate to within 

30%, which would be sufficient for high-level DSE. 

For completeness, we should mention that as part of our experiments we pre-pruned the design space to eliminate 

design points that would overtly violate basic design principles or that they would clearly break various design constraints. 

This was part of the design space definition work that was conducted prior to the full DSE runs. For example, situations

such as changing the length or the mass of the pendulum such that the forces required would become unfeasible for the DC

motor or power supply to provide enough torque to keep the pendulum up would never be considered by our DSE. Despite

this pre-pruning, in our benchmarking, the effective design space remained prohibitively large for brute force exploration, 

hence all our results are based on heuristic algorithms that are near-optimal. 

5. Additional remarks 

We would like to note that the DSE methodology stated in this paper is ultimately a brute force approach and may not

be suitable in large applications having many parameter dimensions. The presented approach relies on successive pruning 
11 
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in order to lower the ultimate number of simulations and reduce the search time. Despite this, the time complexity of the

system, in theoretical terms, remains exponential with respect to the number of Physical and Cyber parameters. However, 

in practice, this process can be managed by quantizing the parameter values or more aggressively pruning the space using 

additional performance constraints. This works if these additional constraints represent system requirements, but obviously 

would be counterproductive if they are added solely for the purpose of limiting the DSE. In our work, we aimed at studying

the importance of a combined Physical and Cyber co-design. 

While our presentation makes use of multiple individual tools (e.g., Platune and Simulink), we have an integrated end- 

to-end system that drives the entire process. We are currently looking at coping with the scalability issue by virtue of

exploring Deep Reinforcement Learning based approaches combined with a Map-Reduce implementation that can utilize a 

higher number of servers in the cloud to solve large problems. To that effect, we plan to create a docker image of our DSE

toolchain for fast and rapid deployment in Amazon Web Services (AWS). 

6. Conclusion and future work 

In this paper, a holistic and interactive DSE framework is presented for aid in the design of embedded CPS. We first

discussed a simulation and exploration tool that combines the state-of-the-art exploration of SoC properties with model- 

based simulation tools like Simulink. As a result, we are able to analyze the impact of cyber design decisions, such as

voltage, processor configurations, or cache sizes on the overall CPS performance and stability. 

We employed the proposed framework in the design of a real application of automated networked control system to ver- 

ify the efficiency and necessity of the suggested work. Our experimental results confirm that the interrelated framework is 

needed for design of efficient CPS systems due to non linear behavior of the Pareto-optimal design points. That is, successive

design point on the Pareto-optimal curve do not follow a linear transfer between the design configurations. For instance, 

design space configuration parameters, e.g., a Pendulum’s length, CPU speed, cache size, or control sampling rate follow a 

nonlinear (zigzag) behavior with regards to the Pareto-optimal design objectives, e.g., total energy consumption and con- 

trol stability. Furthermore, we discovered analogous zigzag patterns for some parameters from different local design spaces 

(e.g., cyber, physical, or control). In our future work, we plan to apply methodologies to automatically mine the interdepen- 

dency between the parameters from different design spaces in the CPS and employ the correlations to present heuristics for 

efficient DSE of relevant emerging applications. 
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