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Introduction
The origins of Hyperdimensional Computing (HDC) [46], also known as Vector Sym-
bolic Architectures (VSA) [22], dates back to the 80’s. Notable early work include Hinton 
[36] and Kanerva [45] with their development of the theory of distributed representa-
tions and distributed memory, respectively. The field has gained momentum more 
recently and is receiving increasing interest from the broader artificial intelligence (AI) 
community. Current applications of HDC range from natural language processing [91], 
gesture and voice recognition [41, 89], to implementing finite-state automata [81, 118].

The theory of HDC/VSA emerged from comparative studies of computing in ani-
mal brains and computer logic circuits  [46]. HDC can represent a “concept space” by 
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exploiting the geometry and algebra of high-dimensional random vector spaces. Intu-
itively, it enables metaphorical and by analogy reasoning like it is done in the animal 
brain  [47]. The central observation is that large circuits are fundamental to the brain’s 
computation. HDC incorporates this notion by computing with distributed representa-
tions [26] in high dimensions, called hypervectors. The dimensionality of these hypervec-
tors is commonly in the order of thousands or tens of thousands.

Such hyperspaces (short for hyper-dimensional spaces) allow replicating certain rich 
brain properties that are otherwise difficult to reproduce on computers. See for instance 
the “what’s the Dollar of Mexico?” example by Kanerva [47]. Hypervectors typically rep-
resent information holographically, meaning that each of the thousands of dimensions 
contains the same amount of information, ensuring inherent robustness [46, 113]. Many 
variations of the hyperspace have been proposed, which we refer to as HDC models, 
ranging from binary till complex numbers [94], although they are all largely similar at a 
conceptual level.

In addition to representation, a crucial part of a computer system is information 
manipulation, or arithmetic. The arithmetic in HDC is based on well-defined opera-
tions between hypervectors, such as addition (bundling), multiplication (binding) and 
permutation. The implementation of these operations differs between HDC models but 
they achieve the same abstract result, that is: superposition, association, and ordering 
of information, respectively. Another important function is information comparison, 
which in HDC usually consists of measuring the similarity between hypervectors using 
the dot product or the cosine similarity. Both manipulation and comparison of informa-
tion are based on dimension-independent operations, providing an opportunity for mas-
sive parallelism [66, 90].

Computational efficiency is one of the core motivations aimed at since the conception 
of HDC and it is envisioned for and expected to reach full potential in specialized hard-
ware [46]. Recent changes in computing demands have motivated the emergence of new 
hardware models, called neuromorphic computing paradigms (also known as: brain-like, 
unconventional and natural computing) [43]. These emerging platforms are conceived to 
operate with massive parallelism, at the nanoscale, with ultra-low voltage and unreliable 
components, resulting in a stochastic execution environment  [51, 55, 105]. Because of 
the characteristics of HDC, such as robustness to noise and the inherent randomness, it 
has been proposed as an abstraction layer that enables the design of algorithms for these 
platforms [55].

In addition to the aforementioned parallelizability of HDC, optimizations such as 
in-memory processing promise to further increase the computational efficiency of 
HDC [40]. Schmuck et al. [95] apply a series of hardware techniques to optimize HDC, 
such as on-the-fly rematerialization of hypervectors and special memory architectures, 
to improve chip area and throughput at the same time. Particularly important to sub-
stantiate the claims we make in this paper about efficiency (see “Method” section), they 
demonstrate an FPGA implementation that uses deep adder trees to perform inference 
in a single clock-cycle.

The aforementioned efficiency and robustness of HDC together with its ability to 
solve cognitive tasks have motivated many machine learning (ML) and AI applications 
of HDC. We will discuss important examples of these applications in “Applications in 
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symbolic AI” section. The algorithms used in these applications can often be separated 
into three stages: encoding, training, and inference. Throughout this paper, we present 
each of these stages in detail and through examples. Of all these stages, encoding is pre-
sumably the most important. The encoding stage is application specific and serves to 
map objects in the input space X  to hypervectors in H . In a learning setting, the training 
phase aggregates hypervectors into prototypes to learn a model. Inferences can then be 
made using the generated class representations by comparing their similarity with an 
encoded test sample.

Besides cognitive tasks, the properties of HDC have also been a motivation to apply 
it to more general computation problems, which we will refer to as stochastic compu-
tation. Research in this domain seeks to create solutions to classical problems, such as 
hashing [32] or graph isomorphism [23] by exploiting the characteristics of HDC. These 
applications encompass both deterministic computation in the presence of noise and 
probabilistic algorithms that search for approximate solutions. Important applications 
are discussed in “Applications in stochastic computation” section.

In this paper we begin by presenting a detailed description of the components of 
HDC, accompanied by a survey of the literature relevant to each of these parts. We also 
present the concepts in a didactic way through examples, with the aim of serving as an 
introductory tutorial to the research field. Then, we present the range of possible appli-
cations of HDC, mainly highlighting its use both in machine learning applications and 
as a more general stochastic computation framework. To this end, we also present in 
detail two application examples: first, in “GraphHD” section, we describe GraphHD, a 
graph classification method; then, in “Hyperdimensional hashing” section, we introduce 
HD hashing, a dynamic hashing algorithm. Finally, we conclude the paper by presenting 
and discussing empirical results of these two methods to show how, in fact, approaches 
based on HDC have the potential to bring efficient and robust alternative solutions to 
relevant problems.

Problem definition
There is a trend among computing hardware towards highly parallel and stochastic plat-
forms to satisfy new demands in computing [51, 105]. Compared to current hardware, 
these emerging platforms such as neuromorphic processors and in-memory computing 
architectures, consume only a fraction of the energy. Given the diversity of these emerg-
ing hardware platforms, the need for an abstraction layer that allows describing algo-
rithms for such hardware emerges. This abstraction layer needs to be expressive such 
that it can be used to solve a wide range of complex problems. Moreover, to meet the 
requirements of these emerging demands, it needs to execute efficiently while being 
robust to the inherent noise of the stochastic computing hardware. HDC has been pro-
posed as this abstraction layer, serving as the interface between application design and 
these emerging hardware platforms [55].

Among the most important of the growing demands that the emerging hardware is 
targeting are those related to machine learning. In the ever more important field, achiev-
ing the state-of-the-art often involves training ever larger models to improve the accu-
racy. It is important to note that with this expanding relevance, the need for learning 
capability has spread to embedded devices as well. This context presents obstacles to 
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many conventional solutions, due to memory, timing, and power constraints [7, 10]. 
Moreover, their black-box approach to intelligence makes it particularly challenging to 
understand why and how the complex behavior formed and in which settings it will fail 
[5].

Despite the breath of interesting results presented in the HDC literature on the afore-
mentioned topics, there are still many open questions. We refer the reader to the works 
by Hassan et al. [31] and Kleyko et al. [56] for a discussion on open problems and chal-
lenges related to HDC.

Existing solutions
In this section we present a detailed and didactic description of the elements and con-
cepts that constitute HDC/VSA. The definitions will be exemplified using the fictitious 
data records in Table  1. These concepts form the basis for every application of HDC/
VSA. This section is concluded with examples of applications in the domains of cog-
nitive and stochastic computation using HDC/VSA to provide real examples of the 
usage of the concepts described throughout this section and to illustrate the distinction 
between the machine learning, and the more general computation side of HDC.

To facilitate understanding, we will present all the concepts for a specific HDC model 
called Binary Spatter Codes (BSC) [48], where the hyperspace consists of binary vectors. 
In Table 2 we list some other existing models in the literature, along with their differ-
ences; these include: Multiply-Add-Permute (MAP) [21], Holographic Reduced Repre-
sentations (HRR) [84] and Fourier HRR (FHRR) [85]. For a more detailed description 
of these and many other existing models, the reader is referred to the surveys by Kleyko 
et al. [57] and Schlegel et al. [94]. Note that the concepts presented in this Section are 
applicable to all HDC/VSA models simply by using the appropriate model representa-
tions and operations.

The mapping of data to the high-dimensional space is the first step in HDC and this 
process corresponds to encoding. The process is governed by a function φ : X → H , that 
maps input arguments (e.g., graphs, text or images) in an input space X  to the d-dimen-
sional space H . In the context of learning, encoding is the HDC counterpart to the 

Table 1 Example of three data records

Record Fruit (F) Weight (W) Season (S)

r1 Apple 80 Fall

r2 Lemon 60 Winter

r3 Mango 180 Summer

Table 2 Overview of HDC models

Model Hyperspace Bundling Binding Unbinding

BSC Binary Majority Exclusive or Exclusive or

MAP Bipolar Addition Multiplication Multiplication

HRR Real unitary Addition Circ. convolution Circ. correlation

FHRR Complex unitary Addition Multiplication Conj. multiplication
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feature extraction process in classical learning methods. Thus, the main intuitive princi-
ple that governs the encoding is that inputs that are similar in the original space should 
be mapped to similar hypervectors.

Similarity metrics

Similarity between hypervectors is generally measured using the cosine similarity δc , or 
the normalized dot product δd . In a binary setting the inverse normalized Hamming dis-
tance δh is also used. The definitions provided in Eq. 1 show that these similarity metrics 
are very related. The inverse normalized Hamming distance δh for binary hypervectors 
is in fact equivalent to a shifted and scaled normalized dot product for bipolar hyper-
vectors. There is a subtle distinction between the cosine similarity and the normalized 
dot product: the normalized dot product can be used to retrieve frequency information 
from a hypervector, for example, “how many times is x in y ?” The cosine similarity, in 
contrast, normalizes over the magnitude of the vectors and therefore loses the frequency 
information. However, it can still be used to answer containment questions, e.g., “is x in 
y ?” The most appropriate similarity metric is thus application specific and throughout 
this paper we will refer to a generic similarity metric δ or specify explicitly which similar-
ity is used when necessary.

Basis‑hypervectors

Basis-hypervectors, also called seed or atomic hypervectors, are sets of hypervectors 
that represent, i.e., encode, the smallest units of meaningful information in the hyper-
space. Their generation is typically the first stage in the encoding process. In Table 1, the 
atomic information are the possible fruit types, fruit weights, and seasons of the year. 
Since the nature of these information sets is different, so are the basis-hypervector sets 
used to encode them. The basis hypervectors remain fixed throughout computation and 
each data sample is encoded by combining and manipulating them using the addition 
(bundling), multiplication (binding) and permutation operations. The different sets of 
basis-hypervectors are illustrated in Fig. 1 and described below.

Random-hypervectors In this set, each hypervector is sampled uniformly at random 
from the hyperspace. Because of the high dimensionality of H , each pair of symbols ri 
and rj in R = {r1, . . . , rm} is quasi-orthogonal with high probability, a phenomenon 
known as concentration of measure [45, 64]:

For this reason, it is used to map (one-to-one) categorical/symbolic data, such as the 
fruit types in Table 1, to the hyperspace. We denote by φR(x) the hypervector in R used 
to encode the atomic information x using random-hypervectors.

Level-hypervectors The set L = {l1, . . . , lm} is used to encode linearly correlated 
information, usually representing a subinterval of the real number line R . Examples 
include: distance, time, energy and, in our Table 1 example, the weight of a fruit. Unlike 

(1)δc(a,b) =
a · b

�a��b�
, δd(a,b) =

a · b

d
, δh(a,b) =

1

d

d
∑

i=1

1(ai = bi)

(2)δ(ri, rj) ≈ 0 ∀i �= j, ri ∼ U(H)
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random-hypervectors, these vectors are generated from an interpolation of vectors l1 
and lm which are the only two that are sampled uniformly at random from the hyper-
space. Each hypervector in L is associated with a value, such that the distance of the 
values in R is proportional to the distance of their respective hypervectors. Different 
methods for creating a set with these characteristics were proposed independently [86, 
87, 89, 101, 112]. More recently, an improved version in its representational capac-
ity was introduced by Nunes et al. [77]. In the case of the FHRR model, exponentiation 
of complex components is commonly used to create level-hypervectors, in a process 
known as fractional power encoding [83]. We represent by φL(x) the encoding of x using 
level-hypervectors.

Circular-hypervectors Another important type of information, whose correlation pro-
file is not captured by the sets above, is circular data [82]. This kind of data is derived 
from the measurement of directions, usually expressed as an angle in � = [0, 2π ] . It is 
also common to handle time measurements, like the seasons of the year in our exam-
ple, as circular data. We propose the set, denoted by C = {c1, . . . , cm} in “Circular 
hypervectors” section, which is built on the construction of level-hypervectors, but is 
divided into forward and backwards transformations, making the distance between the 
hypervectors proportional to the distance of the angles in � that they represent. We 
denote by φC(x) the hypervector in C used to encode the atomic information x using 
circular-hypervectors.

Operations

Arithmetic in HDC is based on three operations: binding, bundling, and permuting, out-
lined below. These functions are dimension-independent and always yield hypervectors 
in the same space as the operands, enabling the composition of operations. The imple-
mentations of these operations for the BSC model are illustrated in Fig. 2.

Binding The binding function ⊗ : H×H → H , produces a vector dissimilar to 
both its operands. This operation is commonly used to “associate” information, 
for instance, to assign values to variables. The hypervector φR(F)⊗ φR(apple) can 
be used to represent the variable-value pair Fruit←apple of record r1 in Table  1, 

Fig. 1 Pairwise similarity of each i-th and j-th hypervector within a basis-hypervector set of size 10. 
Comparing between random, level and circular basis-hypervectors
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where the variable name, i.e., its symbol, is encoded using random-hypervectors. In 
many applications it is important to define an inverse binding operation to retrieve 
the value of a variable from a variable-value hypervector. This operation is com-
monly called unbinding or release, denoted by ⊘ , and behaves in the following way: 
a = (a ⊗ b)⊘ b . Observe that in the MAP and BSC models ⊗ ≡ ⊘ , as their binding 
operations are self-invertible in the respective hyperspaces. Binding is also commuta-
tive and distributive over the bundling operation described below.

Bundling The bundling operation, also known as superposition, is used to aggregate 
information into a single hypervector. The function ⊕ : H×H → H produces a vec-
tor that is maximally similar to the operands. In this way, record r1 from our example 
can be encoded to a single hypervector as the aggregate of variable assignments:

Notice that, as explained in “Basis-hypervectors” section, when encoding record r1 above 
we used the appropriate basis-hypervectors to encode each of the values according to 
the correlation profile of their information in the input space. Also note that each var-
iable is encoded as a different vector drawn from a random-hypervector set. There is 
also an inverse operation to bundling ⊖ : H×H → H which can be used to remove an 
item from a hypervector by bundling with the additive inverse. Because hypervectors 
are typically normalized to ensure that the resulting vector is in the same domain as the 
basis-hypervectors, bundling and inverse bundling become approximate operations. As 
an example, the BSC model uses majority voting. In that case the addition of noise in the 
hypervector for each bundling operation needs to be considered. This can be mitigated 
by using full-precision hypervectors such that the operations become exact.

Permuting The permutation operator is used to assign an order to hypervec-
tors. The function � : H → H outputs a hypervector that is dissimilar to its input. 
The exact input can be retrieved with the inverse operation. Cyclic shift is the most 
commonly used permutation and with �i(A) we denote a cyclic shift of the ele-
ments of A by i coordinates. Suppose that in the example of Table 1, we want to rep-
resent not only the fruits and their characteristics, but also someone’s preference 
order, say mango, apple then lemon. This sequence of records can be encoded as 
φ(r3)⊕�1

(

φ(r1)
)

⊕�2
(

φ(r2)
)

 . In real applications, permutation has been used to 
represent time series and n-grams [4, 42, 73, 89].

φ(r1) = [φR(F)⊗ φR(apple)] ⊕ [φR(W )⊗ φL(60)] ⊕ [φR(S)⊗ φC(fall)]

Fig. 2 Binding, bundling, and permutation operations illustrated on binary hypervectors a and b according 
to the Binary Spatter Codes HDC model. The subscript denotes the dimension index of the hypervector. The 
logical gates in the bundling operation are majority gates 
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A significant effort in HDC has been devoted to developing new and better encod-
ing strategies  [23, 31, 44, 74, 83, 102]. Encoding functions are generally application 
specific and are critical in successfully applying HDC to a problem. In the following 
section we will describe some common encoding patterns.

Encodings

Encoding patterns are used to combine multiple atomic pieces of information to 
encode something more complex. Examples include encoding text from charac-
ters  [91, 99], graphs from vertices and edges  [23, 78], time series from samples  [25, 
89] and images from pixel values [62, 68], among others. Below we present the most 
common encoding strategies.

Multisets The simplest method to combine information in hyperspace is to create 
a multiset. A multiset is created by bundling values together, forming a hypervector 
that is similar to the inputs. The equation below shows the creation of a multiset from 
the input hypervectors {v1, v2, . . . , vm}:

A multiset can be queried to determine whether it contains a given value by calculating 
the similarity of the value with the set. If the similarity is close to one, the element is in 
the set with high probability. Moreover, the number of occurrences of a value can be 
determined using the dot product. This is why the obtained hypervector can be seen as 
a multiset, rather than a set. For more details on the information retrieval and capacity 
aspects of multisets refer to Thomas et al. [107].

Hash tables To combine values with different semantic meaning it is common to 
introduce a key ki for each value vi . The combined representation goes by the names 
of hash table, record-based encoding, or role-filler bindings. This encoding binds each 
key with its respective value hypervectors and then bundles them to create the com-
bined representation [46, 83]:

The key hypervector can for example correspond to the position in an image or the 
identifier of a variable. This is the method used to illustrate the encoding of the fruits 
in Table 1. The value associated with a key can be efficiently queried, like a hash table in 
programming. This is done by unbinding (see “Operations” section) the hash table with 
the key and comparing the similarity of the resulting hypervector with the set of basis-
hypervectors for the value. The most similar basis-hypervector is the one corresponding 
to the value that is the most likely to be associated with the queried key. This similarity 
search is equivalent to a memory lookup using associative memory, which is discussed 
in “Associative memory” section.

Sequences A sequence is encoded as a multiset of permuted values, where the 
number of permutations depends on the position where the value appears in the 
sequence [46, 83]:

φmultiset(v1, v2, . . . , vm) = v1 ⊕ v2 ⊕ · · · ⊕ vm

φhash−table(k1, v1, k2, v2, . . . , km, vm) =

m
⊕

i=1

ki ⊗ vi
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This bundling-based sequence encoding is used especially when it is important to 
compare the similarity between sequences. Alternatively, one can use binding-based 
sequences, where the permuted values are bound together instead of bundled. In this 
strategy, which has already proved useful in some applications [44, 91], even sequences 
that differ in only one element are completely dissimilar in hyperspace.

The bundling-based sequences can also be used to implement other common data 
structures such as stacks and queues  [55, 83, 118]. To implement both, methods for 
pushing and popping values from the beginning and end of the sequence need to be 
defined:

where s is a sequence of length m. The cleanup function performs an associative memory 
lookup of the given value, returning the original hypervector and thus removing noise 
introduced by the bundling of multiple values. Recall that the ⊖ symbol represents the 
inverse bundling operation.

N-grams Statistics of n-grams from textual data are often used in natural language pro-
cessing [92]. In HDC, an n-gram is encoded by binding n consecutive tokens. A token vi 
can be a word or a character, typically encoded using random-hypervectors. The entire 
text is then encoded as a multiset of all the n-grams [44, 91]:

Graphs A graph G = (V ,E) is usually represented in the hyperspace as a multiset of its 
edges E. Each edge in turn, is encoded by binding the hypervectors of its endpoint verti-
ces [23, 78]:

where the hypervector vi is the encoded vertex at index i. In the case of directed graphs, 
a permutation operator is applied to the destination vertex to differentiate edges (vi, vj) 
and (vj , vi) . A graph can be queried to find the neighbors of a node by binding the graph 
with the node hypervector (followed by an inverse permutation, for directed graphs). All 
the nodes that are similar to the resulting hypervector are connected to the given node 
with high probability.

Random projections Alternatively, an information vector x ∈ R
m can be mapped 

to the hyperspace directly using a random projection φproject(x) = sign(�x) , where 
� ∈ R

d×m is a matrix whose rows are uniformly sampled at random from the surface of 

φsequence(v1, v2, . . . , vm) =

m
⊕

i=1

�m−i(vi)

item(s, i) = cleanup(�−m+i(s))

pushend(s, v) = �(s)⊕ v

pushstart(s, v) = �m(v)⊕ S

popend(s) = �−1(v ⊖ item(s,m))

popstart(s) = s⊖�m−1(item(s, 1))

φn−gram(v1, v2, . . . , vm) =

m−n+1
⊕

i=1

n−1
⊗

j=0

�n−j−1(vi+j)

φgraph(G = (V ,E)) =
⊕

(vi ,vj)∈E

vi ⊗ vj
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an m-dimensional unit sphere. This encoding ensures that similarities in the input space 
are preserved in the hyperspace [107]. Variations of the projection encoding have been 
proposed with different nonlinearities and weights sampled from other distributions [12, 
35, 120].

Associative memory

Since hypervectors are typically created by a random process and do not inherently 
represent anything, they are stored in a special type of memory during their lifetime 
in an application. This memory is called associative memory, and differs from normal 
address accessible memory by returning the value at the address that is most similar to 
the requested address. The associative memory is a core component of most HDC/VSA 
applications and is key in enabling the encoding methods described before. Also, classi-
fication and regression tasks in HDC use an associative memory to make predictions as 
will be detailed in “Classification” section.

Let the requested address be the query vector q , and the addresses and values of the 
associative memory be the keys K and values V hypervectors, respectively. Formally, the 
returned hypervector from a memory lookup is given by:

When the keys and values are the same, the associative memory can be used as a cleanup 
memory. That is, given some noisy, approximate version of a hypervector, its exact/origi-
nal representation can be retrieved with high probability using the associative memory 
with equal keys and values.

Because of the parallel nature of HDC operations, including the similarity metric com-
putation, an associative memory lookup can be efficiently implemented in hardware 
using deep adder trees [95].

Classification

In a learning setting, the encoding methods described above are used to map the data 
samples to the hyperspace. These samples then need to be combined to form a model. 
As an illustration, consider a large dataset with fruit records like those in Table 1, where 
each record has a class label, e.g., the fruit taste: sweet, sour, salty, bitter, etc. If we denote 
the label of each record r by ℓ(r) ∈ {1, . . . , k} , we can use the hypervectors of each record 
to create a prototype hypervector mi for each class i ∈ {1, . . . , k} as follows:

Each of these hypervectors is referred to as a class-vector and is the vector with the 
smallest average distance to the hypervectors obtained by encoding the training samples 
of class i.

By building a class-vector for each class, we can combine them as a classification model 
M = {mi, . . . ,mk} and use it to predict the class of new records  (see Fig.  3). Given an 
unlabeled input r̂ ∈ X  and M, we simply compare φ(r̂) , called the query-vector, with each 

(3)lookup(q,K,V) = Vi, where i = arg min
j

|δ(Kj ,q)|

mi =
⊕

j:ℓ(rj)=i

φ(rj)
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class-vector and infer that the label of r̂ is the one that corresponds to the most similar 
class-vector:

where ℓ⋆(r̂) ∈ {1, . . . , k} is the predicted class for r̂ . It is important to emphasize that the 
function φ used in the inference stage is exactly the same as the one used for the crea-
tion of the prototypes. For an extended review on classification using HDC, we refer the 
reader to the works by Ge and Parhi [24], and Vergés et al. [109].

Regression

In a regression setting, the model M consists of a single hypervector m , which memorizes 
training samples with their associated label. This is different from the classification set-
ting where the class of a sample is implicitly stored as the index of the class-vector. The 
label of each sample in a regression setting is a real number ℓ(x) ∈ R . To encode a label, 
an invertible encoding function φℓ , which maps real numbers to hypervectors, needs to 
be introduced. The invertibility property is needed to allow labels to be determined dur-
ing inference. The function outputs level-hypervectors, a finite subset L = {l1, . . . , lk} of 
all hypervectors in H whose generation is discussed in “Basis-hypervectors” section. The 
hypervectors in li are linearly correlated such that the closer the real numbers they rep-
resent, the more similar the hypervectors are. The regression model is then obtained as 
follows:

A prediction can be made given a trained model M and an unlabeled input x̂ ∈ X  . First 
the approximate label hypervector is obtained by unbinding the model with the encoded 
sample m ⊘ φ(x̂) ≈ φℓ(ℓ(x̂)) , where ⊘ represents the unbinding operation. The remain-
ing terms add noise, making the result approximately equal [46, 107]. The precise label 
hypervector is then the most similar label hypervector ll , where:

ℓ⋆(r̂) = arg max
i∈{1,...,k}

δ
(

φ(r̂),mi

)

m =
⊕

i

φ(xi)⊗ φℓ(ℓ(xi))

Fig. 3 Overview of the hyperdimensional computing classification framework. Solid lines indicate training 
steps, dashed lines indicate inference steps
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Finally, the label is obtained by decoding the label hypervector using the inverse of the 
label encoding function:

Applications in symbolic AI

We conclude the existing solutions with notable HDC applications in Symbolic AI 
or cognition tasks, and stochastic computation tasks (see “Applications in stochastic 
computation” section). The aim is to provide real world examples of the aforemen-
tioned concepts of HDC. Secondly, these sections highlight the dual use of HDC 
which we make explicit by separating the applications in two sections.

Language recognition The first application uses a dataset of sentences from 21 Euro-
pean languages. Rahimi et al. [91] present a method to classify the language of a given 
sentence. This method was among the first to show that HDC is capable of achiev-
ing comparable accuracy to established ML algorithms while being significantly more 
efficient and robust to memory errors. Each letter is first mapped to a random-hyper-
vector, n-gram statistics are then gathered from the sentence in hyperspace. The simi-
larity of the resulting hypervector is then compared against the class-hypervectors, 
created during training by bundling all the n-gram statistics hypervectors for each 
language, for each class.

EMG gesture recognition Rahimi et al. [89] propose a method for classifying hand 
gestures using Electromyography (EMG) signals in the setting of a smart prosthetic. 
The dataset provides 4 channels of EMG signal which is first spatially encoded by 
mapping each signal to one of 21 level-hypervectors. The channels are combined 
using a hash table encoding, the resulting spatial hypervector is then used to encode 
the temporal information using n-gram statistics over a fixed-size window.

Voice recognition Imani et  al. [41] present an HDC classifier for voice signals to 
guess the spoken letter from an audio stream. In VoiceHD the amplitudes of the audio 
sample are mapped to level-hypervectors which are then combined using hash table 
encoding. The encoded samples are classified using the same classification framework 
as the one described in “Classification” section. Experiments with the addition of a 
neural network trained on the outputs of the HDC model shows improved accuracy. 
They also show that a hybrid model in combination with a neural network improves 
the accuracy.

Regression Hernández-Cano et  al. [35] propose a method for regression. They use 
random projection to map the input vectors to the hyperspace and train with gradi-
ent descent. A prediction is made by calculating the dot product between the sample 
and model hypervectors. They also describe a multi-model setting where each model 
is assigned to a cluster of training samples, a prediction is then made based on the 
weighted sum of the models weighted by the similarity of the sample with the cluster 
centers.

l = arg min
i∈{1,...,k}

δ(m ⊘ φ(x̂), li)

ℓ⋆(x̂) = φ−1
ℓ (ll)
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Applications in stochastic computation

Finally, we present applications of HDC in stochastic computation settings which we 
categorize as the second general area of applicability of HDC.

Stack machine Yerxa et  al. [118] describe a stack machine based on HDC opera-
tions by popping and pushing hypervectors to a hyperdimensional stack, defined in 
“Encodings” section. They also define a data structure for finite state machines and 
argue that these can be used together with established machine learning methods 
because the operations are fully differentiable.

Bloom filter Yerxa et al. [58] present a generalization of the bloom filter that enables 
the adjustment of its capacity. To achieve this a perfect true positive rate cannot be 
guaranteed but probabilistic bounds are provided. The algorithm is essentially a bina-
rized multiset encoding of sparse Multiply-Add-Permute hypervectors. A change in 
capacity is obtained by modifying the threshold of the binarization process.

Service discovery By describing each service in a distributed system using HDC, 
Simpkin et  al. [100] introduce a method for decentralized service discovery. They 
motivate their application of HDC by its ability to encode rich information compactly 
while being robust to noise. The representation of a service is created using the hash 
table encoding described in “Encodings” section.

Link prediction and Document Deduplication [79] introduce an estimator for set 
similarity metrics such as the Jaccard and Adamic-Adar indices. Their method uses 
the HDC multiset encoding to estimate a broader family of metrics compared to pre-
vious estimators.

Graph isomorphism Gayler and Levy [23] present a mechanism to find graph iso-
morphisms based on HDC. The method creates hypervectors by superposing the ver-
tices and edges of the graph and serves as a proof-of-concept of the applicability of 
distributed representations in the problem.

Proposed solutions
In this section we present two very different examples of applications that can be 
addressed using HDC. The main objective is to illustrate that the framework is appli-
cable both in machine learning and in other computational tasks when accuracy, 
robustness and efficiency are simultaneous requirements. Experimental results for 
both applications are presented and discussed in detail in “Elaboration” section.

The first example is GraphHD (“GraphHD” section), an algorithm for the relevant 
problem of classifying graphs. The proposed method creates distributed representa-
tions of graphs from the superposition of their edges. The scheme presented in “Clas-
sification” section is then used in its classification.

Before presenting the second example, in “Circular hypervectors” section we intro-
duce circular-hypervectors—a new basis-hypervector set capable of encoding data 
with circular correlation to hyperspace (see “Basis-hypervectors” section). Finally, in 
“Hyperdimensional hashing” section we show how these hypervectors can be used to 
create a consistent hashing algorithm, used in the critical problem of load balancing 
that arises in cloud computing.
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GraphHD

One class of learning tasks that is missing from the current body of work on HDC is 
graph classification. Graphs are among the most important forms of information repre-
sentation, yet, to this day, HDC algorithms have not been applied to the graph learning 
problem in a general sense. We present GraphHD, a baseline approach for graph clas-
sification with HDC.

Motivation

Machine Learning has played an increasingly central role in academic research and 
industrial applications. This popularity is due in large part to the good empirical results 
obtained on problems in which data is captured in the Euclidean space, such as vectors 
of feature values, time series data or images. However, in countless real-world scenarios, 
in both natural and social sciences, we are often interested in representing relationships 
between entities. Examples range from chemical molecules  [110] and bioinformat-
ics  [6], to computer vision [75] and analysis of social networks  [117]. The information 
about such entities and the relationships between them is inherently non-Euclidean. 
Graphs, instead, provide a much more natural abstraction. For this reason, the challenge 
of developing methodologies capable of utilizing the full potential of machine learning 
algorithms to deal with graphs has received a lot of attention from the scientific com-
munity in recent years.

One of the first successful strategies for graph learning problems is to calculate a 
measure of similarity between graphs. These methods are called graph kernels [61]. The 
similarity measurement functions are used in conjunction with kernel machines (e.g. 
support vector machines) to perform cognitive tasks such as classification. A myriad of 
graph kernel methods have been proposed, especially in the last 15 years, which will be 
covered in “Background” section. While it is true that kernel methods are highly com-
petitive graph learning approaches, especially on small graphs, considerable recent effort 
has focused on alternative methods  [72] with better scaling and performance charac-
teristics. In particular, kernel methods scale quadratically with respect to the size of the 
dataset and do not allow for online learning [52], limiting their applicability in real-time 
scenarios [119]. Our work introduces a new alternative approach to graph kernels.

Another popular alternative, motivated by the notorious accomplishments of deep 
neural networks, are graph neural networks (GNNs). GNNs are models that extend 
regular neural network operations, such as pooling and convolution, to handle graphs. 
Despite the functional accuracy achieved by GNNs, the high computational and energy 
cost of deep learning approaches make them difficult, or prohibitive, to be applied in 
real-world situations, such as those encountered in IoT and embedded applications [54, 
63]. The demand for alternatives is clear given the growing number of graph learn-
ing applications in resource-constrained scenarios. Examples range from IoT malware 
detection [1] to air pollution monitoring sensor networks [17].

The previously introduced characteristics of Hyperdimensional Computing have 
already shown their merit on several problems (see “Existing solutions” section). How-
ever, despite the previously stated importance of graph learning applications, to the best 
of our knowledge, HDC algorithms have never been applied to such tasks. It is based 
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on this motivation that we propose GraphHD, the first of its kind baseline approach for 
graph learning with HDC. GraphHD focuses on providing an efficient, robust and scal-
able alternative to current state-of-the-art graph learning algorithms.

Background

With the growing number of applications for machine learning with graphs, several 
approaches have been proposed in recent years. Popular ones include those based on 
graph kernels and graph neural networks. Examples of graph kernel approaches are those 
based on spectral properties  [59], random walks  [49] and matching of node embed-
dings  [76]. Some very prominent graph kernels are based on the well-known heuris-
tic for graph isomorphism, i.e., the Weisfeiler-Leman (WL) algorithm  [60, 98]. For a 
detailed and recent review of graph kernels, see Kriege et al. [61].

More recently, numerous attempts to adapt neural networks to deal with graphs have 
come to be known as graph neural networks (GNNs) [114]. The initial concept is due to 
Gori et al. [29], further elaborated by Scarselli et al. [93]. Despite the recent and exten-
sive exploration of GNNs, classical graph kernels are still very competitive in terms of 
accuracy  [72] and especially in efficiency (as indicated by our results in “Elaboration” 
section). Xu et al. [115] show that GNNs are at most as powerful as the WL test in dis-
tinguishing graph structures.

While these existing approaches have a well established track record in the field of 
graph similarity analysis, our HDC approach is a novel attempt at solving graph learning 
tasks.

Notations and problem formulation Let G = (V ,E) denote a graph with vertex set 
V and edge set E with n = |V | , m = |E| . The class of a specific graph G is denoted by 
ℓ(G) . The graph classification problem is defined as follows: given a set of graphs 
G = {G1,G2, . . . ,GN } and a training subset GL ⊂ G for which the labels are known, cre-
ate a model capable of predicting the unknown labels for the graphs in G \ GL.

An important thing to mention is that, since GraphHD was thought of as a baseline 
method for graph learning with HDC, we assume that graphs do not have any other 
information such as labels or attributes. Although some datasets contain this type of 
information, we decided to keep GraphHD as uniform and generic as possible in the 
present work. The use of this information in ad-hoc applications can be advantageous 
and shall be investigated in future work.

Method

Overview As described in “Existing solutions” section, the first and most important 
question to be addressed when applying HDC to a domain is: how to encode the input 
data? We want to define a function φG : G → H , capable of mapping graphs in the input 
set to d-dimensional hypervectors. Illustrated in Fig.  4, the overall strategy of Graph-
HD’s encoding is to map each element that composes the graph, i.e. its vertices and 
edges, individually to a hypervector and then combine the information using the bun-
dling operation.

Encoding GraphHD starts by encoding the vertices of the graph and those hyper-
vectors are then used as input to the edge encoder. We will first describe the process 
φv : V (G) → H used to encode each element in the set of vertices of a graph G, denoted 
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by V(G). As presented in our example from “Existing solutions” section, in the exist-
ing encoding examples, used for non-graph data, the process usually starts by assign-
ing basis-hypervectors to each possible information. For example, one for each letter to 
encode text.

Based on the existing encoding strategies, one could think of starting to encode graphs 
by assigning independent random hypervectors to each vertex. However, note that in 
these other problems, there is a relationship between the symbols that is consistent 
across different samples of the dataset. For example, the symbol “A” in a text represents 
equivalent information in another text, which makes it reasonable to encode both using 
the same hypervector. However, since we only look at the structure of the graphs, there 
is no such trivial correspondence between vertices of different graphs.

To address this issue, the vertex encoding process needs to start by extracting an 
identifier for the vertices based only on the topology of the graph. For this purpose, we 
propose the use of the PageRank centrality metric [8]. Initially developed by Google to 
rank web pages in the web graph, the PageRank algorithm receives a graph as input and 
returns, for each vertex vi ∈ V  , a value c(vi) ∈ [0, 1] that measures its “importance” in 
the graph. The metric is well established and has been widely applied to different prob-
lems beyond the web  [28]. As rests evident from its initial application, PageRank can 
be implemented in a very efficient and scalable manner, which matches the purpose of 
GraphHD.

From this ranking induced by the PageRank centrality of the vertices, it is possible 
to establish a meaningful connection between vertices in different graphs. Therefore, 
GraphHD uses the centrality rank of the vertex as its identifier (or symbol). Accordingly, 
vertices of different graphs, but with the same centrality rank, are encoded to the same 
random hypervector from the basis set.

After creating the hypervectors for each vertex, GraphHD makes use of these rep-
resentations to also encode each edge (vi, vj) ∈ E(G) . The edge encoding function φe is 
defined as follows:

φe((vi, vj)) = φv(vi)⊗ φv(vj)

Fig. 4 GraphHD encoding
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Recall that ⊗ represents the binding operation in HDC, which is the standard operation 
to represent an association between a pair of hypervectors, similar to the role of an edge 
in a graph. The result of the binding operation is a third vector, statistically quasi-orthog-
onal to the operand vectors, which we name edge-hypervectors.

Training Based on the encoding functions presented, GraphHD training is described 
in Algorithm 1. For each class we generate a set Hℓ of hypervectors. Each hypervector 
included in Hℓ (line 12 in Algorithm  1) is what we call a graph-hypervector. For each 
graph G, the corresponding graph-hypervector is created with bundle(HG) , which bun-
dles all the edge-hypervectors contained in the set HG . Note that vertex encoding is used 
as an intermediate edge encoding step as defined above.

Algorithm 1 GraphHD training procedure

Circular hypervectors

We now introduce a new type of basis-hypervector set called circular-hypervectors. 
These vectors allow the encoding of circular data, an important type of information 
never before addressed in HDC. This new set of hypervectors is also the core component 
of our second example: the dynamic hash table proposed in “Hyperdimensional hash-
ing” section.

Motivation

As described in “Basis-hypervectors” section, symbols and real numbers can be repre-
sented in the hyperspace with random and level-hypervector basis sets, respectively. 
However, not every type of data falls into these two categories. Consider, for instance, 
angular data in � = [0, 2π ] . The distance ρ ∈ [0, 1] between two angles α and β in � is 
defined as [67]:

If we use level-hypervectors to encode the �-interval, the distances between the hyper-
vectors would not be proportional to the distance between the angles. Notice that the 

(4)ρ(α,β) =
1

2
(1− cos(α − β))
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endpoints of an interval represented with level-hypervectors are completely dissimilar, 
while a circle has no endpoints.

Angles are widely used to represent information in meteorology  [37], ecology  [53, 
108], medicine [2, 19, 20], astronomy [9, 70] and engineering [11]. Moreover, many natu-
ral and social phenomena have circular-linear correlation on some time scale. Consider 
for example the seasonal temperature variations over a year or the behavior of fish with 
respect to the tides in a day. In these cases, it makes sense to represent the time intervals 
(e.g., Jan 1st–Dec 31st) as cyclic intervals [53, 67].

Given the multitude of applications using circular data, unsurprisingly there has been 
great scientific effort to adapt statistical and learning methodologies to handle it appro-
priately [65]. This gave rise to a branch of statistical methodology known as directional 
statistics  [69, 82]. Despite all this effort, to the best of our knowledge, our work is the 
first to address the adaptation in the context of HDC.

Background

Level-hypervectors are created by quantizing an interval to m levels and assigning a 
hypervector to each. The similarity between hypervectors is proportional to the distance 
between the intervals. For the level-hypervectors proposed by Nunes et al. [77] this cor-
relation is achieved by assigning random d-dimensional hypervectors to the endpoints 
of the interval, intermediate intervals are then obtained by interpolating the endpoint 
hypervectors l1 and lm . To perform the interpolation a single random d-dimensional vec-
tor f  is sampled with elements fi ∼ U(0, 1) . This random vector determines from which 
endpoint each element of each intermediate hypervector is taken as shown in Eq.  5, 
where the indicator function 1(·) is applied element-wise.

Rachkovskiy et  al. [88] discuss a method to encode cyclic quantities by interpolating 
multiple random hypervectors. Their method starts by sampling at least three random 
hypervectors that represent points on a circle. They then use a technique to create level-
hypervectors to interpolate the random hypervectors. This, however, does not result in a 
set of hypervectors whose similarities is proportional to the distance between angles as 
defined in Eq. 4 because at least a third of the circle is orthogonal to any point. Alterna-
tively, when using the FHRR model, the phase distribution of the complex elements can 
be constructed such that fractional binding, the process of encoding real numbers with 
FHRR by exponentiating the complex elements, results in periodic hypervectors [18].

Method

Circular-hypervectors are an extension to level-hypervectors that eliminate the discon-
tinuity in similarity between the last and first interval, as visualized in the similarity pro-
files in Fig. 1. By removing the discontinuity, the hypervectors become a set with circular 
correlation.

The creation of circular-hypervectors, shown in Fig. 5, is divided into two phases, one 
for each half of the circle. The first half is simply a set of m/2+ 1 level-hypervectors:

(5)ll = 1(f < τ)l1 + 1(f ≥ τ )lm ∀l ∈ {2, . . . ,m− 1} where τ =
m− l

m− 1
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where c1 and cm/2+1 are quasi-orthogonal, ensuring that the opposite side of the circle 
is completely dissimilar. The second half is created by applying the inverse of the transi-
tions between the levels of the first half, in order, to the last circular-hypervector:

where the transition tl = cl+1 ⊘ cl are the flipped bits between levels l and l + 1 for the 
BSC model. The combined transitions {t1, . . . , tm/2} are equal to the transition from c1 to 
cm/2+1 such that:

The transitions unbound to cl−1 in Eq. 6 make the new hypervector cl closer to c1 . More-
over, the transitions {t1, . . . , tm/2} occur in any half of the circle, ensuring that the hyper-
vector at the opposite side from any point is always quasi-orthogonal to it. For ease of 
understanding, we assume that m is even. To generate a set of circular-hypervectors 
with odd cardinality, simply generate 2m and return just {c1, c3, c5, . . . , c2m}.

Hyperdimensional hashing

Most cloud services and distributed applications rely on efficient and robust hashing 
algorithms that allow dynamic scaling of the hash table. Examples include AWS, Google 
Cloud and BitTorrent. Consistent and rendezvous hashing are famous algorithms that 
minimize key remapping as the hash table resizes. While memory errors in large-scale 
cloud deployments are common, neither algorithm offers both efficiency and robust-
ness. In this context, in our second example we design an HDC method for this problem, 
seeking to exploit the fact that the limitations of existing methods coincide exactly with 
the problems that HDC is intended to solve. Remember that one of the main goals here 
is to show that HDC is applicable both to learning problems (as in “GraphHD” section) 
and to other computational problems like hashing.

Our proposed method is called Hyperdimensional (HD) hashing and uses the cir-
cular-hypervectors presented above. HD hashing leverages the previously mentioned 

cl = ll for l ∈ {1, . . . ,m/2+ 1}

(6)cl = cl−1 ⊘ tl−m/2−1 for l ∈ {m/2+ 2, . . . ,m}

cm/2+1 = c1 ⊗

m/2
⊗

l=1

tl

Fig. 5 Illustration of the process to create circular-hypervectors. Phase 1 shows the level-hypervectors and 
the transformations between them. Phase 2 shows the use of transformations for the second half of the 
circle. The dashed transformation is shown to complete the circle but is not needed since c1 is already known



Page 20 of 32Heddes et al. Journal of Big Data          (2024) 11:145 

advantages of HDC such as the efficiency of comparing hypervectors and the robust-
ness in representing information. We show that it has the efficiency to be deployed 
in large systems. Moreover, a realistic level of memory errors causes more than 20% 
mismatches for consistent hashing while HD hashing remains unaffected.

Motivation

An important problem in many cloud services and distributed network applications 
is the process of mapping requests to available resources. Example systems include: 
load balancing in cloud data centers, web caching, peer-to-peer (P2P) services, and 
distributed databases. Difficulty arises in such highly dynamic systems because 
resources join and leave the cluster at any time, due for example to cloud elastic-
ity  [3], server failures, or availability of peers in a P2P network. It is often desirable 
to distribute requests evenly among resources and to minimize the number of redis-
tributed requests when a resource joins or leaves. A non-uniform mapping results in 
overloading of resources and critical failure points.

The simplest hash table solves the mapping problem using modular hashing. 
Despite having a great lookup time complexity of O(1) , a change in table size (num-
ber of available resources) requires virtually all requests to be redistributed due to 
the modulo operation (more details in “Background” section). Consistent hashing [50] 
and rendezvous hashing [106] are alternative hashing algorithms that minimize redis-
tribution when the hash table is resized. They prevent resource overloading at the 
cost of increased lookup time, O(log n) and O(n) respectively.

However, we show that when considered in a dynamic environment subject to errors 
and failures, referred to as noise, the performance of consistent hashing and rendez-
vous hashing in minimizing the number of redistributed requests degrades. Noise can 
be introduced in many aspects of a system. We focus on memory errors which can for 
instance be caused by soft errors in the form of single event upsets (SEU), multi-cell 
upsets (MCUs) or hard errors [38, 103]. MCUs, or burst errors, occur during a single 
event and are becoming more common as the feature size decreases. For 22 nm tech-
nology MCUs are estimated to be 45% of all SEUs [39]. Moreover, analysis of memory 
failures in Google’s data centers revealed that each year a third of the machines expe-
riences a memory error  [96]. More robust hashing alternatives make it possible for 
cloud providers to perform fewer memory swaps, reducing operation cost.

Fueled by the demonstrated properties of HDC and the aforementioned limita-
tions of current hashing algorithms, we propose Hyperdimensional (HD) hashing, a 
new HDC-based dynamic hashing algorithm. HD hashing scales similarly to consist-
ent hashing while proving to be much more efficient than rendezvous hashing. HDC’s 
highly parallelizable operations have been exploited in recent research, showing that 
special hardware can make HD hashing far superior in efficiency (more details in 
“Existing solutions” section). Moreover, we show that our algorithm is significantly 
more robust against noise. With 512 servers and a 10-bit MCU, HD hashing is unaf-
fected while rendezvous and consistent hashing mismatch 4% and 12% of requests, 
respectively. With MCUs becoming more common this poses a risk for critical 
failures.
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Background

Consistent Hashing Consistent hashing is a common way of distributing requests among 
a changing population of servers [71, 104]. Often times, the problem and the technique 
are referred to as consistent hashing indistinctly. The algorithm, which gave rise to Aka-
mai [80], is used in many other real-world large scale applications such as Dynamo on 
Amazon Web Services [14] and Google Cloud Platform [16].

To describe consistent hashing, let h(·) denote a hash function that takes requests as 
inputs (in practice an IP address or unique identifier, for example) and S = {s1, . . . , sn} 
a set of servers. In modular hashing, a request r is simply assigned to si where 
i = h(r) mod n . Instead, consistent hashing maps both requests and servers uniformly 
to the unit interval [0,  1], which is interpreted as a circular interval. Thereafter, each 
request is assigned to the first server that succeeds it on the circle in clockwise order. 
This assignment is usually done in O(log n) time using binary search.

Rendezvous Hashing The basic idea of rendezvous hashing [106], also known as high-
est random weight (HRW) hashing, is very simple. Given a hash function h(·) that takes 
as input a server and a request, each request r is assigned to the server si where:

Each assignment is therefore done in O(n) time, since it is necessary to compute the hash 
of the request paired with each server in the system in order to compute the maximum 
value. In practice, Rendezvous hashing is used less often than consistent hashing, despite 
distributing the requests more uniformly, because of the increased time complexity.

Method

HD hashing, illustrated in Fig.  6, draws inspiration from consistent and rendezvous 
hashing, but seeks a solution that is both robust and efficient by translating the problem 
into a hyperdimensional computing task.

i = arg max
s∈S

h(s, r)

Fig. 6 Illustration of the operation of HD hashing. In this example, after encoding each of the three servers 
and two requests to a circular-hypervector, r1 is assigned to server s3 , which is the server whose hyperspace 
representation is closest to its. Likewise, r2 is assigned to s2 . Note that, unlike consistent hashing, the direction 
of rotation does not matter
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Let S = {s1, . . . , sk} be a set of k servers, R = {r1, . . . , rℓ} a set of ℓ requests and 
C = {c1, . . . , cn} a set of n > k hypervectors. We also denote by h(·) a hash function that 
takes as input a server or request. The process of adding servers to the system in HD 
hashing is similar to consistent hashing, but instead of mapping them to a unit interval 
(see “Background” section), HD hashing assigns (or “encodes” in HDC terminology) each 
server to a hypervector. To distribute requests among servers, HD hashing also encodes 
each request. Let us represent this encoding by the function φ : S ∪ R → C . Then, HD 
hashing encodes every server and request as follows:

where x is either a server or a request and C[h(x) mod n] denotes the hypervector at 
position h(x) mod n in C.

With all servers and requests encoded to the hyperspace, each request ri is mapped to 
server sj , with:

where δ is a given similarity metric between a pair of hypervectors such as inverse Ham-
ming distance or the cosine similarity as discussed in “Similarity metrics” section. The 
operation above is the one mentioned in “Associative memory” section, and it is called 
inference using associative memory. This is exactly the operation that Schmuck et  al. 
[95] show to be optimizable to the extreme of a single clock-cycle in special hardware. 
In other words, by using hardware accelerators for HDC each mapping in HD hashing 
could be executed in O(1) time.

One remaining, but crucial, question is: how do we create the set of hypervectors C? 
Similar to consistent hashing, we map servers and requests onto a circle. We then map 
the request to the server that is assigned to the nearest node on the circle according 
to Eq. 8. To accomplish this, we use the circular-hypervectors introduced in “Circular 
hypervectors” section such that the closer a node is on the circle the more similar its 
hypervector.

Elaboration
Here we present the empirical results for the examples of HDC applications presented in 
“Proposed solutions” section. The goal is to demonstrate how HDC allows creating solu-
tions to problems, both in machine learning and other computational problems, provid-
ing a balance between accuracy, efficiency and robustness.

Experimental setup

All the experiments were implemented using Torchhd [33], a high-performance Python 
library for HDC, and were performed on the same machine with 20 Intel Xeon Silver 
4114 CPUs at 2.20 GHz with 93 GB of RAM and 4 Nvidia TITAN Xp GPUs with 3840 
cores and 12 GB running CentOS Linux.

To evaluate GraphHD, two groups of experiments were conducted. First, we adopt 
six graph classification datasets to evaluate the accuracy, training times, and infer-
ence times. All of these benchmarks are part of TUDataset, a collection of datasets and 

(7)φ(x) = C
[

h(x) mod n
]

(8)j = arg max
s∈S

δ
(

φ(s),φ(ri)
)
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standardized evaluation procedures widely used in the empirical evaluation of graph 
classification methods  [72]. The performance of GraphHD is compared to two kernel 
methods and two graph neural networks. Secondly, the scaling profile of GraphHD is 
empirically assessed and presented in comparison to a GNN and a kernel method.

As baseline methods for comparison, two state-of-the-art GNNs and two kernel-based 
methods were used. The methods are the most recently published that are available for 
standardized evaluation in the TUDataset repository. The two selected GNN methods 
are GIN-ǫ [115] and GIN-ǫ-JK [116]. For both GNN methods the network architecture 
was fixed for all experiments at 1 layer with 32 units. We found that this is the small-
est network size that matches or exceeds the accuracy of GraphHD on all datasets. We 
use the Adam optimizer with a learning rate scheduler starting at 0.01 with a patience 
parameter of 5 which decays with 0.5 till a minimum of 10−6 , and the batch size is 128.

For the kernel methods baseline Weisfeiler-Lehman Subtree  (1-WL)  [98] and Weis-
feiler-Lehman Optimal Assignment  (WL-OA)  [60] were used. As part of the training 
process the C-parameter of the kernels are selected from 

{

10−3, 10−2, . . . , 102, 103
}

 
and the number of iterations from {0, . . . , 5} . The training hyper-parameters, except for 
the fixed size GNN architecture, were taken from the reference baseline experiments. 
GraphHD uses 10,000-dimensional bipolar hypervectors in all the experiments. We fix 
the number of PageRank iterations to 10 for all experiments because the accuracy of 
GraphHD has then plateaued. The PageRank batch size is 256.

GraphHD is expected to significantly outperform existing methods on training time. 
The experiment gives insight into exactly how much faster and how much accuracy is 
traded-off for the increase in training speed. Since GraphHD only takes the structure 
of the graph into account to ensure that the method is broadly applicable, we restrict 
the GNNs and kernel methods from utilizing the vertex and edge labels when they are 
available.

Datasets
The selected datasets, with the exception of DD, contain very small graphs, with 

an average of less than 40 vertices. The graphs in the selected datasets are also very 
sparse, the average fraction of connected vertices is 0.05. The dataset containing the 
largest graphs, DD, should give an indication on real data of how well the learning 
methods scale. An overview of the statistics of the datasets used is shown in Table  3. 
ENZIMES [6] is a dataset of protein structures, and the task is to assign each enzyme 
to one of 6 Enzyme Commission (EC) top-level classes. MUTAG [13] has graphs rep-
resenting mutagenic aromatic and heteroaromatic nitro compounds with 7 labels. 

Table 3 Statistics of graph datasets

Dataset Graphs Classes Avg. vertices Avg. edges

DD 1178 2 284.32 715.66

ENZYMES 600 6 32.63 62.14

MUTAG 188 2 17.93 19.79

NCI1 4110 2 29.87 32.3

PROTEINS 1113 2 39.06 72.82

PTC_FM 349 2 14.11 14.48
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NCI1 [110] is a set of data from the National Cancer Institute (NCI) and the task is to 
classify chemical compounds according to their ability to inhibit cancerous cell multipli-
cation. In the graph datasets PROTEINS [15] and DD [15], the task is to classify whether 
or not the represented proteins are non-enzymes. Finally, PTC_FM [34] is a dataset from 
the Predictive Toxicology Challenge containing a collection of chemical compounds rep-
resented as graphs which report the carcinogenicity for rats.

For the HD Hashing experiments, we created a purpose build emulation framework 
to empirically verify our results. The emulator consists of two modules, a hash table and 
a generator. The generator emulates the requests from the outside world being sent to 
the hash table. The hash table module reads incoming requests from a buffer and uses 
a hashing algorithm to map them to an available server. Servers are added and removed 
using two special case requests, a join and leave request, respectively, with a unique 
identifier of the server. This functional emulator can be used to determine the compu-
tational efficiency of various hashing algorithms as well as their robustness to memory 
errors as we will describe next.

Since we do not have access to specialized HDC hardware and building the hardware 
is outside the scope of our work we had to implement the HDC operations using com-
modity hardware. To closely match the parallel nature of HDC hardware, we decided 
to implement HDC operations on a GPU. The GPU’s communication overhead was 
reduced by performing mappings in batches of 256 requests. Each test was performed 
with different numbers of servers in the pool, going up to 2048. This scale is enough to 
show the results and trends of interest, but it is important to emphasize that like the 
other methods HD hashing can scale to much larger clusters. It can even be used hier-
archically, which is a standard way to scale such hashing systems  [97, 111] to handle 
extremely high numbers of servers.

Accuracy

We compare the accuracy and the training and inference times of GraphHD on six 
datasets from the TUDataset  [72] collection against four methods. We use tenfold 
cross validation because the datasets contain relatively few graphs. We report training 

Fig. 7 Left: accuracy achieved on six datasets by GraphHD compared to that of the kernel methods, 1-WL 
and WL-OA, and the graph neural networks, GIN-ǫ and GIN-ǫ-JK. Middle: training time in seconds of the five 
learning methods for each of the six datasets. Note that the y-axis is in logarithmic scale. Right: average 
inference time for a graph in each of the six datasets compared across the five learning methods. Note that 
the y-axis is in logarithmic scale
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and inference time per graph to normalize over varying dataset lengths. The wall-
time for onefold of training is considered the training time. The inference time is set 
to be the testing wall-time of onefold. Measurements are averaged over 3 repetitions 
of tenfold cross validation. The accuracy results, shown on the left in Fig.  7, show 
that GraphHD has comparable accuracy to the baseline methods, except for NCI1 
and ENZYMES where the kernel methods respectively do 18% and 12% better than 
both GraphHD and the GNN methods.

In the second accuracy experiment we tested how uniform the distribution of 
requests among servers is and how uniform they remain when bits of the hash val-
ues are randomly inverted in memory. For evaluation, we used the following Pearson’s 
chi-squared test [30] to measure goodness of fit between our observed frequency dis-
tribution and the uniform distribution:

where R(si) is the number of requests mapped to server si by the algorithm and E = |R|
|S| 

is the uniformity expectation where |R| and |S| are the total number of requests and serv-
ers, respectively. The results, illustrated in Fig. 8, show that not only does HD hashing 
distribute requests more uniformly than consistent hashing in an ideal scenario, but also 
that the presence of bit errors worsens the uniformity of consistent hashing even more, 
while that of HD hashing remains intact. To make the plot more readable, we omit the 
rendezvous hashing result. Note, from the description of the algorithm in “Background” 
section, that rendezvous hashing is based only on the output of the hash function, that 
is, a pseudo-random number. Therefore, its assignment is perfectly (pseudo-)uniform 
and is not affected by bit errors. Rendezvous hashing, however, still suffers from mis-
matches and the method has less applicability due to its lower efficiency as illustrated in 
Figs. 10 and 11, respectively.

χ2 =
∑

si∈S

(

R(si)− E
)2

E

Fig. 8 The discrepancy between the distribution of requests per server obtained by each algorithm and the 
uniform distribution, for different numbers of servers and bit errors, measured with the Pearson’s χ2 statistical 
test
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Efficiency

The training time results, shown in the middle of Fig. 7, confirm the notion that HDC 
is more computationally efficient than the other learning methods. GraphHD trains 
significantly faster than both the kernel and GNN methods on every dataset. On the 
DD dataset, which contains the largest graphs, GraphHD trains 12.1× faster than the 
GNNs and 24.6× faster than the fastest kernel method. Moreover, on the largest data-
set, NCI1, GraphHD trains 77.1× faster than the kernel methods. Confirming that with 
respect to the dataset size the kernel methods have inferior scaling. The inference time 
of GraphHD, shown on the right in Fig. 7, is also faster than the other methods for every 
dataset. On the DD dataset the fastest GNN is 10.5% slower and the kernel methods are 
21.7× slower.

To confirm the superior computational efficiency of HDC, the scalability experiment 
looks at how training time relates to the size of the graphs in the dataset. We create syn-
thetic datasets with 2 classes evenly split over 100 graphs with varying numbers of verti-
ces using the Erdös-Rényi random graph model [27]. The edge probability is set to 0.05, 
which is similar to the average connections in the real-world datasets as derived from 
the dataset statistics in Table 3. GraphHD is compared against one GNN and one kernel 
method, GIN-ǫ and WL-OA, respectively. The methods use the same hyper-parameters 
as described in “Experimental setup” section.

The scaling profile of GraphHD, as shown in Fig.  9, is up to an order of magnitude 
lower than that of the baseline methods as the graphs’ sizes increase. On the largest 
measured graphs with 980 vertices, GraphHD is 6.2× faster than GIN-ǫ and 15.0× faster 
than WL-OA. The faster training and inference times allow for more graph learning 
applications to become feasible. These findings are consistent with those from the train-
ing times on the real-world datasets from the accuracy and training time experiment 
described in “Experimental setup” section. It is worth to remind the potential of HDC 
dedicated hardware to further improve the training and inference times of GraphHD as 
discussed in “Background” section.

We executed each hashing function in our emulator to empirically determine its com-
putational efficiency. First the generator sends n join requests to add available servers 

Fig. 9 Scaling profile of GraphHD compared to the graph neural network GIN-ǫ and the kernel method 
WL-OA. The y-axis is in logarithmic scale
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to the hash table module. Then, the generator sends 10,000 requests and tracks the wall-
time. From this we determine the average time to handle a request. For various numbers 
of n, ranging from 2 to 2048 in powers of 2 the results are shown in Fig. 10. The O(n) 
time complexity of rendezvous hashing is clearly evident as is the superior computa-
tional efficiency of consistent hashing with respect to rendezvous hashing. Our HDC 
implementation using commodity hardware has a very similar scaling profile to consist-
ent hashing. This confirms our belief that HDC hardware can appropriately be simu-
lated by a GPU. However, as highlighted in “Method” section, we expect the use of HDC 
accelerators to reduce the request handling time to a constant with the extreme of a sin-
gle clock-cycle.

Robustness

As motivated before, the other main goal of HD hashing is to be a robust alternative to 
consistent and rendezvous hashing. In order to assess the performance of each hashing 
algorithm in an environment subject to noise, two experiments were performed using 
the emulator’s noise injection capabilities. The first and most important, whose results 
are in Fig. 11, shows how the ability of each technique to map keys to the correct value 
degrades when a certain number of bits in memory are randomly flipped. Ibe et al. [39] 
show that for 22 nm technology, 4-bit and 8-bit bursts occur 10% and 1% of the time, 
respectively. Moreover, errors within a machine are found to be strongly correlated, if a 
machine experienced an error it is 13–228 times more likely to experience another error 
in the same month  [96]. To capture such features of a realistic scenario, we test each 
hashing technique in the range of 0 to 10 bit flips.

Fig. 10 Average request handling duration as the number of servers in the pool increases

Fig. 11 Percentage of mismatched requests when a number of bit errors occur
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In our experiments, HD hashing confirmed our expectations, turning out to be far 
superior as none of the requests sent were matched to the wrong server. Meanwhile, in 
both consistent and rendezvous hashing an increasing percentage of mismatches occur, 
depending on the noise level.

Conclusion
We present Hyperdimensional Computing (HDC), also called Vector Symbolic Archi-
tectures (VSA), as an emerging computational framework. Having attracted increasing 
attention, HDC is envisioned to reach its full potential as an abstraction layer between 
new hardware platforms and algorithms. The model takes advantage of geometric and 
arithmetic properties of high-dimensional vector spaces to create solutions to problems 
balancing accuracy, efficiency and noise tolerance. While most of the research in the 
field has been focused on machine learning applications, the use of HDC in other tasks 
is also becoming increasingly attractive.

In this article we present a detailed introduction to HDC, aiming at both a survey and 
a tutorial role. In order to illustrate the generality of the framework, we present two 
examples of solutions based on HDC for very different problems, one related to machine 
learning and the other a classic algorithm with stochastic behavior.

First, we present a graph classification method called GraphHD. We show that 
GraphHD achieves comparable accuracy while proving to be significantly more efficient. 
Remarkably when the graphs increase in size, the scaling profile of GraphHD is much 
more favorable, opening up possibilities for graph classification on large graphs that 
were previously not computationally feasible. We introduced a baseline graph encoding 
algorithm that makes it possible to use HDC for graph learning applications. The results 
of GraphHD are promising and indicate the importance of continuing to investigate 
HDC algorithms for graph learning as a light-weight, robust and scalable alternative to 
deep learning, especially in resource constrained applications such as embedded devices 
and IoT.

In the second example, we seek to show the usefulness of HDC in a non-learning set-
ting. We propose HD hashing, a new hashing algorithm which allows dynamic scaling 
of the hash table with minimal rehashing, a problem found in some of the most popu-
lar web applications. Through an emulation framework, we compare our method with 
consistent and rendezvous hashing and the experimental results show that HD hashing 
is the only approach that guarantees both efficiency and robustness. HD hashing scales 
similar to consistent hashing, while both are significantly more efficient than rendezvous 
hashing. Consistent hashing suffers from more than 20% mismatches with a realistic 
level of memory errors, which are common in large-scale cloud systems, while HD hash-
ing remains unaffected. This superior level of tolerance to bit errors reduces the chance 
of critical failures in load balancing and web caching systems, among others.

This paper seeks to describe this emerging area of research in a didactic way, explain-
ing each element that makes up HDC in depth and through illustrative examples. In 
addition, each discussion is accompanied by a review of the main papers that addressed 
each topic. We believe that this, along with the examples and discussion of the generality 
of the model for both learning and non-learning applications, makes this paper valuable 
material for researchers in the field or those looking to get started in it.



Page 29 of 32Heddes et al. Journal of Big Data          (2024) 11:145  

Acknowledgements
Not applicable

Author contributions
M.H. and I.N. wrote the main manuscript text. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets analysed during the current study are available in the TUDatasets repository, https:// chrsm rrs. github. io/ 
datas ets/ docs/ datas ets/.

Declarations

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare no competing interests.

Received: 19 April 2024   Accepted: 13 October 2024

References
 1. Abusnaina A, Khormali A, Alasmary H, Park J, Anwar A, Mohaisen A. Adversarial learning attacks on graph-based 

IoT malware detection systems. In: 2019 IEEE 39th international conference on distributed computing systems 
(ICDCS). IEEE; 2019. p. 1296–305.

 2. Ahmidi N, Tao L, et al. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. 
Trans Biomed Eng. 2017;64:2025–41.

 3. Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P. Elasticity in cloud computing: state of the art and research challenges. 
IEEE Trans Serv Comput. 2017;11:430–47.

 4. Alonso P, Shridhar K, Kleyko D, Osipov E, Liwicki M. Hyperembed: tradeoffs between resources and performance in 
NLP tasks with hyperdimensional computing enabled embedding of n-gram statistics. In: 2021 international joint 
conference on neural networks (IJCNN). 2021; IEEE. p. 1–9.

 5. Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, García S, Gil-López S, Molina D, Benjamins R, 
et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsi-
ble AI. Inf Fusion. 2020;58:82–115.

 6. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan S, Smola AJ, Kriegel HP. Protein function prediction via graph 
kernels. Bioinformatics. 2005;21:i47–56.

 7. Branco S, Ferreira AG, Cabral J. Machine learning in resource-scarce embedded systems, FPGAs, and end-devices: 
a survey. Electronics. 2019;8:1289.

 8. Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst. 
1998;30:107–17.

 9. Cabella P, Marinucci D. Statistical challenges in the analysis of cosmic microwave background radiation. Ann Appl 
Stat. 2009;3:61–95.

 10. Chen Y, Zheng B, Zhang Z, Wang Q, Shen C, Zhang Q. Deep learning on mobile and embedded devices: state-of-
the-art, challenges, and future directions. ACM Comput Surv. 2020;53:1–37.

 11. Chirikjian GS. Engineering applications of noncommutative harmonic analysis: with emphasis on rotation and 
motion groups. Boca Raton: CRC Press; 2000.

 12. Dasgupta S, Stevens CF, Navlakha S. A neural algorithm for a fundamental computing problem. Science. 
2017;358:793–6.

 13. Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C. Structure–activity relationship of 
mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and 
hydrophobicity. J Med Chem. 1991;34:786–97.

 14. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W. 
Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Oper Syst Rev. 2007;41:205–20.

 15. Dobson PD, Doig AJ. Distinguishing enzyme structures from non-enzymes without alignments. J Mol Biol. 
2003;330:771–83.

 16. Eisenbud DE, Yi C, Contavalli C, Smith C, Kononov R, Mann-Hielscher E, Cilingiroglu A, Cheyney B, Shang W, Hosein 
JD. Maglev: a fast and reliable software network load balancer. In: 13th {USENIX} symposium on networked sys-
tems design and implementation ({NSDI} 16; 2016. p. 523–35.

 17. Ferrer-Cid P, Barcelo-Ordinas JM, Garcia-Vidal J. Graph learning techniques using structured data for IoT air pollu-
tion monitoring platforms. IEEE Internet Things J. 2021;8(17):13652–63.

 18. Frady EP, Kleyko D, Kymn CJ, Olshausen BA, Sommer FT. Computing on functions using randomized vector repre-
sentations. arXiv preprint. 2021. arXiv: 2109. 03429 .

https://chrsmrrs.github.io/datasets/docs/datasets/
https://chrsmrrs.github.io/datasets/docs/datasets/
http://arxiv.org/abs/2109.03429


Page 30 of 32Heddes et al. Journal of Big Data          (2024) 11:145 

 19. Gao F, Chia KS, Krantz I, Nordin P, Machin D. On the application of the von Mises distribution and angular regres-
sion methods to investigate the seasonality of disease onset. Stat Med. 2006;25:1593–618.

 20. Gao Y, et al. Jhu-isi gesture and skill assessment working set (jigsaws): a surgical activity dataset for human motion 
modeling. In: MICCAI workshop: M2cai; 2014. p. 3.

 21. Gayler R. Multiplicative binding, representation operators and analogy. In: Advances in analogy research. 1998. p. 
1–4.

 22. Gayler RW. Vector symbolic architectures answer Jackendoff’s challenges for cognitive neuroscience. arXiv pre-
print. 2004. cs/0412059.

 23. Gayler RW, Levy SD. A distributed basis for analogical mapping. In: New frontiers in analogy research; 2009.
 24. Ge L, Parhi KK. Classification using hyperdimensional computing: a review. Circ Syst Mag. 2020;20:30–47.
 25. Ge L, Parhi KK. Seizure detection using power spectral density via hyperdimensional computing. In: ICASSP 2021–

2021 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2021. p. 7858–62.
 26. van Gelder T. Distributed vs. local representation. In: MIT encyclopedia of the cognitive sciences. 1999. p. 235–7.
 27. Gilbert EN. Random graphs. Ann Math Stat. 1959;30:1141–4.
 28. Gleich DF. Pagerank beyond the web. SIAM Rev. 2015;57:321–63.
 29. Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. In: International joint conference on 

neural networks (IJCNN). 2005; IEEE. p. 729–34.
 30. Greenwood PE, Nikulin MS. A guide to chi-squared testing, vol. 280. New York: Wiley; 1996.
 31. Hassan E, Halawani Y, Mohammad B, Saleh H. Hyper-dimensional computing challenges and opportunities for AI 

applications. IEEE Access. 2021;10:97651–64.
 32. Heddes M, Nunes I, Givargis T, Nicolau A, Veidenbaum A. Hyperdimensional hashing: a robust and efficient 

dynamic hash table. In: Design automation conference (DAC). 2022.
 33. Heddes M, Nunes I, Vergés P, Kleyko D, Abraham D, Givargis T, Nicolau A, Veidenbaum A. Torchhd: an open source 

python library to support research on hyperdimensional computing and vector symbolic architectures. J Mach 
Learn Res. 2023;24:1–10.

 34. Helma C, King RD, Kramer S, Srinivasan A. The predictive toxicology challenge 2000–2001. Bioinformatics. 
2001;17:107–8.

 35. Hernández-Cano A, Zhuo C, Yin X, Imani M. Reghd: robust and efficient regression in hyper-dimensional learning 
system. In: Design automation conference (DAC). IEEE; 2021. p. 7–12.

 36. Hinton GE. Distributed representations. 1984.
 37. Holzmann H, Munk A, Suster M, Zucchini W. Hidden Markov models for circular and linear-circular time series. 

Environ Ecol Stat. 2006;13:325–47.
 38. Hwang AA, Stefanovici IA, Schroeder B. Cosmic rays don’t strike twice: understanding the nature of dram errors 

and the implications for system design. ACM SIGPLAN Not. 2012;47:111–22.
 39. Ibe E, Taniguchi H, Yahagi Y, Shimbo KI, Toba T. Impact of scaling on neutron-induced soft error in SRAMs from a 

250 nm to a 22 nm design rule. IEEE Trans Electron Devices. 2010;57:1527–38.
 40. Imani M, Gupta S, Rosing T. Ultra-efficient processing in-memory for data intensive applications. In: Design auto-

mation conference (DAC). IEEE; 2017. p. 1–6.
 41. Imani M, Kong D, Rahimi A, Rosing T. Voicehd: hyperdimensional computing for efficient speech recognition. In: 

International conference on rebooting computing (ICRC). IEEE; 2017. p. 1–8.
 42. Imani M, Nassar T, Rahimi A, Rosing T. Hdna: energy-efficient dna sequencing using hyperdimensional computing. 

In: 2018 IEEE EMBS international conference on biomedical & health informatics (BHI). IEEE; 2018. p. 271–4.
 43. Jaeger H. Towards a generalized theory comprising digital, neuromorphic and unconventional computing. Neuro-

morphic Comput Eng. 2021;1: 012002.
 44. Joshi A, Halseth JT, Kanerva P. Language geometry using random indexing. In: International symposium on quan-

tum interaction (QI). Springer; 2016. p. 265–74.
 45. Kanerva P. Sparse distributed memory. London: MIT press; 1988.
 46. Kanerva P. Hyperdimensional computing: an introduction to computing in distributed representation with high-

dimensional random vectors. Cogn Comput. 2009;1:139–59.
 47. Kanerva P. What we mean when we say what’s the dollar of Mexico?: prototypes and mapping in concept space. 

In: AAAI fall symposium series; 2010.
 48. Kanerva P, et al. Fully distributed representation. PAT. 1997;1:10000.
 49. Kang U, Tong H, Sun J. Fast random walk graph kernel. In: SIAM international conference on data mining, SIAM; 

2012. p. 828–38.
 50. Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D. Consistent hashing and random trees: distributed 

caching protocols for relieving hot spots on the world wide web. In: Proceedings of the twenty-ninth annual ACM 
symposium on theory of computing. 1997. p. 654–63.

 51. Karunaratne G, Le Gallo M, Cherubini G, Benini L, Rahimi A, Sebastian A. In-memory hyperdimensional computing. 
Nat Electron. 2020;3:327–37.

 52. Keerthi SS, Chapelle O, DeCoste D, Bennett KP, Parrado-Hernández E. Building support vector machines with 
reduced classifier complexity. J Mach Learn Res. 2006;7:1493–515.

 53. Kempter R, Leibold C, et al. Quantifying circular-linear associations: hippocampal phase precession. J Neurosci 
Methods. 2012;207:113–24.

 54. Khan R, Khan SU, Zaheer R, Khan S. Future internet: the internet of things architecture, possible applications and 
key challenges. In: International conference on frontiers of information technology (FIT). IEEE; 2012. p. 257–60.

 55. Kleyko D, Davies M, Frady EP, Kanerva P, Kent SJ, Olshausen BA, Osipov E, Rabaey JM, Rachkovskij DA, 
Rahimi A, et al. Vector symbolic architectures as a computing framework for emerging hardware. Proc IEEE. 
2022;110:1538–71.

 56. Kleyko D, Rachkovskij DA, Osipov E, Rahim A. A survey on hyperdimensional computing aka vector symbolic 
architectures, part II: applications, cognitive models, and challenges. arXiv preprint. 2021. arXiv: 2112. 15424 .

http://arxiv.org/abs/2112.15424


Page 31 of 32Heddes et al. Journal of Big Data          (2024) 11:145  

 57. Kleyko D, Rachkovskij DA, Osipov E, Rahimi A. A survey on hyperdimensional computing aka vector symbolic 
architectures, part I: models and data transformations. arXiv preprint. 2021. arXiv: 2111. 06077 .

 58. Kleyko D, Rahimi A, Gayler RW, Osipov E. Autoscaling bloom filter: controlling trade-off between true and false 
positives. Neural Comput Appl. 2020;32:3675–84.

 59. Kondor R, Pan H. The multiscale Laplacian graph kernel. In: Advances in neural information processing systems 
(NIPS). 2016. p. 2982–90.

 60. Kriege NM, Giscard PL, Wilson RC. On valid optimal assignment kernels and applications to graph classification. In: 
Advances in neural information processing systems (NIPS). 2016. p. 1615–23.

 61. Kriege NM, Johansson FD, Morris C. A survey on graph kernels. Appl Netw Sci. 2020;5:1–42.
 62. Kussul EM, Baidyk TN, Wunsch DC II, Makeyev O, Martin A. Permutation coding technique for image recognition 

systems. IEEE Trans Neural Netw. 2006;17:1566–79.
 63. Lai L, Suda N. Enabling deep learning at the IoT edge. In: Proceedings of the international conference on 

computer-aided design. New York: ACM; 2018. p. 1–6. https:// doi. org/ 10. 1145/ 32407 65. 32434 73.
 64. Ledoux M. The concentration of measure phenomenon, vol. 89. Rhode Island: American Mathematical Soc; 2001.
 65. Lee A. Circular data. Wiley Interdiscip Rev Comput Stat. 2010;2:477–86.
 66. Li H, Wu TF, Rahimi A, Li KS, Rusch M, Lin CH, Hsu JL, Sabry MM, Eryilmaz SB, Sohn J, et al. Hyperdimensional 

computing with 3D VRRAM in-memory kernels: device-architecture co-design for energy-efficient, error-resilient 
language recognition. In: International electron devices meeting (IEDM). IEEE; 2016. p. 16–1.

 67. Lund U. Least circular distance regression for directional data. J Appl Stat. 1999;26:723–33.
 68. Manabat AX, Marcelo CR, Quinquito AL, Alvarez A. Performance analysis of hyperdimensional computing for 

character recognition. In: International symposium on multimedia and communication technology (ISMAC). IEEE; 
2019. p. 1–5.

 69. Mardia KV, Jupp PE, Mardia K. Directional statistics, vol. 2. London: Wiley Online Library; 2000.
 70. Marinucci D, Peccati G. Random fields on the sphere: representation, limit theorems and cosmological applica-

tions, vol. 389. Cambridge: Cambridge University Press; 2011.
 71. Mirrokni V, Thorup M, Zadimoghaddam M. Consistent hashing with bounded loads. In: Proceedings of the twenty-

ninth annual ACM-SIAM symposium on discrete algorithms. SIAM; 2018. p. 587–604.
 72. Morris C, Kriege NM, Bause F, Kersting K, Mutzel P, Neumann M. Tudataset: a collection of benchmark datasets for 

learning with graphs. In: ICML workshop on graph representation learning and beyond (GR+). 2020.
 73. Najafabadi FR, Rahimi A, Kanerva P, Rabaey JM. Hyperdimensional computing for text classification. In: Design, 

automation test in Europe conference exhibition (DATE). 2016. p. 1–1.
 74. Neubert P, Protzel P. Towards hypervector representations for learning and planning with schemas. In: Joint Ger-

man/Austrian conference on artificial intelligence (Künstliche Intelligenz). Springer; 2018. p. 182–9.
 75. Neumann M, Moreno P, Antanas L, Garnett R, Kersting K. Graph kernels for object category prediction in task-

dependent robot grasping. In: KDD workshop on mining and learning with graphs (MGL). 2013. p. 0–6.
 76. Nikolentzos G, Meladianos P, Vazirgiannis M. Matching node embeddings for graph similarity. In: Thirty-first AAAI 

conference on artificial intelligence. 2017.
 77. Nunes I, Heddes M, Givargis T, Nicolau A. An extension to basis-hypervectors for learning from circular data in 

hyperdimensional computing. In: 2023 60th ACM/IEEE design automation conference (DAC). IEEE; 2023. p. 1–6.
 78. Nunes I, Heddes M, Givargis T, Nicolau A, Veidenbaum A. Graphhd: efficient graph classification using hyperdi-

mensional computing. In: Design, automation & test in Europe conference & exhibition (DATE). 2022.
 79. Nunes I, Heddes M, Vergés P, Abraham D, Veidenbaum A, Nicolau A, Givargis T. Dothash: estimating set similarity 

metrics for link prediction and document deduplication. In: Proceedings of the 29th ACM SIGKDD conference on 
knowledge discovery and data mining. 2023. p. 1758–69.

 80. Nygren E, Sitaraman RK, Sun J. The akamai network: a platform for high-performance internet applications. ACM 
SIGOPS Oper Syst Rev. 2010;44:2–19.

 81. Osipov E, Kleyko D, Legalov A. Associative synthesis of finite state automata model of a controlled object with 
hyperdimensional computing. In: IECON 2017-43rd annual conference of the IEEE industrial electronics society. 
IEEE; 2017. p. 3276–81.

 82. Pewsey A, García-Portugués E. Recent advances in directional statistics. TEST. 2021;30:1–58.
 83. Plate TA. Distributed representations and nested compositional structure. Ph.D. thesis. University of Toronto; 1994.
 84. Plate TA. Holographic reduced representations. IEEE Trans Neural Netw. 1995;6:623–41.
 85. Plate TA. Holographic reduced representation: distributed representation for cognitive structures. Stanford: CSLI 

Publications; 2003.
 86. Rachkovskij D, Fedoseyeva T. On audio signals recognition by multilevel neural network. In: Proceedings of the 

international symposium on neural networks and neural computing (NEURONET). 1990. p. 281–3.
 87. Rachkovskij DA, Kussul EM. Binding and normalization of binary sparse distributed representations by context-

dependent thinning. Neural Comput. 2001;13:411–52.
 88. Rachkovskiy DA, Slipchenko SV, Kussul EM, Baidyk TN. Sparse binary distributed encoding of scalars. J Autom Inf 

Sci. 2005;37:12–23.
 89. Rahimi A, Benatti S, Kanerva P, Benini L, Rabaey JM. Hyperdimensional biosignal processing: a case study for EMG-

based hand gesture recognition. In: International conference on rebooting computing (ICRC). IEEE; 2016. p. 1–8.
 90. Rahimi A, Datta S, Kleyko D, Frady EP, Olshausen B, Kanerva P, Rabaey JM. High-dimensional computing as a 

nanoscalable paradigm. Trans Circ Syst I Regular Pap. 2017;64:2508–21.
 91. Rahimi A, Kanerva P, Rabaey JM. A robust and energy-efficient classifier using brain-inspired hyperdimensional 

computing. In: International symposium on low power electronics and design (ISLPED). 2016. p. 64–9.
 92. Robertson AM, Willett P. Applications of n-grams in textual information systems. J Doc. 1998;54(1):48–67.
 93. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. Trans Neural Netw. 

2008;20:61–80.
 94. Schlegel K, Neubert P, Protzel P. A comparison of vector symbolic architectures. Artif Intell Rev. 2021;55:1–33.

http://arxiv.org/abs/2111.06077
https://doi.org/10.1145/3240765.3243473.


Page 32 of 32Heddes et al. Journal of Big Data          (2024) 11:145 

 95. Schmuck M, Benini L, Rahimi A. Hardware optimizations of dense binary hyperdimensional computing: remateri-
alization of hypervectors, binarized bundling, and combinational associative memory. J Emerg Technol Comput 
Syst. 2019;15:1–25.

 96. Schroeder B, Pinheiro E, Weber WD. Dram errors in the wild: a large-scale field study. ACM SIGMETRICS Perform 
Eval Rev. 2009;37:193–204.

 97. Shen H, Xu CZ, Chen G. Cycloid: a constant-degree and lookup-efficient P2P overlay network. Perform Eval. 
2006;63:195–216.

 98. Shervashidze N, Schweitzer P, Van Leeuwen EJ, Mehlhorn K, Borgwardt KM. Weisfeiler-lehman graph kernels. J 
Mach Learn Res. 2011;12:2539–61.

 99. Shridhar K, Jain H, Agarwal A, Kleyko D. End to end binarized neural networks for text classification. In: Proceed-
ings of SustaiNLP: workshop on simple and efficient natural language processing. 2020. p. 29–34.

 100. Simpkin C, Taylor I, Bent GA, de Mel G, Rallapalli S, Ma L, Srivatsa M. Constructing distributed time-critical applica-
tions using cognitive enabled services. Futur Gener Comput Syst. 2019;100:70–85.

 101. Smith D, Stanford P. A random walk in hamming space. In: 1990 IJCNN international joint conference on neural 
networks. IEEE; 1990. p. 465–70.

 102. Sokolov A, Rachkovskij D. Approaches to sequence similarity representation. J Inf Theor Appl. 2006;13(3):272–8.
 103. Sridharan V, Liberty D. A study of dram failures in the field. In: SC’12: proceedings of the international conference 

on high performance computing, networking, storage and analysis. IEEE; 2012. p. 1–11.
 104. Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek MF, Dabek F, Balakrishnan H. Chord: a scalable peer-to-peer 

lookup protocol for internet applications. IEEE/ACM Trans Netw. 2003;11:17–32.
 105. Suri M. Advances in neuromorphic hardware exploiting emerging nanoscale devices. New Delhi: Springer; 2017.
 106. Thaler DG, Ravishankar CV. Using name-based mappings to increase hit rates. IEEE/ACM Trans Netw. 1998;6:1–14.
 107. Thomas A, Dasgupta S, Rosing T. Theoretical foundations of hyperdimensional computing. J Artif Intell Res. 

2021;72:215–49.
 108. Tracey J, Zhu J, Crooks K. A set of nonlinear regression models for animal movement in response to a single land-

scape feature. J Agric Biol Environ Stat. 2005;10:1–18.
 109. Vergés P, Heddes M, Nunes I, Givargis T, Nicolau A. Classification using hyperdimensional computing: a review with 

comparative analysis. 2023.
 110. Wale N, Karypis G. Comparison of descriptor spaces for chemical compound retrieval and classification. In: Inter-

national conference on data mining (ICDM). 2006. p. 678–89. https:// doi. org/ 10. 1109/ ICDM. 2006. 39.
 111. Wang W, Ravishankar CV. Hash-based virtual hierarchies for scalable location service in mobile ad-hoc networks. 

Mobile Netw Appl. 2009;14:625–37.
 112. Widdows D, Cohen T. Reasoning with vectors: a continuous model for fast robust inference. Logic J IGPL. 

2015;23:141–73.
 113. Wu TF, Li H, Huang PC, Rahimi A, Rabaey JM, Wong HSP, Shulaker MM, Mitra S. Brain-inspired computing exploiting 

carbon nanotube fets and resistive ram: hyperdimensional computing case study. In: International solid-state 
circuits conference-(ISSCC); IEEE. 2018. p. 492–4.

 114. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY. A comprehensive survey on graph neural networks. IEEE Trans 
Neural Netw Learn Syst. 2020;32(1):4–24.

 115. Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? In: International conference on learn-
ing representations (ICLR). 2019.

 116. Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi KI, Jegelka S. Representation learning on graphs with jumping knowl-
edge networks. In: International conference on machine learning (ICML). 2018. p. 5453–62.

 117. Yanardag P, Vishwanathan S. Deep graph kernels. In: International conference on knowledge discovery and data 
mining (SIGKDD). 2015. p. 1365–74.

 118. Yerxa T, Anderson A, Weiss E. The hyperdimensional stack machine. In: Cognitive computing. 2018. p. 1–2.
 119. Zhan Y, Shen D. Increasing the efficiency of support vector machine by simplifying the shape of separation hyper-

surface. In: International conference on computational and information science. Springer; 2004. p. 732–8.
 120. Zou Z, Kim Y, Imani F, Alimohamadi H, Cammarota R, Imani M. Scalable edge-based hyperdimensional learning 

system with brain-like neural adaptation. In: International conference for high performance computing, storage 
and analysis (SC): networking. 2021. p. 1–15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICDM.2006.39

	Hyperdimensional computing: a framework for stochastic computation and symbolic AI
	Abstract 
	Introduction
	Problem definition
	Existing solutions
	Similarity metrics
	Basis-hypervectors
	Operations
	Encodings
	Associative memory
	Classification
	Regression
	Applications in symbolic AI
	Applications in stochastic computation

	Proposed solutions
	GraphHD
	Motivation
	Background
	Method

	Circular hypervectors
	Motivation
	Background
	Method

	Hyperdimensional hashing
	Motivation
	Background
	Method


	Elaboration
	Experimental setup
	Accuracy
	Efficiency
	Robustness

	Conclusion
	Acknowledgements
	References


