
Interface-Centric Abstraction Level for Rapid Hardware/Software
Integration

André C. Nácul†, Marcello Lajolo‡, Tony Givargis†

† Computer Science Department ‡ NEC Laboratories of America
University of California, Irvine Princeton, NJ
{nacul, givargis}@uci.edu lajolo@nec-labs.com

Abstract

With the continuous advances of high-level synthesis and hardware/software codesign, engineers
have now the luxury and the desire to explore very quickly multiple high-level architectures. System-
level tools can enable trade-offs of architectures that rely on different combinations of memory ac-
cess, resource sharing and multiplexing. A good system-level design flow must enable fast and ac-
curate viewing of multiple solutions based on different design choices. In this paper we present a
system-level API for text-based specifications that combines transaction-level modeling for the hard-
ware interface and OS and device drivers levels for the software interface into a unified semantics.
We also present a refinement process that allows to generate very rapidly a hardware/software inte-
gration.

1 Introduction

The design of embedded systems is growing in complexity at a fast rate. Devices are more feature-rich
than ever, incorporating new functionalities, newer protocols, and more modes of operation. At the same
time, designers must keep pace to deliver a new generation of products in an even tighter time-to-market.
Coupled with the growth in chip capacity, the task is daunting, and calls for a simpler design flow.

Automation is one solution to cope with the growth in system design complexity. Automating the
generation of code has long been used in different stages of embedded systems design, for instance, in
hardware synthesis. More recently, software and operating systems have also been the focus of automa-
tion efforts [BB03] [HPSV03] [NG04].

Aside from automation, the design flow also needs to maximize design reuse and portability. Ideally,
functional blocks should be easily migrated from hardware to software, and vice versa. A higher level of
abstraction in describing the system’s functionality facilitates this process. In such high abstraction, sys-
tem specification can be carried in a portable fashion, independent of associated models of computation,
hardware availability, communication architecture or specific operating system support.

The System Level Design community has tried to address these issues in different ways. We believe
that a common programming interface is needed to allow designers to easily specify communication and
iteration with an OS layer. SystemC [Theb] has tried to support a common interface. Nevertheless, in
the current version, the support for software and OS is still not complete.

In this work, we propose a generic framework for system specification. Our framework is composed
of a portable API, its corresponding semantics, and alternatives for hardware and software implemen-
tation for each entry of the API. The objective is to provide designers with a minimal set of high-level
primitives that can be used to abstract and specify the system behavior. Our API is not dependent on any
system-level design language. Rather, we are presenting a methodology to synthesize hardware, software
and interface communication based on the proposed API. The API can be adapted or incorporated in the
design language of choice. SystemC [Theb], for instance, includes support for some of the primitives we

present. Other primitives, however, are not present in SystemC, or have a behavior that is not the one we
envision.

The API is partially based on the POSIX/Pthreads standard [TI04], and encompasses primitives for
processes instantiation, communication with shared variables and message passing, process synchroniza-
tion and timing behavior specification. The framework is integrated in our hardware/software codesign
environment. When a functional block is mapped to a specific platform component, either hardware or
software, we are able to automatically generate all the hardware descriptions, interconnections, software
data structures and even device drivers that will effectively implement the semantics of the API entries.
Therefore, with the use of an abstract, high-level system description, it is possible to automate hardware,
software and communication interface generation, enhancing portability and reuse.

A description provided with this API can be easily mapped to different processors, various operating
systems, and many communication architectures, without the need to modify any part of the original
specification. The use of a portable specification also enables a rapid exploration of design alternatives.
Since the proposed API is platform and implementation independent, one can easily test different com-
munication architectures or different operating systems much quicker than when using platform specific
code like the AMBA Bus API [ARM03] or VxWorks OS API [Win].

This paper is organized as follows. Section 2 discusses the previous works related to our proposal.
We define the terminology we will use in this paper in Section 3. Section 4 describes our API, presenting
possible mapping alternatives. In section 5, we present an example of hardware/software integration
process starting from the proposed API. We present our conclusions in section 6.

2 Related Work

System level design has been the motivation for many publications in the literature. Most of the ap-
proaches address one of the components of synthesis, be it communication, hardware, or software syn-
thesis. The synthesis of (real-time) operating system support has been studied more recently. However,
none of the approaches integrate all the parts into one framework, as we propose in this work.

Cadence’s Virtual Component Co-design Environment (VCC) was an earlier tool which tried to
provide a design space exploration environment for SoCs. It used library components to synthesize
the design. VCC lacks a complete path to implementation, though. In this sense, Dziri et al. [DSW+03]
have combined VCC to other tools in order to provide a complete path to implementation. The main
difficulty was integrating the multiple design tools, each of them using a different specification model.

Concerning interface synthesis and analysis, Meyerowitz has presented a tool [MPSV03] that can
evaluate different bus architectures and arbitration protocols. He shows that response time and band-
width utilization can improve by combining different arbitration protocols. Passerone et.al. [PRSV98]
generates interface adapters, allowing IP blocks to communicate even with incompatible protocols. A
transaction-level model for the AMBA bus in SystemC 2.0 is presented by Caldari et.al. [CCC+03].
They propose a set of high-abstraction classes to model communication interfaces. This is similar to the
work presented by Coppola et al. [CCGM03] also on synthesis of communication interfaces.

There have also been proposals addressing automatic generation of RTOSes for SoC architectures.
However, most of them are concerned only with the RTOS generation, and do not integrate hardware
synthesis or custom communication infrastructures. Some examples of these works are the proposals of
Le Moigne et.al. [LPC04], Besana et.al. [BB03], and Herrera et.al. [HPSV03]. Gerstlauer et.al. [GYG03]
propose to model the RTOS functionality with System Level Language primitives, refining the RTOS
with the specification. His work is integrated in the SpecC environment.

In terms of System Level Design Languages, the two most developed approaches are SystemC [Theb]
and SpecC [GDPG01]. The transaction level modeling provided by SystemC supports modeling of
hardware and software components, tied together with different communication interfaces. Software
suppport, and specially RTOS support is not yet fully integrated in the language, though, and is the
subject of the discussions for the next SystemC release. The same applies to SpecC, which still does not
have a fully integrated RTOS interface.

2

3 Terminology

The terminology regarding operating systems, hardware and software design is way overloaded. Dif-
ferent terms are used to refer to the same concept, and the hardware and software communities do not
have a common terminology. Since we are trying to define a System Level API suitable for hardware
and software implementations, it is mandatory that we define the terms that will be used throughout this
work. Two terms are specially of interest to us, be it process, tasks, and threads; and concurrency and
parallelism.

In the software and OS community, threads refer to units of execution, while processes also include
resource allocation. A thread is generally viewed as a light process, because there is no need to allocate
a separate memory space, file tables, page tables and other structures that are common to processes.
Usually, a process may contain many threads. In the RTOS community, the term task is used to represent
an execution job, usually implemented by a thread. On the other hand, there is no thread concept in
the hardware community. Instead, the term process is more common, and often refers to some sort of
processing unit, like a processor or an ASIC. When describing two processes in hardware, we typically
end up with two datapaths and two controllers. In this paper, we will use the term process to designate
unit of execution, be it a hardware or software implementation.

Similarly, the terms parallel and concurrent are used interchangeably. In this work, parallel processes
are those truly executing in parallel, i.e., at the same time, without multiplexing. Therefore, we need
distinct hardware in order to be able to run processes in parallel. On the contrary, concurrent refers to
processes that are competing for the same hardware, usually in a time-multiplexed fashion. To the user,
they are seen as if they were executing in parallel, but in reality only one of them will be executing in
one processor at any given clock cycle.

4 System Level API

The proposed generic API for design specification is presented in Table 1. It is partially based on the
POSIX [TI04] standard, a well defined and accepted programming interface for Operating Systems,
and includes extra primitives that are not part of POSIX. The API is divided in four parts: Process
Management, Communication, Synchronization and Timing. Process management includes functions
to control process creation and execution. The Communication part encompasses shared memory and
message-passing based communication, both blocking and non-blocking style. Synchronization includes
primitives for process synchronization, like mutexes, semaphores and condition variables. Finally, the
Timing section allows some control over the timing behavior of the system, providing a timed-wait and
controlling timeouts for blocking operations.

The API is thought to be integrable with any system-level specification language like, for instance,
SystemC. The API represents the abstract functionality we believe is needed to facilitate the design
of hardware devices and the specification and synthesis of OS-based software. Some design languages
might already include an equivalent form of part of the API. SystemC, for example, has its own classes for
mutexes (sc mutex) and semaphores (sc semaphore), that work very similarly to those presented
here. In that case, the native classes can be used. Other entries of the API are not available in SystemC
or any other design language, and therefore must be included.

The API functions are inspired by POSIX and Transaction Level Modeling (TLM). Process Manage-
ment and Synchronization primitives are largely based on POSIX. There is a clear one-to-one mapping
of the API entries to POSIX primitives. These are more likely to be used in software descriptions. Mean-
while, communication primitives are the highly abstract send and receive typical of a TLM description,
along with shared memory access, useful for both hardware and software designs. The range of specifi-
cation styles possible to target with the API is very broad. Hardware oriented specifications might use bit
manipulation and low level constructs more intensively, while software oriented specifications could use
pointers, memory allocation and stack manipulation more frequently. Nevertheless, the API we propose
is neutral and can accommodate either style.

3

Table 1: The API functions
Process process create(id, param, func, arg)

Management process delete(id)

process suspend(id)

process resume(id)

Communication port send(port, data, size, mode)

port receive(port, size, mode)

shared mem read(mem, offset, size, mode)

shared mem write(mem, offset, data, size, mode)

Synchronization mutex lock(mutex)

mutex unlock(mutex)

sema wait(sem)

sema post(sem)

cond var wait(var, mutex)

cond var signal(var)

cond var broadcast(var)

sched yield()

Timing time wait(time)

process join(id)

mutex lock tmo(mutex, time)

sema wait tmo(sem, time)

cond var wait tmo(var, mutex, time)

In the Process Management section of the API, four functions are defined. The function
process create is used to instantiate and start the execution of a new process. The argument func
is the entry point function of the process. Note that the actual code of the process, be it hardware or
software, must be already available. The API function will create a new context for the new process and
start executing the initial function. Also note that in case of hardware processes, if more than one process
share the same hardware implementation, there is a need to synthesize a scheduler within the hardware
implementation, so that time sharing of the hardware is possible. Process delete stops and removes
a process from the scheduler list forever, freeing all the resources that were held by that process. Finally,
process suspend and process resume are used to stop and resume the execution of a process,
respectively. A process is suspended by a process suspend call, and stays suspended until some
other process executes process resume for that specific process.

Two different communication models are supported in the API, message passing and shared memory.
Message passing is abstracted by the concepts of ports, and provides the primitives port send and
port receive to implement the communication. Blocking and non-blocking styles are supported, and
are specified by the designer through the argument mode. A blocking send blocks the sender until the
receiver reads the message. Similarly, a blocking receive blocks the receiver until a message is available
in the corresponding port. Shared memory communication is modeled with the shared mem read and
shared mem write primitives. Here, two styles are also possible, synchronous and asynchronous,
specified in the mode parameter. In synchronous mode, a lock is associated with each shared memory
block, and only one process can access the memory at one specific time. Meanwhile, the asynchronous
mode does not have a lock associated with the memory, and therefore concurrent accesses can happen. It
is up to the programmer to ensure the correct behavior of the accesses. In all communication primitives,
the size of the data block to be transmitted or received is specified in the size parameter. In case the
data size is larger than the specified width of the communication interface, a protocol will have to be
implemented to ensure that the data is correctly partitioned in the sender, and received and reassembled
in the receiver.

In the Synchronization section, three different synchronization mechanisms are defined by the API:

4

mutexes, semaphores and condition variables. A semaphore is a synchronization mechanism that con-
trols access to shared devices or data structures. A semaphore is initialized to a specific count value
C, representing the number of available devices or the number of concurrent accesses possible. A call
to sema wait will block the calling process if the semaphore value is zero, meaning that none of the
shared resources are available, while a call to sema post increments the value of the semaphore, and
unblocks a possibly waiting process. Mutexes are similar to binary semaphores, i.e., semaphores initial-
ized with the value of one. The process calling mutex lock will block in case the mutex value is zero,
and mutex unlock will set the mutex value to one, allowing one of the possibly waiting processes to
continue. Furthermore, condition variables allow processes to wait for some event or condition to hap-
pen. The process calling cond var wait will block until the condition is met and the corresponding
cond var signal is invoked. Alternatively, cond var broadcast can be used to signal an event
when multiple processes should resume execution as a result of one event. Finally, the last entry in the
synchronization section is sched yield, which is an explicit release of the processing unit. In SW
implementations, it will result in a context switch, while in a HW implementation, it will be equivalent
to forcing a clock boundary in the execution.

Lastly, the Timing section allows the specification of the timing behavior of processes. Processes
can wait for a fixed amount of time using the API called time wait. The waiting time is provided in
the parameter time. Additionally, it is also possible to specify timeouts for each of the blocking syn-
chronization primitives, with sema wait tmo, mutex lock tmo and cond var wait tmo. These
functions behave exactly like the corresponding non-timed-out versions, except that a maximum block-
ing time is provided as an additional parameter of the function, and an exception will occur in case the
timeout is reached. In this case, the designer should handle the error appropriately.

4.1 Interface Synthesis

When the input design description contains communication primitives from the System Level API, there
is a need to synthesize the communication interface between the processes. Depending on the design par-
titioning, the interface will need to connect two hardware modules, two software modules, or a hardware
and a software module. In this section, we show examples of custom interface synthesis for different
partitions. We refer to the process sending data as the producer, and the process receiving data as the
consumer.

4.1.1 Hardware-to-Hardware communication

In the case where two processes that communicate through ports are mapped to a hardware implementa-
tion, there are different alternatives for interface synthesis. However, since this is a hardware to hardware
communication, it is not necessary to generate RTOS code or software to handle this specific communi-
cation.

One possible architecture for a port-based hardware to hardware communication is shown in Figure
1. In this case, there is a direct data connection between producer and consumer. Additionally, control
lines are synthesized according to the API usage. If the port is ever used for a blocking send, then an
acknowledge line from the consumer to the producer is necessary. Therefore, the producer is suspended
until it receives an acknowledge from the consumer in case of a blocking communication. For communi-
cations with multiple consumers, the producer wait for the acknowledge of all consumers. This behavior
is implemented with a logic OR of the individual acknowledges of the consumers, as shown in Figure 1.
Similarly, an event line is added from the producer to each consumer for the case when blocking receives
are specified. Since the event and acknowledge control signals are only synthesized when needed, they
are shown with dashed lines in Figure 1.

Other architectures are also possible from the same System Level API. For instance, it is possible to
generate a Transaction Level Model with AMBA-bus transactions for each port primitive. In this case,
the port send and port receive primitives are replaced by a set of calls to the AMBA Transaction-
Level API [ARM03].

5

Producer
Consumer

Evt_p

p_Data p_Data

p_Event

p_Ack

Consumer

Evt_p

port_receive(p,...)

port_send(p,...)

Figure 1: Interface Synthesis for HW-to-HW Communication

Port

Data

Evt/Ack

Processor

Producer Consumer

port_send(p,...) port_receive(p,...)

Figure 2: Interface Synthesis for SW-to-SW Communication

4.1.2 Software-to-Software communication

When two software processes are mapped to the same processor, the interface synthesis is simpler. Our
framework will generate a software data structure in memory, shared between the processes, that will
keep the data along with event and acknowledge control signals. All the producer has to do is to update
two memory locations, with data and event signaling (in case of blocking receives), while the consumer
will read the data memory and update the acknowledge bit of the same port. Figure 2 shows the interac-
tion between the processes.

4.1.3 Hardware-to-Software communication

Hardware to software communications can be implemented by either interrupts or polling, using
memory-mapped addresses in the latter case. In both cases, we will need some RTOS support in order
to coordinate the processes. One possible solution is shown in Figure 3. Our framework will generate a
bus adaptation layer for the hardware module, so that it can send and receive data from the bus. In the
case of a memory-mapped communication, a device driver is also generated and runs inside the proces-
sor, monitoring the bus for activity in the memory-mapped region. The device driver is responsible for
transferring data from the bus to the processor memory, to a port structure equivalent to the one shown
in Figure 2. The software process will access the port data structure as it did in the software-software
case, retrieving data and updating event flags. If instead an interrupt-based communication is specified,
then an Interrupt Service Routine (ISR) needs to be synthesized. The ISR will be responsible for receiv-
ing the event signaling from the producer. In the interrupt-based communication, the actual data is still
transferred through a memory-mapped location to the port structure.

4.1.4 Software-to-Hardware communication

In software to hardware communications, the producer is running in a processor, communicating with a
hardware module. In our model, this kind of communication is always memory-mapped. The producer
will update a port data structure, and a device driver propagates data and events to and from the bus.
Events and acknowledge signals are generated for the receiver whenever necessary.

Note that the device driver can be unique for all the software-to-hardware and hardware-to-software
communications. It has to monitor a set of software ports, transferring data to the bus, as well as monitor
the bus for memory-mapped communications.

6

Port ConsumerDevice
Driver

Producer

Processor

port_send(p,...) port_receive(p,...)

interrupt line

D
e
c
o
d
e
r

Figure 3: Interface Synthesis for HW-to-SW Communication

Port ConsumerDevice
Driver

Producer

Processor

Port ProducerDevice
Driver

Consumer

Processor
Bus

Bridge

CPU1

Bus
CPU2

Bus

port_receive(p,...)

port_send(p,...)

D
e
c
o
d
e
r

D
e
c
o
d
e
r

Figure 4: Interface Synthesis for Multiprocessor Communication

4.1.5 Multiprocessor communication

Finally, in case the processes are mapped to different processors, with different busses, a bridge will also
be synthesized. Figure 4 shows the proposed architecture. In this scenario, the producer runs on processor
1, connected to System Bus 1, while the consumer runs on processor 2, connected to System Bus 2. The
producer will see the bridge as the consumer, characterizing a software to hardware communication.
Meanwhile, the consumer will see the bridge as the producer, therefore a hardware to software. The
port will be accessed through a memory-mapped address. In addition to the bridge, device driver code is
synthesized for both processors, linking the software process to the RTOS and to the bridge hardware.

For shared memory communication, two different architectures are possible, depending on syn-
chronous or asynchronous communication. In the synchronous mode, a locking structure is generated for
each shared memory, so that access is granted exclusively for each process. Every memory access has to
obtain the lock first. In the asynchronous mode, only the memory is synthesized. The locking mechanism
is implicit in the API call for shared memory access. Every shared memory will be directly connected to
the system bus, accessible by the CPU. Additionally, a dedicated memory port will be available for each
hardware module accessing the memory, so that using the bus is not necessary while accessing shared
data. Therefore, there is less contention and higher parallelism in the implementation.

4.2 RTOS Synthesis

In addition to communication interface synthesis, the generation of RTOS support is required. In this
case, our System Level API has to be mapped to OS-specific resources, adapting the generic API to

7

in int p_in;
out int p_out;
process filter {
 int data;
 data = port_receive(p_in, 4, BLOCKING);
 if(data > 128)
 data -= 128;
 port_send(p_out, data, 4, NON_BLOCKING);
}
int main() {

 process_create(id, NULL, filter, NULL);

}

(a) API code

1
2
3
4
5
6
7
8
9

10
11
12
13
14

struct port_t {
 int value;
 int flag;
 pthread_mutex_t mutex;
 pthread_cond_t reader;
 pthread_cond_t writer;
};
port_t p_in, p_out;
void filter(void *arg) {
 int data;
 port_init(&p_out);
 pthread_mutex_lock(&p_in->mutex);
 if(!p_in->flag)
 pthread_cond_wait(&p_in->reader, &p_in->mutex);
 data = p_in->value;
 pthread_cond_signal(&p_in->writer);
 pthread_mutex_unlock(&p_in->mutex);
 if(data > 128)
 data -= 128;
 pthread_mutex_lock(&p_out->mutex);
 p_out->value = data;
 p_out->flag = 1;
 pthread_cond_signal(&p_out->reader);
 pthread_mutex_unlock(&p_out->mutex);
}
int main() {

 pthread_create(id, NULL, filter, NULL);

}

(b) POSIX expanded code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Figure 5: Code Example

the functionality available in the target RTOS. Since our API is based on POSIX, the mapping is trivial
when targeting a POSIX-compliant OS, like Embedded Linux [Thea] or eCos [Mas02]. Alternatively,
our tool is able to target non-POSIX RTOSes by mapping the API calls to the specific RTOS. Finally,
the API-based description is used as input to tools that generate a customized OS infrastructure, like
Polis [Bal97] and Phantom [NG04], in case a custom-generated RTOS was specified.

Figure 5 shows the code generation process for our System Level API. In Figure 5(a), the design
is specified with the API primitives in a C-like specification. Figure 5(b) shows the generation of C
code for a POSIX-compatible OS. The API primitives are expanded to POSIX code. Some primitives
have a direct transformation to a POSIX call. Others need to be expanded into more than one POSIX
instruction. This is the case with send and receives and synchronous shared memory access.

Note that a data structure is generated for the port-based communication (lines 1 to 7), as discussed
earlier. The port send (line 8) and port receive (line 5) are expanded to POSIX/Pthread calls for
mutexes and condition variables (lines 20 to 24 and lines 12 to 17), and updates the port data structure,
reading data (line 15), sending data (line 21) and setting event flags (lines 16 and 22). The generated
code also include the corresponding checks (line 13) and waits (line 14) in the case of the blocking port
receive.

5 HW/SW Integration

5.1 Our HW/SW Codesign Environment

Our codesign framework provides an interface and a set of tools for synthesizing and simulating a design.
Input to our codesign environment is a set of modules M1, M2 . . . Mn that implement a design. Modules
are described in a C-based system level language, extended with the proposed API functions. Each

8

module represents a process. Next, the mapping step partitions the design into hardware and software
implementations. The partitioning granularity is at the process level, i.e., once a process is mapped to
hardware or software, all its functionality is synthesized to execute as a hardware block or a software
task inside an RTOS. Currently, the partitioning process is manual. Once the design is partitioned, the
designer specifies the communication parameters. In case of hardware to software communications, for
instance, it is possible to determine the use of interrupts. Finally, hardware, software and interfaces are
synthesized.

Hardware synthesis is handled by an in-house behavioral synthesizer, that produces synthesizable
RTL for each module. Software modules are generated according to the operating system support de-
sired by the designer. For each target software environment, we provide a library that implement the
specified API for the referred environment. At the time, our codesign framework can generate software
modules based on the POLIS [Bal97], the Phantom Compiler [NG04] and any POSIX-based operating
system, like Embedded Linux [Thea] or eCos [Mas02] with the POSIX adaptation layer. In the later
case, for instance, there is a one-to-one mapping of some of the API functions to the POSIX library of
the operating system, while others require some expansions, as shown in Figure 5.

Software is compiled to a specific processor, which can be a NEC V850 or an ARM946. Finally, the
interface is generated according to the partition and the communication style specified. We have simu-
lators available that allow us to simulate the synthesized hardware, selected processor (cycle accurate in
the case of V850 and instruction based on the case of ARM), software and communication interfaces.

5.2 Putting It All Together

The steps of our hardware-software integration process are depicted in Figure 6. The block diagram
on top helps in visualizing the connections and processes. In this example, which implements a matrix
multiplication algorithm consisting of three processes: the Index Control, that controls the execution of
the algorithm, the Data Retriever, which fetches data from the shared memory, Mem, and passes them,
two at a time, to the module MAC which multiplies them, accumulates intermediate results and finally
writes the result back into the shared memory. So Data Retrieve only reads data from the shared memory,
while MAC only writes into it.

An excerpt of the specification code is shown in the specification section of Figure 6. The specifica-
tion contains some of the API calls proposed in this work incorporated into a C-based specification. This
specification is the input to our codesign environment.

The process mapping is specified next. In the example of Figure 6, the Index Control and the Data
Retrieve processes are mapped to SW, running in a single processor, while the Multiplier is mapped
to a custom HW module. During the mapping stage, it is also necessary to specify the options for the
communication interfaces. For the ports between Index Control and Data Retrieve, the communication
will be internal to the processor, since this is a software to software communication. Therefore, a software
port structure will be generated, like the one shown in Figure 5(b). For the case of the ports between
Data Retrieve and Multiplier, we chose a memory-mapped communication to implement the hardware to
software and software to hardware communications. Alternatively, interrupts could have been used for
the communication that originates in the Multiplier.

In the Code Generation stage, the environment synthesizes the communication interface, along with
the software targeted at the OS specified by the user and the hardware modules. In this stage, the RTOS
is adapted to the application. Since there is a memory-mapped communication, the appropriate device
driver for the communication will be incorporated into the software code. An address decoder is gener-
ated for the Multiplier process, so that it can access the bus. A locking structure is synthesized around
the shared memory block. The lock is needed to support the synchronous operations in the memory ac-
cess. Software-mapped processes are expanded to a POSIX specification, which can be compiled against
POSIX-compliant OSes. The same POSIX code can still be used to generate application specific OS
infrastructure, such as POLIS [Bal97] or Phantom [NG04].

Meanwhile, hardware-mapped processes result in the generation of a low-level SystemC descrip-
tion, to be synthesized with the appropriate tools. This detailed description includes the necessary extra

9

Mem

Index
Control

Line
Column

MAC
Data

Retrieve

X

Y

Next

CPU

MEM
HW

SW SW HW

Lock Decoder

System
Bus

Mapping

Specification

Implementation

OS
Selection

for(i=0;i<H_sz;i++)
 for(j=0;j<V_sz;j++)
 port_send(line, i, 4, BLK);
 port_send(column, j, 4, BLK);

i = port_receive(line, 4, BLK);
j = port_receive(column, 4, BLK);
shared_mem_read(mem, i*H+j, 4, SYNC);
port_send(x...);
port_send(y...);
port_receive(next, 1, BLK);

x = port_receive(x, 4, BLK);
y = port_receive(y, 4, BLK);
r = x*y;
shared_mem_write(r, r_addr, 4, SYNC);
port_send(next, 1, 1, NBLK);

Block Diagram

 pthread_mutex_lock(mutex);
 column->value = j;
 column->flag = 1;
 pthread_cond_signal(reader);
 pthread_cond_wait(writer);
 pthread_mutex_unlock(mutex);

wait(x_event)
x = x_data;
x_ack = 1;
.....
next _data= 1;
next_evt = 1;

Code
Generation

X_Data X_evt X_ack

Figure 6: HW/SW Integration

hardware and interconnections that implement the hand-shaking control discussed in section 4.1.
The final architecture is shown in the Implementation section of Figure 6. The CPU will be exe-

cuting the two processes mapped to software, supported by the RTOS specified in the mapping stage.
The CPU is connected by a System Bus to the Hardware and Shared Memory modules. An address
decoder connects the hardware to the bus. Finally, the shared memory incorporates the lock to support
the synchronous communication specified earlier in the design, providing a dedicated access port to the
hardware module. Note the expansion of the connections from the hardware module, with the inclusion
of the connections for event and acknowledge for each port from software to hardware and hardware to
software. The figure shows the expansion for the X port, and the other ports are expanded similarly.

The final generated hardware and software architecture is simulated an internally developed, cycle-
accurate simulator. We are able to simulate single and multi-processor architectures, along with memory,
buses, bridges, and reconfigurable logic to implement hardware-mapped modules. Currently, our simu-
lator supports the NEC V850 processor and can provide cycle-accurate execution data. Additionally, we
have a instruction-accurate model of the ARM946 processor.

6 Conclusions

Current complexity of embedded systems is driving a consensus toward the need for a higher abstraction
level support for system specification. This will result in more opportunities for design reuse and better

10

design space exploration capabilities. In this context, synthesis of operating system and hardware/soft-
ware interfaces is needed.

In this paper, we have introduced a System Level API that provides a specification support for rapid
hardware/software integration by combining into a unified semantics both transaction level modeling for
hardware specifications and OS and device drivers layers for software specifications. We have shown how
this API can be easily integrated in any current System Level Design language and we have discussed its
utilization into a hardware/software codesign flow.

References

[ARM03] ARM Limited. AMBA AHB Cycle Level Interface Specification, 2003.

[Bal97] F. Balarin et.al. Hardware-Software Co-Design of Embedded Systems: The Polis Approach.
Kluwer Academic Publishers, 1997.

[BB03] Monica Besana and Michele Borgatti. Application Mapping to a Hardware Platform Through
Automated Code Generation Targeting a RTOS. In Proc. of DATE, Feb. 2003.

[CCC+03] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C Turchetti. Transaction-
Level Models for AMBA Bus Architecture Using SystemC 2.0. In Proc. of DATE, Feb. 2003.

[CCGM03] M. Coppola, Stephane Curaba, Miltos Grammatikakis, and Giuseppe Maruccia. IPSIM:
SystemC 3.0 Enhancements for Communication Refinement. In Proc. of DATE, Feb. 2003.

[DSW+03] M. Dziri, F. Samet, F. Wagner, W. Cesario, and A. Jerraya. Combining Architecture Ex-
ploration and a Path to Implementation to Build a Complete SoC Design Flow from System
Specification to RTL. In Proc. of ASP-DAC, Jan. 2003.

[GDPG01] Andreas Gerstlauer, Rainer Doemer, Junyu Peng, and Daniel Gajski. System Design: A
Practical Guide With SpecC. Kluwer Academic Publishers, 2001.

[GYG03] A. Gerstlauer, H. Yu, and D. Gajski. RTOS Modeling for System Level Design. In Proc. of
DATE, Feb. 2003.

[HPSV03] F. Herrera, H. Posadas, P. Sanchez, and E. Villar. Systematic Embedded Software Generation
from SystemC. In Proc. of DATE, Feb. 2003.

[LPC04] R Le Moigne, O. Pasquier, and J-P. Calvez. A Generic RTOS Model for Real-time Systems
Simulation with SystemC. In Proc. of DATE, Feb. 2004.

[Mas02] Anthony Massa. Embedded Software Development with eCos. Prentice Hall, 2002.

[MPSV03] Trevor Meyerowitz, Claudio Pinello, and Alberto Sangiovanni-Vincentelli. A Tool for De-
scribing and Evaluating Hierarchical Real-Time Bus Scheduling Policies. In Proc. of DAC,
Jun. 2003.

[NG04] A. Nacul and T. Givargis. Code Partitioning for Synthesis of Embedded Applications with
Phantom. In Proc. of ICCAD, Nov. 2004.

[PRSV98] Roberto Passerone, James Rowson, and Alberto Sangiovanni-Vincentelli. Automatic Syn-
thesis of Interfaces between Incompatible Protocols. In Proc. of DAC, Jun. 1998.

[Thea] The Embedded Linux Consortium. http://www.embedded-linux.org.

[Theb] The Open SystemC Initiative. http://www.systemc.org.

11

[TI04] The Open Group and IEEE. IEEE Std 1003.1, 2004. Available online at
http://www.opengroup.org/onlinepubs/009695399/toc.htm.

[Win] Wind River Inc. http://www.windriver.com.

12

