

A Deterministic Globally Asynchronous Locally Synchronous
Microprocessor Architecture

Matthew Heath and Ian Harris

University of Massachusetts Amherst
{mheath, harris}@ecs.umass.edu

Abstract

This paper describes a novel globally-asynchronous
locally-synchronous (GALS) architecture called
“synchro-tokens” which exhibits deterministic state and
output sequences. This deterministic behavior facilitates
industrial validation, debug, and test methodologies
which rely on predictable and repeatable system
behavior. The synchro-tokens architecture uses token
rings for handshaking and self-timed FIFOs for pipelined
interconnect. Local counters keep track of how long a
token is held and the elapsed time since it was last
released to ignore early tokens and to stop the local clock
to wait for late tokens. Because no synchronizers are
used, there is zero probability of failure due to
metastability. Architectural parameters, such as FIFO
sizes, counter values, and clock frequencies, offer a great
deal of flexibility for tuning the system performance.

1. Introduction

1.1. Motivation for GALS

Clock generation and distribution on microprocessors
is becoming more challenging with advances in VLSI
technology. Higher levels of integration and deeper
pipelines on larger dies increase the total clock load.
More clock buffers are required, increasing the clock
distribution latency. These buffers introduce more skew
due to reduced manufacturing control of shrinking
geometries. Higher frequencies give rise to more power
supply fluctuations and more cross-coupling, and this
noise increases clock jitter. All of these effects lead to
more clock power. Furthermore, as skew and jitter
become a higher percentage of shorter clock cycle times,
the fraction of time available for logic evaluation is
reduced.

Many recent microprocessor designs address the clock
design challenge by relaxing the amount of skew which is
tolerable in early stages of the clock distribution and

compensating for the variation at each lower-level clock
domain. The Alpha processor [1] strives for zero skew
with DLL-based phase locking, while the Pentium 4
processor [2] uses a programmed nonzero inter-domain
skew. In both cases, traditional timing analysis is used to
verify that setup and hold time requirements on inter-
domain signals are satisfied.

These methodologies are similar to the globally-
asynchronous locally-synchronous (GALS) design style,
in which the system is partitioned into synchronous
blocks (SBs) of logic which communicate with each other
asynchronously. The key difference is that true GALS
architectures allow arbitrary skew between clock domains
and use some form of synchronization for inter-block
communication. Unfortunately, these synchronization
strategies are often a source of nondeterminism, which
greatly complicates validation, debug, and test.

1.2. Nondeterminism in GALS Systems

A system is nondeterministic if there are multiple
possible sequences of states and outputs with which it
may correctly respond to a given input sequence.
Nondeterminism is not necessarily indicative of a faulty
design, since an implementation is considered correct as
long as it conforms to its higher-level specification.

Synchronous systems are typically designed to be
deterministic. The next state and outputs are uniquely
determined by the current state and inputs. All signals
which are sampled by clocks are designed through worst-
case timing analysis to be stable at their final logic value
long enough before the clock edge that the sampling state
element’s setup time is satisfied.

Similarly, sampling the states and outputs of a SB in a
GALS system with its local clock will produce
deterministic state and output sequences in response to a
given input sequence to the SB. In most GALS
methodologies, however, asynchronous inputs to SBs are
captured by synchronizers, so that the relative order of
input transitions and clock transitions is unpredictable.
This makes the input sequence, and therefore the state
and output sequences, of the SB nondeterministic. For

one SB input signal and one clock edge, there are two
possible next states. In a GALS system with hundreds of
asynchronous bits switching for thousands of clock
cycles, the number of possible state sequences
combinatorially explodes. As a result, the system output
sequence may differ when the input sequence is applied
to multiple copies of the same design or when the input
sequence is repeatedly applied to a single instance of the
design.

I1: ADD R3, R1, R2
I2: MUL R5, R3, R4
I3: SUB R4, R2, R1
I4: MOV R6, R3
I5: ADD R4, R3, R2

The architectural spec for the processor defines a

partial order of register read and write events to ensure
the avoidance data hazards. These include RAW hazards
between I1 and {I2, I4, I5}, a WAR hazard between I2
and I3; and a WAW hazard between I3 and I5. The
architectural spec does not impose any constraints on the
relative order of independent events, such as accesses to
different registers.

Metastability, the condition where the output of a
synchronizer is neither 0 nor 1 for a period of time, is a
special case of nondeterminism which occurs when the
time separation of the signal and clock transitions is very
small [3]. While metastability is also undesirable, the
lack of it does not imply deterministic behavior. Tables 1, 2, and 3 show three possible traces of the

execution of the above instructions generated by varying
clock phases and handshake wire delays. Each column
corresponds to an instruction, and each row corresponds
to a cycle of the register file / scoreboard SB clock. Table
entries indicate the clock cycle on which each instruction
stage completes.

A deterministic GALS system must handle the
synchronization of inter-SB signals such that the input
sequence presented to the SB is unique despite variation
in clock skew, clock frequencies, and interconnect delays.
However, since the skew between clocks in different SBs
is uncontrolled, the total state of a deterministic GALS
system at any instant in time is not unique, even though
the sequences in each SB are unique.

Table 1 is used as a baseline against which other traces
may be compared.

Table 2 shows the effect of increased delay on the
asynchronous handshake wire which is asserted by the
ALU executing instruction I3 to indicate to the
scoreboard that the result is ready. I3’s execution and
write stages are postponed by 1 clock cycle, and the
WAW hazard between I3 and I5 postpones I5’s entire
execution sequence by 1 clock cycle. The cycles during
which I2 and I4 write are unchanged. Likewise, the
relative order in which all instructions write is unchanged.

1.3. Nondeterminism in a Processor

Nondeterminism can be observed in a GALS
implementation of an out-of-order processor core which
was implemented in Verilog, an environment which is
able to simulate concurrency and nonzero delays. The
processor core consists of a register file and four ALUs.
Each ALU can perform the functions add, subtract,
multiply, and move (copy). The register file has two read
ports which are used simultaneously by a single ALU to
read its operands. An arbiter assigns a static priority to
each ALU and grants access to the register file’s read
ports to the ALU with the highest priority request. The
register file also has one write port, managed by a
separate arbiter, through which an ALU writes its result.
Out-of-order execution is supported with a scoreboard,
which controls four of the stages of an instruction’s life
cycle: issue, read operands, execute, and write result. The
system consists of five synchronous blocks: one for each
ALU and one for the register file and scoreboard. While
this partitioning may not be practical in terms of area or
performance, it allows nondeterminism to be seen easily
at the behavioral level. All five clocks in the system run
at the same frequency, although this is not generally true
of GALS systems.

Table 3 shows the effect of changing the clock phase
of the ALU executing instruction I4. Because less time is
spent on the synchronization of the handshakes, I4
finishes execution 1 scoreboard-clock cycle early. Since
I4’s ALU is no longer competing with I2’s higher priority
ALU for access to the write bus, the arbiter allows I4’s
write to occur before I2’s, changing the sequence of
writes.

The final state of the register file following the
execution of all instructions is identical in all three
scenarios. The out-of-order processor thus conforms to
the architectural spec by correctly executing the
instruction sequences, even though its intermediate
sequences and cycle-by-cycle behavior vary due to clock
skew and wire delays.

Consider the following in-order instruction sequence.
Instructions are named I1 - I5. Registers are named R1 -
R7. The destination register is always the first argument
in the list, followed by one or two source registers.

1.4. Impact on Validation, Debug and Test

Nondeterminism makes simulation-based validation
more expensive. The simulator must choose among
multiple possible next state and output values.
Simulation must be repeated for many different choices to
ensure that the design conforms to the spec regardless of
the nondeterministic outcome. Trying to avoid this cost
by validating only individual SBs risks missing bugs
associated with complex system-level behaviors.

Nondeterminism thwarts the use of test techniques
which perform cycle-by-cycle comparisons of observed
and expected response sequences, such as the clock
gating validation in [4]. Comparing Table 2 with Table 1,
for example, results in a mismatch in the state of I3’s
destination register in cycle 8. If the test response
analyzer adapts to the difference by postponing the entire
expectation by one clock cycle, the writes of I2 and I4,
which occur on schedule, will cause mismatches. If no
adjustment is made, the write of I5 will cause another
mismatch. In either case, it may not be clear whether the
mismatch is the result of excessive delay on an
asynchronous signal (which is acceptable) or a critical
path violation within a SB (which could cause an
unacceptable deviation from the spec for some other
instruction sequence).

Observing the system only after the test reaches a
deterministic point, e.g. after all active instructions have
completed, may provide insufficient observability. Only
architectural state, such as the contents of the register file,
would be eligible for observation since other internal state
is not included in the spec. Observation points may be
few and temporally distant, making root-cause analysis
very difficult.

Event-based testers [5] can handle a limited amount of
nondeterminism by processing signal transitions on pins
which need not be mapped to specific clock cycles.
However, this approach is not effective for scan tests
which shift out internal state captured on a specific clock
cycle. It is also inapplicable to tests in which the
sequence of events is changed as in Table 3, where the
state of the register file after cycle 11 is one which is
never reached by the expectation in Table 1.

Nondeterminism precludes the use of many powerful
silicon debug techniques. Waveform acquisition using
optical probing relies on a deterministic response to lock
onto the trigger transition each time through the loop.
Shmoo plotting uses output sequence mismatches to
identify the boundaries of acceptable operating regions.
Much of the debug of the McKinley processor [6] is
performed using a tester which stays synchronized with
the internal state of the chip rather than a system platform
in which asynchronous system events such as memory
refreshes and interrupts cause nondeterministic behavior.

Cycle I1 I2 I3 I4 I5
1 Issue
2 Read Issue
3 Issue
4 Read Issue
5 Exec
6 Write
7 Read Exec
8 Write Read
9 Issue

10 Read
11 Exec Exec
12 Write
13 Write Exec
14 Write
Table 1. Baseline trace of instruction execution.

Cycle I1 I2 I3 I4 I5

1 Issue
2 Read Issue
3 Issue
4 Read Issue
5 Exec
6 Write
7 Read
8 Exec Read
9 Write

10 Issue
11 Exec Exec Read
12 Write
13 Write
14 Exec
15 Write

Table 2. Slower handshakes with I3’s ALU.

Cycle I1 I2 I3 I4 I5
1 Issue
2 Read Issue
3 Issue
4 Read Issue
5 Exec
6 Write
7 Read Exec
8 Write Read
9 Issue

10 Exec Read
11 Exec Write
12 Write
13 Exec
14 Write

Table 3. Clock phase difference in I4’s ALU.

There is a high simulation and test application time
cost associated with generating all possible correct
responses for each test pattern. Storage of those
responses on-chip for BIST costs precious die area, while
off-chip storage requires either a large, expensive, high-
speed memory or a further increase in test time for
repeated memory reloads [7]. If real faults map to an
alternative valid output sequence, there may be a decrease
in fault coverage and/or an increase in escape rate.

1.5. A Deterministic GALS Architecture

This paper proposes a GALS architecture called
“synchro-tokens” which eliminates nondeterminism by
adding wrapper logic around the synchronous blocks to
transform the asynchronous inter-block signals into
deterministic input sequences. Tokens are passed
between each pair of communicating synchronous blocks.
Early-arriving tokens are ignored until a predetermined
cycle of the local clock, and the clock stops to wait for
late tokens. The architecture has no synchronizers and
thus zero probability of metastability.

2. Previous Work

A variety of GALS architectures have been proposed
which use synchronizers, stoppable clocks, or both to
sample asynchronous signals with a clock.

SBs whose inputs are sampled by flip-flops with
internal metastability detectors and which stop the local
clock until the metastability resolves itself have been
proposed [8]. Since the metastability can persist for an
unbounded amount of time, some schemes don’t update a
state which remains metastable after a certain period of
time [9]. Some methodologies only synchronize data
request lines and ensure through careful design that
bundled data is valid before the request is asserted. They
arbitrate between incoming requests and the local clock in
a variety of ways: using the clock as a non-persistent
arbiter input [10], generating a clock disable signal [11],
or inserting an arbiter directly into the ring oscillator [12]
[13]. However, all of these cases are nondeterministic
because whether an input transition occurs before or after
a particular local clock edge is unpredictable.

GALS architectures which achieve deterministic
behavior do so by imposing constraints on their
environments. Some require that incoming requests occur
with such low frequency that all local processing
completes and the local clock is stopped before the next
request arrives [14]. Others require that both SBs receive
different fanout branches of the same global clock. Data
is added to and removed from the FIFO at the same rate
so that the FIFO never becomes empty or full [15]. These
methodologies are not applicable to blocks with high I/O

bandwidths and sporadic workloads, such as a specialized
execution unit in a microprocessor.

Chapiro [16] described an escapement organization
which uses handshaking signals following a known
protocol to restart a stopped clock. Unlike data signals
which may or may not transition before they are ready to
be sampled again, all of the information in the
handshaking signal is contained in its transition time
rather than its logic level. Consequently, the
asynchronous signal does not require synchronization and
thus poses no risk of metastability.

A token ring communication protocol known as FDDI
[17] includes counters at each node which keep track of
the length of time the token has been held and the length
of time since the token was last released.

3. Synchro-Tokens System Architecture

As shown in , a synchro-tokens system
consists of a collection of SBs surrounded by wrapper
logic and connected with asynchronous communication
channels and token rings. The wrapper logic, shown in

, consists of token ring nodes, asynchronous
interfaces, and a stoppable clock. One or more SBs are
designated as I/O SBs and are synchronized to and
communicate with the environment (a board or a tester)
without any intervening wrapper logic.

Figure 1

Figure 2

The asynchronous communication channels transport
data between pairs of synchronous blocks. These
channels are optionally pipelined with self-timed FIFOs
to improve performance and/or to avoid the need for
wave pipelining [18]. At each end of a channel is an
asynchronous interface; this piece of wrapper logic
converts between synchronous valid bits and pulsed
request and acknowledge handshakes. Data is transmitted
using a bundled data signaling convention [19].

Each pair of communicating SBs has a token ring with
a node in each SB’s wrapper logic. A single token ring
regulates the operation of all asynchronous
communication channels in both directions between the
two SBs. An asynchronous interface is enabled only
while the associated token ring node in its SB is holding
the token. The communication channel is designed such
that the propagation delay of the token is no faster than
that of the data. This scheme effectively synchronizes the
data to the clock of SB whose interface is enabled. It
prevents a transmitting SB from adding data to an empty
channel and producing a request which reaches the
receiver on a nondeterministic cycle of its local clock. It
also prevents a receiving SB from removing data from a
full channel and producing an acknowledge which
reaches the transmitter on a nondeterministic cycle of its
local clock. An n-stage self-timed FIFO in the channel

allows up to n words of data to be exchanged per token
cycle.

Async Ifc

Self-
Timed
FIFOs

Synchronous Block (SB)

Local Clock Generator

Token
Ring

N
ode

A
sync Ifc

NodeAsync Ifc’s

N
ode

A
sync Ifc

NodeAsync Ifc’s

Node

Node

Async Ifc

En

Clk

System
 Inputs &

 O
utputs

Figure 1. Synchro-tokens system architecture.

To
ke

nI
n

To
ke

nO
ut

Clk

SBclken

Va
lid

Fu
ll

R
eq A
ck

D
at

a
D

at
a

Node

Synchronous Block

Output
FIFO

Token
Ring

FclkenFclken

Synchronous Interface

Asynchronous Interface

Clk

Stoppable Clock

Node
SBclken

Token
Ring

R
eq A
ck

D
at

a

Input
FIFO

Em
pt

y

D
at

a

FIFO
Interfaces

Clk

Fclken

Figure 2. Wrapper logic:

Nodes, FIFO interfaces, and a stoppable clock.

One of the two connections which form a token ring
must be inverting so that there is an odd number of
inversions around the ring; this characteristic of all
handshaking loops is needed for sustained oscillation. In
the synchro-tokens methodology, the token rings use
transition signaling in a two-phase handshaking protocol.

The node is a synchronous state machine clocked by
the SB’s stoppable clock, the frequency of which can be
digitally controlled with either variable delay inverters or
a clock divider circuit. The node connects to the token
ring through the TokenIn and TokenOut signals. The
node produces a FIFO clock enable, Fclken, for its
associated channels which gates a branch of the stoppable
clock before it reaches the asynchronous interface. The
node also generates an enable for the stoppable clock
itself, SBclken; the enables from all nodes in the SB are
ANDed together so that the clock stops when any node
de-asserts its SBclken.

Each node contains a pair of decrementing counters,
each of which is parallel loadable from a dedicated
register, which may in turn be downloadable from an on-
die fuse array. The “hold counter” and register control
how long the node holds the token before passing it to the
other node on the token ring. The “recycle counter” and
register control how long after passing the token to the
other node it expects to get the token back.

When the incoming token has arrived and the recycle
counter reaches zero, the interfaces of the node’s
associated asynchronous interfaces are enabled. The hold
counter decrements by one for each local clock cycle.
When the hold counter reaches zero, the token is passed
and the channel interfaces are disabled. The recycle
counter then decrements by one for each local clock
cycle. During this recycle time, local processing
continues and access is granted to any other
communication channel whose associated node is holding
its ring’s token. If the token has not returned by the time
the recycle counter reaches zero, the clock to the entire
SB is synchronously stopped. When the late token
eventually returns, the clock is asynchronously restarted.
This scheme ensures that SB input data is received on a
deterministic local clock cycle.

4. Results

Token rings and nodes were added to the GALS out-
of-order processor. The timing changes which induced
nondeterministic behavior in the traces of the instruction
sequence execution were applied to the synchro-tokens
system. As expected, the timing changes did not affect
the trace, implying deterministic behavior in the system.

5. Conclusions

A novel methodology for the design of globally-
asynchronous, locally-synchronous systems called
“synchro-tokens” has been presented. Such systems are
deterministic, a property which facilitates validation,
debug, and test. This deterministic behavior has been
demonstrated with an out-of-order processor core
implemented in Verilog.

Much work remains before the feasibility of the
synchro-tokens architecture can be demonstrated. A
larger system with bigger and more SBs will enable
studies of the area and performance impact of the
synchro-tokens architecture. A schematic implementation
will enable a study of the critical paths and a more
detailed clock design. Development of validation, debug,
and test methodologies which are compatible with
existing synchronous tools and testers is also needed.

6. References

[1] T. Xanthopoulos, D. Bailey, A. Gangwar, M.
Gowan, A. Jain, and B. Prewitt. “The Design and
Analysis of the Clock Distribution Network for a 1.2 GHz
Alpha Microprocessor”. 2001 IEEE International Solid-
State Circuits Conference, pp. 402-403.
[2] N. Kurd, J. Barkatullah, R. Dizon, T. Fletcher, and
P. Madland. “A Multigigahertz Clocking Scheme for the
Pentium 4 Microprocessor”. IEEE Journal of Solid-State
Circuits, Vol. 36, No. 11, Nov. 2001, pp 1647-1653.
[3] M. Pechoucek. “Anomalous Response Times of
Input Synchronizers”. IEEE Transactions on Computers,
Vol. C-25, No. 2, February 1976, pp. 133-139.
[4] B. Bentley. “Validating the Intel Pentium 4
Processor”. Proceedings of the 2001 Design Automation
Conference, pp. 244-248.
[5] J. Katz and R. Rajsuman. “A New Paradigm in Test
for the Next Millennium”. Proceedings of the 2000
International Test Conference, pp 468-476.
[6] D. Josephson, S. Poehlman, and V. Govan. “Debug
Methodology for the McKinley Processor”. Proceedings
of the 2001 International Test Conference, pp 451-460.
[7] Y. Zorian, E. Marinissen, and S. Dey. “Testing
Embedded-Core Based System Chips”. Proceedings of
the 1998 International Test Conference, pp 130-143.
[8] F. Rosenberger, C. Molnar, T. Chaney, and T.-P.
Fang. “Q-Modules: Internally-Clocked Delay Insensitive
Modules”. IEEE Transactions on Computers, Vol. 37,
No. 9, September 1988, pp. 1005-1018.
[9] W. S. VanScheik and R. F. Tinder. “High Speed
Externally Asynchronous / Internally Clocked Systems”.
IEEE Transactions on Computers, Vol. 46, No. 7, July
1997, pp. 824-829.

[10] S. Kim and R. Sridhar. “Hierarchical Synchro-
nization Scheme Using Self-Timed Mesochronous
Interconnections”. 1997 IEEE International Symposium
on Circuits and Systems, pp. 1824-1827.
[11] W. Lim. “Design Methodology for Stoppable
Clock Systems”. IEE Proceedings, Vol. 133, Part E, No.
1, January 1986, pp 65-69.
[12] K. Yun and A. Dooply. “Pausible Clocking-Based
Heterogeneous Systems”. IEEE Transactions on VLSI
Systems, Vol. 7, No. 4, December 1999, pp. 482-488.
[13] J. Muttersbach, T. Villiger, and W. Fichtner.
“Practical Design of Globally-Asynchronous Locally-
Synchronous Systems”. 6th International Symposium on
Advanced Research in Asynchronous Circuits and
Systems (ASYNC 2000), pp. 52-59.
[14] P. Nilsson and M. Torkelson. “A Monolithic
Digital Clock-Generator for On-Chip Clocking of Custom
DSP’s”. IEEE Journal of Solid-State Circuits, Vol. 31,
No. 5, May 1996, pp. 700-706.
[15] M. Greenstreet. “Implementing a STARI Chip”.
Proceedings of the 1995 IEEE International Conference
on Computer Design, pp. 38-43.
[16] D. Chapiro. “Globally-Asynchronous Locally-
Synchronous Systems”. PhD Thesis, Stanford University,
Report No. STAN-CS-84-1026, Oct. 1984.
[17] F. Ross. “FDDI - a Tutorial”. IEEE
Communications Magazine, Vol. 24, No. 5, May 1986, pp
10 - 17.
[18] W. Burleson, M. Ciesielski, F. Klass, and W. Liu.
“Wave-pipelining: a tutorial and research survey”. IEEE
Transactions on VLSI, Vol. 6, No. 3, September 1998, pp
464-474.
[19] S. Hauck. “Asynchronous Design Methodologies:
An Overview”. Proceedings of the IEEE, Vol. 83, No. 1,
January 1995, pp. 69-93.
[20] D. Bhavsar, D. Akeson, M. Gowan, and D. Jackson.
“Testability Access of the High Speed Test Features in
the Alpha 21264 Microprocessor”. Proceedings of the
1998 International Test Conference, pp. 487-495.

	Introduction
	Motivation for GALS
	Nondeterminism in GALS Systems
	Nondeterminism in a Processor
	Impact on Validation, Debug and Test
	A Deterministic GALS Architecture

	Previous Work
	Synchro-Tokens System Architecture
	Results
	Conclusions
	References

