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Abstract 
 

This paper describes a novel globally-asynchronous 
locally-synchronous (GALS) architecture called 
“synchro-tokens” which exhibits deterministic state and 
output sequences.  This deterministic behavior facilitates 
industrial validation, debug, and test methodologies 
which rely on predictable and repeatable system 
behavior.  The synchro-tokens architecture uses token 
rings for handshaking and self-timed FIFOs for pipelined 
interconnect.  Local counters keep track of how long a 
token is held and the elapsed time since it was last 
released to ignore early tokens and to stop the local clock 
to wait for late tokens.  Because no synchronizers are 
used, there is zero probability of failure due to 
metastability.  Architectural parameters, such as FIFO 
sizes, counter values, and clock frequencies, offer a great 
deal of flexibility for tuning the system performance. 

1. Introduction 

1.1. Motivation for GALS 

Clock generation and distribution on microprocessors 
is becoming more challenging with advances in VLSI 
technology.  Higher levels of integration and deeper 
pipelines on larger dies increase the total clock load.  
More clock buffers are required, increasing the clock 
distribution latency.  These buffers introduce more skew 
due to reduced manufacturing control of shrinking 
geometries.  Higher frequencies give rise to more power 
supply fluctuations and more cross-coupling, and this 
noise increases clock jitter.  All of these effects lead to 
more clock power.  Furthermore, as skew and jitter 
become a higher percentage of shorter clock cycle times, 
the fraction of time available for logic evaluation is 
reduced. 

Many recent microprocessor designs address the clock 
design challenge by relaxing the amount of skew which is 
tolerable in early stages of the clock distribution and 

compensating for the variation at each lower-level clock 
domain.  The Alpha processor [1] strives for zero skew 
with DLL-based phase locking, while the Pentium 4 
processor [2] uses a programmed nonzero inter-domain 
skew.  In both cases, traditional timing analysis is used to 
verify that setup and hold time requirements on inter-
domain signals are satisfied. 

These methodologies are similar to the globally-
asynchronous locally-synchronous (GALS) design style, 
in which the system is partitioned into synchronous 
blocks (SBs) of logic which communicate with each other 
asynchronously.  The key difference is that true GALS 
architectures allow arbitrary skew between clock domains 
and use some form of synchronization for inter-block 
communication.  Unfortunately, these synchronization 
strategies are often a source of nondeterminism, which 
greatly complicates validation, debug, and test. 

1.2. Nondeterminism in GALS Systems 

A system is nondeterministic if there are multiple 
possible sequences of states and outputs with which it 
may correctly respond to a given input sequence.  
Nondeterminism is not necessarily indicative of a faulty 
design, since an implementation is considered correct as 
long as it conforms to its higher-level specification. 

Synchronous systems are typically designed to be 
deterministic.  The next state and outputs are uniquely 
determined by the current state and inputs.  All signals 
which are sampled by clocks are designed through worst-
case timing analysis to be stable at their final logic value 
long enough before the clock edge that the sampling state 
element’s setup time is satisfied. 

Similarly, sampling the states and outputs of a SB in a 
GALS system with its local clock will produce 
deterministic state and output sequences in response to a 
given input sequence to the SB.  In most GALS 
methodologies, however, asynchronous inputs to SBs are 
captured by synchronizers, so that the relative order of 
input transitions and clock transitions is unpredictable.  
This makes the input sequence, and therefore the state 
and output sequences, of the SB nondeterministic.  For 



 

one SB input signal and one clock edge, there are two 
possible next states.  In a GALS system with hundreds of 
asynchronous bits switching for thousands of clock 
cycles, the number of possible state sequences 
combinatorially explodes.  As a result, the system output 
sequence may differ when the input sequence is applied 
to multiple copies of the same design or when the input 
sequence is repeatedly applied to a single instance of the 
design. 

I1: ADD R3, R1, R2 
I2: MUL R5, R3, R4 
I3: SUB R4, R2, R1 
I4: MOV R6, R3 
I5: ADD R4, R3, R2 

 
The architectural spec for the processor defines a 

partial order of register read and write events to ensure 
the avoidance data hazards.  These include RAW hazards 
between I1 and {I2, I4, I5}, a WAR hazard between I2 
and I3; and a WAW hazard between I3 and I5.  The 
architectural spec does not impose any constraints on the 
relative order of independent events, such as accesses to 
different registers. 

Metastability, the condition where the output of a 
synchronizer is neither 0 nor 1 for a period of time, is a 
special case of nondeterminism which occurs when the 
time separation of the signal and clock transitions is very 
small [3].  While metastability is also undesirable, the 
lack of it does not imply deterministic behavior. Tables 1, 2, and 3 show three possible traces of the 

execution of the above instructions generated by varying 
clock phases and handshake wire delays.  Each column 
corresponds to an instruction, and each row corresponds 
to a cycle of the register file / scoreboard SB clock.  Table 
entries indicate the clock cycle on which each instruction 
stage completes. 

A deterministic GALS system must handle the 
synchronization of inter-SB signals such that the input 
sequence presented to the SB is unique despite variation 
in clock skew, clock frequencies, and interconnect delays.  
However, since the skew between clocks in different SBs 
is uncontrolled, the total state of a deterministic GALS 
system at any instant in time is not unique, even though 
the sequences in each SB are unique. 

Table 1 is used as a baseline against which other traces 
may be compared. 

Table 2 shows the effect of increased delay on the 
asynchronous handshake wire which is asserted by the 
ALU executing instruction I3 to indicate to the 
scoreboard that the result is ready.  I3’s execution and 
write stages are postponed by 1 clock cycle, and the 
WAW hazard between I3 and I5 postpones I5’s entire 
execution sequence by 1 clock cycle.  The cycles during 
which I2 and I4 write are unchanged.  Likewise, the 
relative order in which all instructions write is unchanged. 

1.3. Nondeterminism in a Processor 

Nondeterminism can be observed in a GALS 
implementation of an out-of-order processor core which 
was implemented in Verilog, an environment which is 
able to simulate concurrency and nonzero delays.  The 
processor core consists of a register file and four ALUs.  
Each ALU can perform the functions add, subtract, 
multiply, and move (copy).  The register file has two read 
ports which are used simultaneously by a single ALU to 
read its operands.  An arbiter assigns a static priority to 
each ALU and grants access to the register file’s read 
ports to the ALU with the highest priority request.  The 
register file also has one write port, managed by a 
separate arbiter, through which an ALU writes its result.  
Out-of-order execution is supported with a scoreboard, 
which controls four of the stages of an instruction’s life 
cycle: issue, read operands, execute, and write result.  The 
system consists of five synchronous blocks:  one for each 
ALU and one for the register file and scoreboard.  While 
this partitioning may not be practical in terms of area or 
performance, it allows nondeterminism to be seen easily 
at the behavioral level.  All five clocks in the system run 
at the same frequency, although this is not generally true 
of GALS systems. 

Table 3 shows the effect of changing the clock phase 
of the ALU executing instruction I4.  Because less time is 
spent on the synchronization of the handshakes, I4 
finishes execution 1 scoreboard-clock cycle early.  Since 
I4’s ALU is no longer competing with I2’s higher priority 
ALU for access to the write bus, the arbiter allows I4’s 
write to occur before I2’s, changing the sequence of 
writes. 

The final state of the register file following the 
execution of all instructions is identical in all three 
scenarios.  The out-of-order processor thus conforms to 
the architectural spec by correctly executing the 
instruction sequences, even though its intermediate 
sequences and cycle-by-cycle behavior vary due to clock 
skew and wire delays. 

Consider the following in-order instruction sequence.  
Instructions are named I1 - I5.  Registers are named R1 - 
R7.  The destination register is always the first argument 
in the list, followed by one or two source registers. 
 

 



 

1.4. Impact on Validation, Debug and Test 

Nondeterminism makes simulation-based validation 
more expensive.  The simulator must choose among 
multiple possible next state and output values.  
Simulation must be repeated for many different choices to 
ensure that the design conforms to the spec regardless of 
the nondeterministic outcome.  Trying to avoid this cost 
by validating only individual SBs risks missing bugs 
associated with complex system-level behaviors. 

Nondeterminism thwarts the use of test techniques 
which perform cycle-by-cycle comparisons of observed 
and expected response sequences, such as the clock 
gating validation in [4].  Comparing Table 2 with Table 1, 
for example, results in a mismatch in the state of I3’s 
destination register in cycle 8.  If the test response 
analyzer adapts to the difference by postponing the entire 
expectation by one clock cycle, the writes of I2 and I4, 
which occur on schedule, will cause mismatches.  If no 
adjustment is made, the write of I5 will cause another 
mismatch.  In either case, it may not be clear whether the 
mismatch is the result of excessive delay on an 
asynchronous signal (which is acceptable) or a critical 
path violation within a SB (which could cause an 
unacceptable deviation from the spec for some other 
instruction sequence). 

Observing the system only after the test reaches a 
deterministic point, e.g. after all active instructions have 
completed, may provide insufficient observability.  Only 
architectural state, such as the contents of the register file, 
would be eligible for observation since other internal state 
is not included in the spec.  Observation points may be 
few and temporally distant, making root-cause analysis 
very difficult. 

Event-based testers [5] can handle a limited amount of 
nondeterminism by processing signal transitions on pins 
which need not be mapped to specific clock cycles.  
However, this approach is not effective for scan tests 
which shift out internal state captured on a specific clock 
cycle.  It is also inapplicable to tests in which the 
sequence of events is changed as in Table 3, where the 
state of the register file after cycle 11 is one which is 
never reached by the expectation in Table 1. 

Nondeterminism precludes the use of many powerful 
silicon debug techniques.  Waveform acquisition using 
optical probing relies on a deterministic response to lock 
onto the trigger transition each time through the loop.  
Shmoo plotting uses output sequence mismatches to 
identify the boundaries of acceptable operating regions.  
Much of the debug of the McKinley processor [6] is 
performed using a tester which stays synchronized with 
the internal state of the chip rather than a system platform 
in which asynchronous system events such as memory 
refreshes and interrupts cause nondeterministic behavior. 

 

Cycle I1 I2 I3 I4 I5 
1 Issue     
2 Read Issue    
3   Issue   
4   Read Issue  
5 Exec     
6 Write     
7  Read Exec   
8   Write Read  
9     Issue 

10     Read 
11  Exec  Exec  
12  Write    
13    Write Exec 
14     Write 
Table 1.  Baseline trace of instruction execution. 

 
Cycle I1 I2 I3 I4 I5 

1 Issue     
2 Read Issue    
3   Issue   
4   Read Issue  
5 Exec     
6 Write     
7  Read    
8   Exec Read  
9   Write   

10     Issue 
11  Exec  Exec Read 
12  Write    
13    Write  
14     Exec 
15     Write 

Table 2.  Slower handshakes with I3’s ALU. 
 

Cycle I1 I2 I3 I4 I5 
1 Issue     
2 Read Issue    
3   Issue   
4   Read Issue  
5 Exec     
6 Write     
7  Read Exec   
8   Write Read  
9     Issue 

10    Exec Read 
11  Exec  Write  
12  Write    
13     Exec 
14     Write 

Table 3.  Clock phase difference in I4’s ALU. 

 



 

There is a high simulation and test application time 
cost associated with generating all possible correct 
responses for each test pattern.  Storage of those 
responses on-chip for BIST costs precious die area, while 
off-chip storage requires either a large, expensive, high-
speed memory or a further increase in test time for 
repeated memory reloads [7].  If real faults map to an 
alternative valid output sequence, there may be a decrease 
in fault coverage and/or an increase in escape rate. 

1.5. A Deterministic GALS Architecture 

This paper proposes a GALS architecture called 
“synchro-tokens” which eliminates nondeterminism by 
adding wrapper logic around the synchronous blocks to 
transform the asynchronous inter-block signals into 
deterministic input sequences.  Tokens are passed 
between each pair of communicating synchronous blocks.  
Early-arriving tokens are ignored until a predetermined 
cycle of the local clock, and the clock stops to wait for 
late tokens.  The architecture has no synchronizers and 
thus zero probability of metastability. 

2. Previous Work 

A variety of GALS architectures have been proposed 
which use synchronizers, stoppable clocks, or both to 
sample asynchronous signals with a clock. 

SBs whose inputs are sampled by flip-flops with 
internal metastability detectors and which stop the local 
clock until the metastability resolves itself have been 
proposed [8].  Since the metastability can persist for an 
unbounded amount of time, some schemes don’t update a 
state which remains metastable after a certain period of 
time [9].  Some methodologies only synchronize data 
request lines and ensure through careful design that 
bundled data is valid before the request is asserted.  They 
arbitrate between incoming requests and the local clock in 
a variety of ways:  using the clock as a non-persistent 
arbiter input [10], generating a clock disable signal [11], 
or inserting an arbiter directly into the ring oscillator [12] 
[13].  However, all of these cases are nondeterministic 
because whether an input transition occurs before or after 
a particular local clock edge is unpredictable. 

GALS architectures which achieve deterministic 
behavior do so by imposing constraints on their 
environments.  Some require that incoming requests occur 
with such low frequency that all local processing 
completes and the local clock is stopped before the next 
request arrives [14].  Others require that both SBs receive 
different fanout branches of the same global clock.  Data 
is added to and removed from the FIFO at the same rate 
so that the FIFO never becomes empty or full [15].  These 
methodologies are not applicable to blocks with high I/O 

bandwidths and sporadic workloads, such as a specialized 
execution unit in a microprocessor. 

Chapiro [16] described an escapement organization 
which uses handshaking signals following a known 
protocol to restart a stopped clock.  Unlike data signals 
which may or may not transition before they are ready to 
be sampled again, all of the information in the 
handshaking signal is contained in its transition time 
rather than its logic level.  Consequently, the 
asynchronous signal does not require synchronization and 
thus poses no risk of metastability. 

A token ring communication protocol known as FDDI 
[17] includes counters at each node which keep track of 
the length of time the token has been held and the length 
of time since the token was last released. 

3. Synchro-Tokens System Architecture 

As shown in , a synchro-tokens system 
consists of a collection of SBs surrounded by wrapper 
logic and connected with asynchronous communication 
channels and token rings.  The wrapper logic, shown in 

, consists of token ring nodes, asynchronous 
interfaces, and a stoppable clock.  One or more SBs are 
designated as I/O SBs and are synchronized to and 
communicate with the environment (a board or a tester) 
without any intervening wrapper logic. 

Figure 1

Figure 2

The asynchronous communication channels transport 
data between pairs of synchronous blocks.  These 
channels are optionally pipelined with self-timed FIFOs 
to improve performance and/or to avoid the need for 
wave pipelining [18].  At each end of a channel is an 
asynchronous interface; this piece of wrapper logic 
converts between synchronous valid bits and pulsed 
request and acknowledge handshakes.  Data is transmitted 
using a bundled data signaling convention [19]. 

Each pair of communicating SBs has a token ring with 
a node in each SB’s wrapper logic.  A single token ring 
regulates the operation of all asynchronous 
communication channels in both directions between the 
two SBs.  An asynchronous interface is enabled only 
while the associated token ring node in its SB is holding 
the token.  The communication channel is designed such 
that the propagation delay of the token is no faster than 
that of the data.  This scheme effectively synchronizes the 
data to the clock of SB whose interface is enabled.  It 
prevents a transmitting SB from adding data to an empty 
channel and producing a request which reaches the 
receiver on a nondeterministic cycle of its local clock.  It 
also prevents a receiving SB from removing data from a 
full channel and producing an acknowledge which 
reaches the transmitter on a nondeterministic cycle of its 
local clock.  An n-stage self-timed FIFO in the channel 

 



 

allows up to n words of data to be exchanged per token 
cycle. 
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Figure 1.  Synchro-tokens system architecture. 
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Figure 2.  Wrapper logic: 

Nodes, FIFO interfaces, and a stoppable clock. 

One of the two connections which form a token ring 
must be inverting so that there is an odd number of 
inversions around the ring; this characteristic of all 
handshaking loops is needed for sustained oscillation.  In 
the synchro-tokens methodology, the token rings use 
transition signaling in a two-phase handshaking protocol. 

The node is a synchronous state machine clocked by 
the SB’s stoppable clock, the frequency of which can be 
digitally controlled with either variable delay inverters or 
a clock divider circuit.  The node connects to the token 
ring through the TokenIn and TokenOut signals.  The 
node produces a FIFO clock enable, Fclken, for its 
associated channels which gates a branch of the stoppable 
clock before it reaches the asynchronous interface.  The 
node also generates an enable for the stoppable clock 
itself, SBclken; the enables from all nodes in the SB are 
ANDed together so that the clock stops when any node 
de-asserts its SBclken. 

Each node contains a pair of decrementing counters, 
each of which is parallel loadable from a dedicated 
register, which may in turn be downloadable from an on-
die fuse array.  The “hold counter” and register control 
how long the node holds the token before passing it to the 
other node on the token ring.  The “recycle counter” and 
register control how long after passing the token to the 
other node it expects to get the token back. 

When the incoming token has arrived and the recycle 
counter reaches zero, the interfaces of the node’s 
associated asynchronous interfaces are enabled.  The hold 
counter decrements by one for each local clock cycle.  
When the hold counter reaches zero, the token is passed 
and the channel interfaces are disabled.  The recycle 
counter then decrements by one for each local clock 
cycle.  During this recycle time, local processing 
continues and access is granted to any other 
communication channel whose associated node is holding 
its ring’s token.  If the token has not returned by the time 
the recycle counter reaches zero, the clock to the entire 
SB is synchronously stopped.  When the late token 
eventually returns, the clock is asynchronously restarted.  
This scheme ensures that SB input data is received on a 
deterministic local clock cycle. 

4. Results 

Token rings and nodes were added to the GALS out-
of-order processor.  The timing changes which induced 
nondeterministic behavior in the traces of the instruction 
sequence execution were applied to the synchro-tokens 
system.  As expected, the timing changes did not affect 
the trace, implying deterministic behavior in the system. 

 



 

 

5. Conclusions 

A novel methodology for the design of globally-
asynchronous, locally-synchronous systems called 
“synchro-tokens” has been presented.  Such systems are 
deterministic, a property which facilitates validation, 
debug, and test.  This deterministic behavior has been 
demonstrated with an out-of-order processor core 
implemented in Verilog. 

Much work remains before the feasibility of the 
synchro-tokens architecture can be demonstrated.  A 
larger system with bigger and more SBs will enable 
studies of the area and performance impact of the 
synchro-tokens architecture.  A schematic implementation 
will enable a study of the critical paths and a more 
detailed clock design.  Development of validation, debug, 
and test methodologies which are compatible with 
existing synchronous tools and testers is also needed. 
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