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Abstract

We study the marginal-MAP problem on graphical
models, and present a novel approximation method
based on direct approximation of the sum operation.
A primary difficulty of marginal-MAP problems lies in
the non-commutativity of the sum and max operations,
so that even in highly structured models, marginaliza-
tion may produce a densely connected graph over the
variables to be maximized, resulting in an intractable
potential function with exponential size. We propose a
chain decomposition approach for summing over the
marginalized variables, in which we produce a struc-
tured approximation to the MAP component of the
problem consisting of only pairwise potentials. We
show that this approach is equivalent to the maximiza-
tion of a specific variational free energy, and it pro-
vides an upper bound of the optimal probability. Finally,
experimental results demonstrate that our method per-
forms favorably compared to previous methods.

Introduction
Graphical models provide an explicit and compact repre-
sentation for probability distributions that exhibit factoriza-
tion structure. They are powerful tools for modeling uncer-
tainty in the field of artificial intelligence, computer vision,
bioinformatics, signal processing, and many others. Many
such applications can be reduced to basic probabilistic infer-
ence tasks; typical tasks include computing marginal prob-
abilities (sum-inference), finding the maximum a posteriori
(MAP) estimate (max-inference) and marginal-MAP infer-
ence (max-sum-inference).

The marginal-MAP problem first marginalizes over a sub-
set of the variables (sum operation), and then seeks the
MAP estimate for the rest of the model variables (max op-
eration). Marginal-MAP inference is NPPP -complete, and
harder than either max-inference or sum-inference (Park and
Darwiche 2004). Part of the difficulty of marginal-MAP in-
ference lies in the non-commutativity of the sum and the
max operations, which can prevent “efficient” elimination
orders; even for tree-structured graphical models, it can
be computationally intractable (Park and Darwiche 2004;
Koller and Friedman 2010).
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There has been relatively little work on approximat-
ing the marginal-MAP problem until recently. State-of-
the-art methods include sampling methods, search meth-
ods and message passing methods. Doucet, Godsill, and
Robert (2002) propose a simple Markov chain Monte Carlo
(MCMC) strategy for marginal-MAP estimates. Johansen,
Doucet, and Davy (2008) sample from a sequence of artifi-
cial distributions using a sequential Monte Carlo approach.
de Campos, Gámez, and Moral (1999) present a genetic
algorithm to perform marginal-MAP inference. Park and
Darwiche (2004) investigate belief propagation for the ap-
proximate sum-inference, and use local search for the ap-
proximate max-inference. Huang, Chavira, and Darwiche
(2006) propose a branch-and-bound search method for ex-
act marginal-MAP inference by computing the bounds on a
compiled arithmetic circuit representation. Dechter and Rish
(2003) propose a mini-bucket scheme for the marginal-MAP
problem by partitioning the potentials into groups during
elimination, and Meek and Wexler (2011) propose a related
approximate variable elimination scheme that directly ap-
proximates the results of each elimination with a product of
functions, bounding the error between the correct and ap-
proximate potentials. Recently, researchers have also stud-
ied marginal-MAP inference from the perspective of free en-
ergy maximization, and proposed message passing approxi-
mation algorithms. For example, Jiang, Rai, and Daumé III
(2011) propose a hybrid message passing algorithm moti-
vated by a Bethe-like free energy. Liu and Ihler (2011b)
provide a general variational framework for marginal MAP,
and derive several approximate inference algorithms based
on the Bethe and tree-reweighted approximations; the tree-
reweighted approximation provides an upper bound of the
optimal energy.

In this paper, we explore a two-step approximation meth-
ods for marginal-MAP inference, in which we construct an
explicit factorized approximation of the marginalized dis-
tribution using a form of approximate variable elimination,
producing a structured MAP problem that can be solved us-
ing a variety of existing methods, such as dual decomposi-
tion (Sontag, Globerson, and Jaakkola 2011). We use a novel
chain decomposition approach to construct the approximate
marginalization, and apply a Hölder inequality (Liu and Ih-
ler 2011a) to obtain bounds on the exact marginalization.
This also allows us to interpret our method in terms of an up-
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Figure 1: The illustration of the marginal-MAP problem. (a)
is the original graph, with a sum node (shaded) and the max
nodes (unshaded). (b) is the complete graph after summing
over the sum node.

per bounding variational free energy (Liu and Ihler 2011b).
We show in experiments that our approach provides bet-
ter bounds, and similar estimated solutions, to recently pro-
posed message passing approximations.

Overview of Marginal-MAP Inference
In this section, we briefly review the marginal-MAP prob-
lem on graphical models. We consider only pairwise Markov
random fields (MRFs) in this paper, so that a probability dis-
tribution p defined on a graph G can be defined as

p (x) =
1
Zψ

∏
(i,j)∈E

ψij
(
xi, xj

)
,

where E ⊂ V×V is the set of edges, and V = {1, 2, . . . , N}
is the set of nodes. It is often useful to express p(x)
in the overcomplete exponential family form, by defining
ψij
(
xi, xj

)
= exp

[
θij
(
xi, xj

) ]
, so that

p(x) = exp
( ∑

(i,j)∈E

θij
(
xi, xj

)
−A (θ)

)
,

where θ = {θij : (i, j) ∈ E}, and A (θ) = logZψ =
log
∑

x exp θ (x). As is common, we abuse notation slightly
to refer to θ and θij as both functions of x and as vectors de-
fined by the values of those functions.

Marginal-MAP inference seeks the MAP estimate for a
subset of the variables (“max” variables) by marginalizing
over the rest of the model variables (“sum” variables). The
nodes V on the graphical model are thus partitioned into
two sets: the sum nodes Vs and the max nodes Vm, with
V = {Vs,Vm}. The edges can be divided into three types:
sum↔sum (denoted Ess), max↔sum (Ems) and max↔max
(Emm). The marginal-MAP problem is represented as

p∗ = max
xm

∑
xs

p (xs,xm), (1)

where xs, xm are the variables corresponding to Vs, Vm.
Much of the difficulty of marginal-MAP inference lies in

the non-commutativity of the sum and the max operations.
That is to say, we must first sum over variables xs, and then
seek the MAP estimate for variables xm. For many models,
such as the simple tree in Figure 1, the summation operator
induces a dense, perhaps even complete graph over the max
nodes, which requires exponential complexity in the number
of max nodes to express.
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Figure 2: The illustration of the bigraph view of marginal-
MAP inference. (a) is the original graph, with the sum nodes
(shaded) and the max nodes (unshaded). (b) is the bipartite
graph of the sum nodes (right) and the max nodes (left). (c)
is the graph after summing over the sum nodes.
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Figure 3: An example of the subgraph Gf (left).

Bigraph View of Marginal-MAP
In this section, we represent the graphical model for
marginal-MAP inference by a bipartite graph, which will be
helpful during the subsequent exposition.

A bipartite graph (or bigraph) is a graph whose vertices
can be divided into two disjoint sets U and V such that every
edge connects a vertex in U to one in V (Bondy and Murty
2008). Let the edge set Emf = Ems be the edges of the
bigraph, and let the node set U = Vm. We then construct
“factors” f corresponding to the sum nodes, with each factor
representing a set of connected nodes in V; if there is an
edge between i ∈ Vm and j ∈ Vs in graph G, then in the
bigraph there is an edge between i ∈ U and the factor f ∈ V
with j ∈ f . In essence, this structure represents the factor
graph that would be induced by the elimination of the sum
nodes in G, and we refer to these factors as sum factors.
Figure 2 gives an illustration of the bipartite factor graph for
a model with three disconnected subgraphs of sum nodes,
along with the Markov random field induced by eliminating
the sum nodes.

Our approximation algorithm operates on each of the sum
factors independently; thus without loss of generality in the
following we consider only a subgraph Gf consisting of the
sum nodes Vfs in a single factor f , the max nodes Vfm con-
nected to f in the bigraph, and the edges in Efss and Efms.
This means that, when the nodes Vfs are eliminated, we
will induce a fully connected graph over the remaining max
nodes Vfm.

Figure 3 gives an example for a graph Gf corresponding
to a subgraph of Figure 2(a) with f = {9, 12}. The potential
on graph Gf is

ψf
(
xf
)

= ψf
(
xfs ,x

f
m

)
=

∏
(i,j)∈Ef

ss∪Ef
ms

ψij
(
xi, xj

)
. (2)

Chain Decomposition of Sum Factor
In this section, we introduce a transformation of the origi-
nal model G that will be used to construct our approximate
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Figure 4: The chain decomposition of graph Gf .

marginalization, and control its computational complexity.
We use the common semantics of variable splitting, or in-
troducing copies of variables that are constrained to take on
equal values, and re-parameterization, or allocating the func-
tions defined on those copies such that the overall distribu-
tion remains invariant, to define our transformation.

Consider ψf (xf ), which is a product of the pairwise po-
tentials on the edges of Gf . We represent ψf (xf ) as a prod-
uct of chain potentials, each of which is defined on a chain
between two nodes in Vfm. This re-representation is

ψf
(
xfs ,x

f
m

)
=

∏
(i,j)∈Ef

mm

ψ̃ij
(
xfs , xi, xj

)
, (3)

where Efmm denotes the set of edges between two nodes
{i, j} in Vfm, and ψ̃ij

(
xfs , xi, xj

)
denotes the potential de-

fined on the chain between nodes i and j. Eq. (2) and Eq. (3)
represent the same potential using different factorization
forms. To achieve this transformation, we first decompose
graph Gf into a set of chains, with their two ends being
max nodes. These chains should be a covering (Bondy and
Murty 2008) of the graph Gf . Then, we distribute the origi-
nal potentials of Gf to the potentials on the chains. Finally,
we combine all the max nodes with the same label into one
node. Thus, we re-represents ψf

(
xf
)

with the product of
chain potentials. The following example illustrates our rep-
resentation.

Example: Consider the graph shown in Figure 4(a),
where the shaded and unshaded nodes denote the sum and
max nodes respectively, so that Vfs = {4} and Vfm =
{1, 2, 3}. Then,

ψf
(
xfs ,x

f
m

)
= ψ14ψ24ψ34.

Let
ψ̃12 (x1, x2, x3, x4) = (ψ14)

1
2 (ψ24)

1
2

ψ̃13 (x1, x2, x3, x4) = (ψ14)
1
2 (ψ34)

1
2

ψ̃23 (x1, x2, x3, x4) = (ψ24)
1
2 (ψ34)

1
2 ,

and we can conclude that
ψf
(
xfs ,x

f
m

)
= ψ̃12ψ̃13ψ̃23,

The graph representation for ψ̃12ψ̃13ψ̃23 is shown in Fig-
ure 4(c). �

An immediate question for this representation is, how
many chains are needed to cover graph Gf? Since Eq. (3)
involves one term per pair of nodes in Vfm, it is reasonable
to expect this many chains. However, this is not always the
case; for some graphs fewer chains are sufficient, while for
others more are required. Figure 5(b) shows an example in
which a single pair of max nodes requires more than one
chain to cover the graph. However, without loss of gener-
ality, we will assume one chain per pair of max nodes i, j,
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Figure 5: An example that two chains are needed to cover
the original graph.

and associate the chain with edge (i, j) in the marginalized
model.

The advantage of the chain-based representation of
Eq. (3) is that each sum node copy now has at most two
neighbors. By relaxing the constraints on equality among
copies, we can obtain an upper bound, while each sum node
copy can be eliminated efficiently.

An Upper Bound of Complete Potential
Within the subgraph Gf , the marginalization operator will
produce fully connected or complete graph Kf

m over the
max nodes Vfm, resulting in a computationally intractable
function (referred to as the complete potential). In this sec-
tion, we will approximate the complete potential with a
product of pairwise potentials that are defined on the edges
of the complete graph. Furthermore, we design this approx-
imation so that it provides an upper bound of the complete
potential.

Using the chain-structured covering designed in the pre-
vious section, each sum node copy is associated with some
chain with two max node endpoints, say i and j. We as-
sign a weight ωij to this copy, with 0 ≤ ωij ≤ 1 and∑

(i,j)∈Ef
mm

ωij = 1. We can then approximate the com-
plete potential using an approximate elimination based on
Hölder’s inequality (see (Liu and Ihler 2011a)), so that

ψf (xfm) =
∑
xf

s

ψf (xfs ,x
f
m) ≈

∏
(i,j)∈Ef

mm

ψ̃ij(xi, xj) (4)

where ψ̃ij(xi, xj) is defined as

ψ̃ij(xi, xj) =
(∑

xf
s

ψ̃ij(x
f
s , xi, xj)

1
ωij

)ωij

. (5)

Because ψ̃ij(x
f
s , xi, xj) is chain-structured, it can be com-

puted efficiently in O
(
Nd3

)
, where N is the number of

variables on the chain and d is the number of states for each
variable. The overall complexity for computing the pair-
wise potentials of the complete graph Kf

m is no more than
|Ef

mm|2
2 O

(∣∣Vfs ∣∣ d3
)
.

Eq. (4) also provides an upper bound on the true complete
potential:
Theorem 1. The product of the pair-wise potentials yields
an upper bound of the true complete potential, that is

ψf
(
xfm
)
≤

∏
(i,j)∈Ef

mm

ψ̃ij
(
xi, xj

)
, (6)

where ψ̃ij
(
xi, xj

)
is defined as in Eq. (5). Equality holds if

∀ xfs ∈ X fs ,xfm ∈ X fm



ψ̃ij
(
xfs , xi, xj

) 1
ω

ij∑
xf

s

ψ̃ij

(
xfs , xi, xj

) 1
ω

ij

= const., (7)

where (i, j) ∈ Efmm, and const. denotes the same constant.

Proof. The result follows directly from Hölder’s inequal-
ity. Given fi (x) ≥ 0, 0 ≤ ωi ≤ 1, i = {1, 2, . . . , n},

and
n∑
i=1

ωi = 1, Hölder’s inequality (Hardy, Littlewood, and

Pólya 1988) states that

∑
xa

n∏
i=1

fi (x)ωi ≤
n∏
i=1

∑
xa

fi (x)

ωi

. (8)

Taking fi (x) = ψ̃ij
(
xfs , xi, xj

) 1
ω

ij , and the definition of
the complete potential in Eq. (4), the r.h.s. of Eq. (6) yields
the definition Eq. (5). The condition in Eq. (7) can be derived
from the equality condition of Hölder’s inequality.

In effect, this replaces the complete graph induced by
eliminating connected component Gf with a pair-wise
graphical model that upper bounds the original.

Dual Decomposition for MAP
By summing over all the sum variables using Eq. (5), we
obtain a graph with only the max variables. The next step is
to estimate the maximum a posteriori (MAP) configuration
of these variables.

The MAP problem can be solved efficiently using
the technique of dual decomposition (Sontag, Globerson,
and Jaakkola 2011). For easy implementation, we can
use tree-decomposed block coordinate descent algorithms,
such as the max-sum diffusion (MSD) algorithm (Werner
2007), the max product linear programming (MPLP) al-
gorithm (Globerson and Jaakkola 2008) or the sequential
tree-reweighted message passing (TRW-S) algorithm (Kol-
mogorov 2006). To obtain tighter bounds, we can use algo-
rithms with high-order constraints, such as the generalized
MPLP (GMPLP) algorithm (Sontag et al. 2008) or outer-
planar decompositions (Batra et al. 2010).

Under the framework of dual decomposition, the above al-
gorithms yield an upper bound on the MAP assignment. Re-
call that the chain decomposition approach returns an upper
bound for the complete potential; thus we conclude that the
approximation approach based on chain decomposition and
dual decomposition yields an upper bound of p∗ in Eq. (1).
We give a sketch of our algorithm for solving the marginal-
MAP problem in Algorithm 1.

Variational Representation
Our algorithm can also be interpreted in a variational frame-
work, using the connection between Hölder’s inequality and
weighted entropy decompositions (Liu and Ihler 2011a).

Liu and Ihler (2011b) provide a variational framework for
addressing the marginal-MAP problem. Considering only
the graph Gf , the variational representation Φ (θ) on Gf is

Algorithm 1 The Chain Decomposition Algorithm
Input: A graphical model G for marginal-MAP inference.
Output: An upper bound of p∗ in Eq. (1).

1: Represent the potentials of the sum nodes with the po-
tentials on a set of chains using Eq. (3).

2: Sum over the sum variables using Eq. (5).
3: Use a dual decomposition technique for MAP inference.
4: Return the upper bound and the MAP estimate.

Φ
(
θf
)

= max
µf∈Mf

{〈
θf ,µf

〉
+H

(
xfs |xfm; µf

)}
, (9)

whereMf is the marginal polytope, and H
(
xfs |xfm; µf

)
=

−
∑

xf qµ
(
xf
)

log qµ
(
xfs |xfm

)
is the conditional entropy,

with qµ
(
xf
)

being the maximum entropy distribution cor-
responding to µf . The variational representation is an equiv-
alent transformation of the original marginal-MAP problem,
with Φ

(
θf
)

= log p∗f , where p∗f is defined on graph Gf as
in Eq. (1). However, this dual representation does not reduce
the computational cost.

For our purposes, it is more convenient to express the vari-
ational form on the sum nodes alone, keeping the optimiza-
tion over xfm in its combinatorial form:

Φ
(
θf
)

= max
xf

m∈Xf
m

{〈
θ
(
xfm
)
,xfm

〉
+ Φ

(
θ
(
xfs |xfm

))}
,

(10)
where ∀ xfm ∈ X fm, Φ

(
θ
(
xfs |xfm

))
is defined as:

Φ
(
θ
(
xfs |xfm

))
= max

µf
s∈M(xf

s )

{〈
θ
(
xfs |xfm

)
,µfs

〉
+H

(
xfs ; µfs

)} .
(11)

The two representations in Eq. (9) and Eq. (10) are equiva-
lent at their optimal values.

Our approximation decomposes Gf into a set of chains,
with the two ends of each chain being max nodes. Let
C
(
Gf
)

be the set of chains, and Cfi be a chain in C
(
Gf
)
.

First, we decompose the parameters θ
(
xfs |xfm

)
on Gf into

a combination of the parameters on a set of chains, such as

θ
(
xfs |xfm

)
=

∑
Cf

i ∈C(Gf )

ωCf
i

θC
f
i

(
xfs |xfm

)
,

where
∑
ω
Cf

i

= 1, and θC
f
i

(
xfs |xfm

)
is the parameter on

chain Cfi .
Since Φ

(
θ
(
xfs |xfm

))
is a convex function w.r.t. the pa-

rameter θ
(
xfs |xfm

)
(Wainwright, Jaakkola, and Willsky

2005), we can apply Jensen’s inequality to a convex com-
bination of the parameter and obtain an upper bound:

Φ
(
θ
(
xfs |xfm

))
= Φ

 ∑
Cf

i ∈C(Gf )

ωCf
i

θC
f
i

(
xfs |xfm

)
≤

∑
Cf

i ∈C(Gf )

ωCf
i

Φ
(
θC

f
i

(
xfs |xfm

))
.

Then, Φ
(
θf
)

can be approximated as



Φ̃
(
θf
)

= max
xf

m∈Xf
m


〈
θ
(
xfm
)
,xfm

〉
+∑

Cf
i ∈C(Gf )

ω
Cf

i

Φ
(
θC

f
i

(
xfs |xfm

))  .

(12)
The max operation on xfm in Eq. (12) is to solve an integer

programming problem. This problem can be further approx-
imated using the technique of linear programming relaxation
or dual decomposition. Algorithm 1 provides a direct imple-
mentation of Eq. (12), then applies the dual decomposition
technique for the MAP estimate component.

Relations with A-B Tree Decomposition
Based on the variational framework, Liu and Ihler (2011b)
introduce a tree-reweighted free energy by decomposing the
original graph into a combination of A-B trees. The A-B
tree is such a tree that no two edges in Ems are connected by
nodes in Vs. In the following, we will analyze the relations
between our chain-based decomposition method and the A-
B tree-based decomposition method.

Both methods use reweighted free energy approximations
to provide upper bounds on the optimal marginal MAP
value. However, the primary differences are:
I. If tree-decomposed block coordinate descent algo-

rithms are used for the MAP estimate in Algorithm 1,
our chain-based method provides a form of “hyper-
tree” decomposition on the sum nodes, since elimina-
tion of each sum node is allowed to involve two adja-
cent nodes (a chain).

II. Our method does not require any particular choice
of optimization for the max nodes, since an explicit
pair-wise model is produced. In practice we use dual-
decomposition, but other methods are easily applied.

III. Our framework explicitly selects a fixed allocation of
the sum node parameters ψ̃ij(xfs , xi, xj) to each chain,
whereas the message-passing process in the A-B tree
method is able to tighten its bound during the iterative
process.
(I) suggests that, if the optimal values of the weights ωij

and the re-parameterization into chains ψ̃ij(xfs , xi, xj) are
used, the chain decomposition bound will be tighter than that
of a tree-reweighted collection of A-B trees.

Experiments
In this section, we conduct experiments to show the effec-
tiveness of the chain decomposition algorithm. We test the
chain decomposition algorithm on three types of graphs: star
model, chain model, and grid model, as shown in Figure 6.
The distribution on these models are defined as

p (x) ∝ exp

∑
i∈V

θi (xi) +
∑

(i,j)∈E

θij
(
xi, xj

) .

We set θij (k, k) = 0, and randomly generate θi (k) ∼
N (0, 0.1), θij (k, l) ∼ N (0, σ) for k 6= l, where
σ ∈ {0.1, 0.3, . . . , 1.5} is the coupling strength. For the star
model and the chain model, each variable has three states,
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Figure 6: The three models for experiments, with shaded
sum nodes and unshaded max nodes. (a) star model, (b)
chain model, (c) grid model.
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Figure 7: Results on the star model of Figure 6(a). (a) The
upper bounds obtained by the tree-reweighted mixed mes-
sage passing and the chain decomposition algorithms; (b)
The relative energy errors of different algorithms.

and for the grid model, each variable has two states. The
results are obtained after averaging 100 trials.

We test the Bethe mixed message passing (Mix-Bethe)
(Liu and Ihler 2011b), the tree-reweighted mixed message
passing (Mix-TRW) (Liu and Ihler 2011b), the hybrid mes-
sage passing (HMP) (Jiang, Rai, and Daumé III 2011),
the Bethe sum-product (SP-Bethe), the Bethe max-product
(MP-Bethe), the tree-reweighted sum-product (SP-TRW),
the tree-reweighted max-product (MP-TRW), and the chain
decomposition (Chain-Dec) algorithms on these graphical
models. To implement the tree-reweighted algorithms on the
grid model, we decompose it into a combination of four
spanning A-B trees. We compute the relative energy er-
rors of different algorithms. The relative energy error is de-
fined as (log p̂− log p∗) / log p∗, where log p∗ is the max-
imal energy and log p̂ is the approximate energy obtained
by that algorithm. Here, p̂ =

∑
xs
p (xs, x̂m), where x̂m is

the estimated solution by different algorithm. For the Mix-
TRW and Chain-Dec algorithms, we also compute the upper
bounds of the maximal energy. The results are shown in Fig-
ures 7,8,9.

Figures 7(a),8(a),9(a) show that the upper bound obtained
by the chain decomposition algorithm is tighter than the
upper bound obtained by the tree-reweighted mixed mes-
sage passing algorithm. Figures 7(b),8(b),9(b) show that the
Bethe mixed message passing algorithm and the hybrid mes-
sage passing algorithm perform much better than the other
algorithms. Although the chain decomposition algorithm
does not give the best solution, its performance is compa-
rable to the Bethe mixed message passing algorithm and the
hybrid message passing algorithm. Moreover, the chain de-
composition algorithm always gives smaller relative error
than the tree-reweighted mixed message passing algorithm.
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Figure 8: Results on the chain model of Figure 6(b). (a)
The upper bounds obtained by Mix-TRW and Chain-Dec;
(b) The relative energy errors of different algorithms.

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

Coupling Strength

R
el

at
iv

e 
E

rr
or

Chain−Dec
Mix−TRW

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4

−0.04

−0.03

−0.02

−0.01

0

Coupling Strength

R
el

at
iv

e 
E

rr
or Chain−Dec

Mix−Bethe
Mix−TRW
SP−Bethe
MP−Bethe
SP−TRW
MP−TRW
HMP

(b)

Figure 9: Results on the grid model of Figure 6(c). (a) The
upper bounds obtained by Mix-TRW and Chain-Dec; (b)
The relative energy errors of different algorithms.

Conclusion
This paper presents a novel method to efficiently approxi-
mate the marginalization step in marginal-MAP problems on
graphical models. The sum operation results in a complete
potential over the connected neighborhood, with exponential
size. We propose a chain decomposition approach to approx-
imate this complete potential with a product of pair-wise po-
tentials. This technique can be interpreted as a “reweighted”
variational approach, with a corresponding free energy ap-
proximation, and returns an upper bound of the maximal en-
ergy. Experimental results show that our method gives good
upper bounds when compared to existing techniques, and
performs comparably to state-of-the-art methods on solution
quality.
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