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Abstract

Given a graphical model, one of the most use-
ful queries is to find the most likely configura-
tion of its variables. This task, known as the
maximum a posteriori (MAP) problem, can
be solved efficiently via message passing tech-
niques when the graph is a tree, but is NP-
hard for general graphs. Jebara (2009) shows
that the MAP problem can be converted into
the stable set problem, which can be solved
in polynomial time for a broad class of graphs
known as perfect graphs via a linear program-
ming relaxation technique. This is a result of
great theoretical interest. However, the arti-
cle additionally claims that max-product lin-
ear programming (MPLP) message passing
techniques of Globerson and Jaakkola (2007)
are also guaranteed to solve these problems
exactly and efficiently. We investigate this
claim, show that it does not hold, and re-
pair it with alternative message passing algo-
rithms.

1 INTRODUCTION

Graphical models provide a compact representation of
a probability distribution over a set of dependent ran-
dom variables using a graph structure to represent
dependence relationships among variables. A com-
mon task is the problem of finding a maximum a
posteriori (MAP) configuration, i.e. an assignment of
the variables that has the highest possible probabil-
ity. The MAP problem is NP-hard in general (Shi-
mony, 1994), but can be solved efficiently for certain
classes of problems such as trees (Pearl, 1988) and
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maximum weight bipartite b-matching graphs (Bay-
ati et al., 2005) using message passing algorithms such
as max-product (Pearl, 1988). Such message passing
algorithms exploit the independence structure of the
graphical model by sending messages between nodes of
the graph until convergence. When the graph contains
cycles, max-product may not converge to the correct
solution, or even converge at all, but frequently pro-
vides useful approximations. More recent variants of
max-product (Globerson and Jaakkola, 2007; Sontag
and Jaakkola, 2009) have convergence guarantees and
may provide certificates of optimality, so that in many
cases the solution can be guaranteed to be a MAP.

Jebara (2009) gives a sufficient condition and corre-
sponding procedure for determining the exact MAP
problem to be solvable in polynomial time. The pro-
cedure involves converting an MRF into an equiva-
lent NAND MRF, which essentially encodes the MAP
problem as a maximum weight stable set (independent
set) problem, a well known discrete optimization task.
If the graph of the NAND MRF is a perfect graph, the
MAP can be found efficiently and exactly using a lin-
ear programming (LP) relaxation. Jebara (2009) thus
expands the class of models known to have polynomial
time MAP solutions. We provide some background on
NAND MRFs and perfect graphs in Section 2, and
summarize Jebara’s main results in Section 3.

This paper is concerned with the message passing im-
plications of Jebara (2009). Message passing algo-
rithms for optimization are closely connected to linear
programming relaxations, but may be more efficient
than traditional LP solvers such as simplex or inte-
rior point methods since they are often able to exploit
sparse problem structure in very large scale systems
with many variables (Sontag et al., 2008; Wainwright
et al., 2005) and can be easily parallelized. Jebara
(2009) claims that the MPLP algorithm (Globerson
and Jaakkola, 2007), a convergent variant of max-
product related to linear programming, is also optimal
on NAND MRFs with perfect graphs and further con-
jectures that the standard max-product algorithm may
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also be guaranteed to recover a MAP solution. We
show that these claims do not hold, providing coun-
terexamples that illustrate the issue in Section 4. We
then repair the claims by applying more recent mes-
sage passing algorithms and discuss their optimality
guarantees in Section 5.1. We also propose a new mes-
sage passing algorithm to directly optimize the dual of
the linear program described in Section 5.2. We give
experimental validation of our findings and compare
various solutions in Section 6, and conclude with a
discussion in Section 7.

2 BACKGROUND

We first describe several key background concepts, in-
cluding perfect graphs and the NAND MRF construc-
tion of Jebara (2009). Their significance will become
clear in Section 3.

2.1 Perfect Graphs

An undirected graph is considered to be a perfect
graph if, for every induced subgraph, the clique num-
ber (size of the largest fully connected subset of nodes)
is equal to its chromatic number (the minimum num-
ber of colors needed so that every node is labeled with
a color and no two adjacent nodes share the same
color) (Berge, 1963). Berge formulated the strong per-
fect graph conjecture, stating that a graph is perfect
if and only if it is a Berge graph: a graph that does
not contain an odd hole (chordless cycle of odd length
5 or greater), and whose complement contains no odd
hole. Thus, a graph is a Berge graph if and only if
its complement is also a Berge graph. The strong per-
fect graph conjecture was proven over 40 years later
by Chudnovsky et al. (2006), and is now known as the
strong perfect graph theorem. Note that this theorem
implies the earlier proven “weak” perfect graph the-
orem (Lovász, 1972), namely that a graph is perfect
if and only if its complement is perfect. Chudnovsky
et al. (2005) created an algorithm to check if any graph
is a Berge graph (and therefore a perfect graph), which
has time complexity O(n9), where n is the number of
vertices.

2.2 NAND Markov Random Fields

A Markov random field (MRF) connects a probabil-
ity distribution over a collection of variables X =
{x1, . . . , xn} to an undirected graph G. Each variable
xi is associated with a vertex vi of G. The graph is
said to be consistent with a probability distribution if
and only if it factors into a product of functions, called
potential functions, defined only over the cliques C of

the graph, so that

P (X) =
1

Z

∏
c∈C

ψc(Xc) where Xc = {xi : vi ∈ c}

and Z is the partition function, chosen to normalize
P (X). The structure of a MRF does not uniquely de-
termine a factorization, and so it is sometimes useful
to use factor graphs (Kschischang et al., 2001), an-
other type of graphical model, to more explicitly repre-
sent the factorization. In factor graphs, each potential
function ψ is explicitly represented in the graph as a
“factor node” (drawn in our figures as a square) which
is connected to the variable nodes associated with its
arguments.

A NAND Markov random field (NMRF) (Jebara,
2009) is a special kind of MRF in which

• Each variable xi is binary, xi ∈ {0, 1}.
• Potential functions ψi(xi) are associated with

variable nodes and represented with a nonnega-
tive value fi.

• Potential functions ψij(xi, xj) are associated with
the edges of the graph which are pairwise nand
gates.

ψi(xi) =

{
1 xi = 0

exp(fi) xi = 1

ψij(xi, xj) =

{
0 xi = xj = 1

1 otherwise

The MAP problem for an NMRF is exactly the maxi-
mum weight stable set problem for its graph, with the
weight of node i equal to fi. In this formulation, the
task is to find the set of nodes with the maximum to-
tal weight such that the nodes form a stable set, i.e.,
there are no two adjacent nodes in the set. NMRFs
can be easily used to encode matching problems, in-
cluding the marriage problem and its generalizations.
However, Jebara (2009) shows their more general ap-
plicability by providing a procedure for converting any
arbitrary MRF with graphG into an equivalent NMRF
with graph G. In the procedure, a node of G is cre-
ated for every configuration of variables in each po-
tential function of G’s MRF. Nodes that correspond
to conflicting variable assignments are then connected
via nand edges. Each NMRF node weight is the value
of the corresponding factor and configuration in the
original graph. The original factor can be rescaled to
ensure that fi is nonnegative.

3 SOLVING MAP USING NAND
MRFS AND PERFECT GRAPHS

The primary result of Jebara (2009) is a procedure for
finding the MAP in polynomial time, for certain classes
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of graphs. The procedure is to first convert a graphical
model with graph G into an equivalent NAND MRF
with graph G, check whether G is perfect, and if so con-
struct a linear programming problem which is guaran-
teed to produce the MAP solution in polynomial time.
All steps of the procedure can be performed in polyno-
mial time, and thus the procedure is also polynomial
time.

The NAND MRF is used to construct a program of
the form

x∗ = arg max
x

fTx (1)

s.t. Ax ≤ 1 and x ≥ 0 .

where x = [x1, . . . , xn]T is the vector of values for the
variables in G, f = [f1, . . . , fN ]T are the weights for
each node (i.e., fi = logψi(xi = 1)), and 1 and 0 are
all-ones and all-zeros vectors. The matrix A is the
maximal clique incidence matrix: a value of 1 at row c
and column n indicates that node n on the graph is a
part of maximal clique c, and 0 otherwise. Grötschel
et al. (1988) refer to the constraint set of this pro-
gram as the clique constrained stable set polytope. We
therefore refer to the program (1) as the clique con-
strained LP (CC LP). If the xi are integer, xi ∈ {0, 1},
then fTx equals the log-likelihood of configuration x
and the constraint matrix A guarantees that only one
node in each maximal clique is assigned a value of 1,
enforcing the NAND property of the NMRF. Solving
CC LP as an integer program therefore finds the MAP
configuration of the NMRF. Relaxing CC LP to be a
linear program allows it to be solved in polynomial
time (Grötschel et al., 1988). If an integral solution is
recovered, this must be the MAP configuration. Inter-
estingly, CC LP has an integral solution if and only if
the graph is perfect (Chvátal, 1975).

The computational challenge in formulating CC LP is
finding the maximal cliques for a given NMRF. This
is NP-hard in general, but can be done in polynomial
time for perfect graphs (Grötschel et al., 1988).

Jebara (2009) also makes a claim related to message
passing algorithms on NAND MRFs: that conver-
gent variants of max-product, in particular the max-
product linear program (MPLP) algorithm of Glober-
son and Jaakkola (2007), is also guaranteed to find the
MAP on an NMRF. The primary contribution of this
paper is to show that the MPLP algorithm does not
have such guarantees, and attempt to repair the claim
by describing alternative message passing algorithms
that are guaranteed to find the MAP on NMRFs whose
graph is perfect. First, we briefly describe MPLP and
its usage in Jebara (2009).

The MPLP algorithms of Globerson and Jaakkola
(2007) are based on a linear programming relaxation

of the MAP problem. For a given MRF with graph
G and potential functions defined on the edges of the
graph θij(xi, xj), Globerson and Jaakkola (2007)’s LP
formulation, known as MAP Linear Programming Re-
laxation (MAPLPR), is the LP relaxation of the fol-
lowing integer program:

µ∗ = arg max
µ∈ML(G); µ integral

µT θ , (2)

where µ is a vector of indicator functions for each pos-
sible assignment to each edge and each node in the
graph, the elements of θ are chosen such that µT θ
equals the log-likelihood of configuration µ if µ is inte-
gral, and ML(G) is the so-called local marginal poly-
tope, which ensures that the µ satisfy the simple lo-
cal consistency relationships of marginalization: for
all (i, j) ∈ E and all values xi, xj

µij(xi, xj) ≥ 0,
∑
x̂i

µij(x̂i, xj) = µj(xj),∑
x̂j

µij(xi, x̂j) = µi(xi),
∑
xi

µi(xi) = 1.

For NMRFs, the θ vector is given by θi(xi) ≡ 0 and
pairwise θij(xi, xj) as

θij(xi, xj) =


0 if (xi, xj) = (0, 0)
fj

|Ne(j)| if (xi, xj) = (0, 1)
fi

|Ne(i)| if (xi, xj) = (1, 0)

−∞ if (xi, xj) = (1, 1)

(3)

where Ne(i) are the neighbors of node i.

MPLP comes in two forms, one which iterates over
edges of the graph (EMPLP) and one which iterates
over nodes (NMPLP) when updating messages. Both
algorithms are equivalent to optimizing the dual prob-
lem of MAPLPR via coordinate descent, and there-
fore monotonically decrease the dual objective func-
tion. Consequently they are guaranteed to converge
to a fixed point for arbitrary graphs. MPLP can also
be generalized to iterate between cliques and nodes in
the factor graph representation.

4 MPLP IS NOT OPTIMAL FOR
NMRFS

The argument for the claim regarding convergent mes-
sage passing (Jebara, 2009) is roughly as follows: (1)
the CC LP formulation is integral for perfect graphs,
so linear programming relaxation techniques will still
find the MAP; (2) the MAPLPR formulation of the LP
is equivalent to CC LP, so any technique that solves
the MAPLPR for a perfect graph will find the MAP;
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and (3) MPLP is such a technique, and so MPLP re-
covers the MAP.

There are several issues with this argument. The least
serious of these involves part (1). The theorem of
Chvátal (1975) shows that CC LP has at least one in-
tegral solution when the graph is perfect, but does this
not preclude the existence of additional non-integral
solutions that could cause LP relaxation techniques to
fail. The following theorem shows that we must also
require the MAP to be unique to guarantee that linear
programming relaxation techniques will find the MAP.

Theorem 4.1. The MAP is unique iff no non-integral
solutions to CC LP exist, for NMRFs with perfect
graph G.

Sketch of proof. The feasible region of CC LP is the
interior of the convex hull of the incidence vectors of
the stable sets of perfect graph G (Chvátal, 1975). It
can be shown that for primal feasible x, the CC LP
objective function for x is the weighted average of the
objective function for the incidence vectors of the sta-
ble sets, with the weights corresponding to the weights
for the convex combination used to generate x. The
set of optimal solutions is therefore exactly the set of
convex combinations of the MAP configurations.

A more critical issue, however, arises in (2) of the ar-
gument. CC LP and MAPLPR are equivalent inte-
ger programs, where CC LP uses constraints on the
cliques, and MAPLPR uses constraints on pairs of ad-
jacent nodes. However, their LP relaxations are not
equivalent. Crucially, the integrality of CC LP does
not imply the integrality of MAPLPR. We demon-
strate this with a small example.

Consider Figure 2. This graph is the complement of a
bipartite graph, and is therefore perfect. The values of
fxi below the graph are the logs of the potential func-
tions for each node. The values for all µij(xi, xj) are
shown, along with intermediate products for comput-
ing the MAPLPR objective function µT θ. The values
for θ are computed using Equation (3). The exact
MAP, which CC LP correctly recovers, is the assign-
ment [A,B,C,D,E] = [0, 1, 0, 1, 0]. The log likelihood
of this configuration is fB+fD = 8. The µ assignment
given is an optimal solution to MAPLPR with non-
integral values and an objective function of µT θ = 9,
greater than the log likelihood for the exact MAP. The
non-integrality of this solution is seen in nodes C, D,
E, all of which were assigned weights of 0.5.

The reason that MAPLPR is not necessarily inte-
gral is shown by Figure 1. Although CC LP and
MAPLPR are equivalent integer programs, the pair-
wise constraints of MAPLPR allow additional non-
integral vertices that are excluded in the clique con-

x y

z

x+ y + z ≤ 1

(a)

x y

z

x+ y ≤ 1
x+ z ≤ 1
y + z ≤ 1

(b)

Figure 1: (a) Joint constraints encoding a three-
variable NAND relationship, and (b) pairwise version
of the same constraints. Although both have the same
set of integer constraints, their linear relaxations are
not equivalent; the pairwise version introduces addi-
tional non-integral vertices.

straints of CC LP. It is known in the combinatorial
optimization literature that clique constraints are suf-
ficient for integrality for the stable set problem (i.e.
MAP for NMRFs) if and only if G is a perfect graph
(Grötschel et al., 1988). A special case is that of bipar-
tite graphs, whose maximal cliques are pairs of nodes;
it is known that pairwise constraints are sufficient if
and only if G is bipartite.

5 ALGORITHMS

We would like to repair the claim of Jebara (2009) by
finding a message passing algorithm that is guaranteed
to find the MAP for NMRFs with perfect graphs. We
show that a higher-order dual decomposition method
with subgradient updates, referred to here as DD-SG,
is such an algorithm. Additionally, we introduce a new
convergent message passing algorithm, CD2MP, based
on coordinate descent on pairs of cliques in the dual of
CC LP. Unlike DD-SG, CD2MP is monotonic in the
dual objective function. We give some restricted op-
timality guarantees for this algorithm, and conjecture
that its fixed points must recover the MAP for NMRFs
with perfect graphs.
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A B

C ED

fA = 2,
fB = fD = 4,
fC = fE = 3

θAB =
[

0 4/1
2/3 −∞

]
µAB =

[
0 1
0 0

]
⇒ 4

1 × 1

θAD =
[

0 4/3
2/3 −∞

]
µAD =

[
.5 .5
0 0

]
⇒ 4

3 ×
1
2

θAE =
[

0 3/3
2/3 −∞

]
µAE =

[
.5 .5
0 0

]
⇒ 3

3 ×
1
2

θCD =
[

0 4/3
3/2 −∞

]
µCD =

[
0 .5
.5 0

]
⇒ 4

3 ×
1
2 + 3

2 ×
1
2

θCE =
[

0 3/3
3/2 −∞

]
µCE =

[
0 .5
.5 0

]
⇒ 3

3 ×
1
2 + 3

2 ×
1
2

θDE =
[

0 3/3
4/3 −∞

]
µDE =

[
0 .5
.5 0

]
⇒ 3

3 ×
1
2 + 4

3 ×
1
2

Figure 2: A counterexample showing that MAPLPR can be non-integral for NMRFs with perfect graphs. The
integer solution is B = D = 1, A = C = E = 0 with value 8; MAPLPR finds a fractional solution with value 9.

5.1 Higher-Order Message Passing

One way to repair the non-equivalence of pairwise
MPLP is to operate on the maximal clique graph,
in which each maximal clique of the NMRF corre-
sponds to a factor representing a joint NAND con-
straint. Analagous to Figure 2, we define factors
over d variables by 2d entries. Assignments violating
the NAND constraint have value −∞, the assignment
where all variables are zero has value zero, and assign-
ments where only variable i is one have value fi/Ni,
where Ni is the number of maximal cliques in which i
participates.

A generalization of MPLP message passing to higher-
order clique updates (referred to as GMPLP) is dis-
cussed briefly in Globerson and Jaakkola (2007); how-
ever, it is perhaps easier to use the equivalent LP asso-
ciated with the tree-reweighted max-product (TRW)
algorithm (Wainwright et al., 2005) and sequential,
monotone update sequence of Kolmogorov (2006).
Sontag and Jaakkola (2009) discuss the equivalence
of the LP relaxation dual forms of TRW, MPLP, and
several other algorithms. These methods can be un-
derstood within the dual decomposition framework, in
which the dual formulation of the optimization prob-
lem can be decomposed into smaller subproblems that
are tied together via Langrange multipliers.

We consider a TRW-like dual decomposition method
using fixed point updates (DD-FP), that operates by
creating a collection of trees which span the full graph,
and associating with each tree t a set of parameters θt

such that they sum to the original model,
∑
t θ
t = θ.

Each tree is solved separately, providing an upper
bound on the MAP, and the algorithm then minimizes
this upper bound over the allocation of θ to each tree.
DD-FP provides a monotone update by sequentially
visiting each node and edge and “merging” its copies.
We choose the individual factors as our collection of
trees; with our previous definition, we need only add
local parameters θci (0), θci (1) for each clique c and vari-

able i, with
∑
θci (j) = 0 for all i, j. To update, we

compute the max-marginals at each node by

γci(1) = θci (1) +
∑
j 6=i

θcj(0)

γci(0) = max

[∑
j

θcj(0),max
j 6=i

[
θcj +

∑
k 6=j

θck

]]

and update the local parameters by

θci (k) = θci (k)− γci(k) +
1

Ni

∑
c′

γc′i(k)

This efficient update, linear in clique size, is a con-
sequence of the NAND form of the factors. It can be
shown that optimizing over the θc corresponds to solv-
ing the dual of CC LP, and that DD-FP corresponds
to a coordinate descent algorithm on the dual (Kol-
mogorov, 2006).

Unfortunately, while this fixes the issue of enforcing
pairwise versus clique constraints and while DD-FP
(or equivalently, GMPLP) is monotone and thus con-
vergent, higher-order fixed point algorithms break part
(3) of the argument, that convergence implies op-
timality. This argument used results showing that
binary, pairwise graphs result in partially decodable
fixed points (Kolmogorov and Wainwright, 2005). In
more general systems however, such coordinate de-
scent algorithms can suffer from fixed points (called
weak tree agreement points) that are not optima of
the corresponding LP (Kolmogorov, 2006).

Another solution is to use dual decomposition methods
with subgradient updates (DD-SG) (e.g. Komodakis
and Paragios (2008)). Rather than defining a fixed
point procedure, these methods solve the individual
subproblems (finding an optimal configuration of each
tree) then update the parameters using the solution,
which corresponds to a subgradient update of the dual
parameters θt. Since these updates correspond to gra-
dient descent, given an appropriate sequence of step
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Figure 3: A perfect graph, represented as a factor
graph, in which fixed point methods fail to recover the
MAP. Node weights are given inside each node. The
log likelihood of the MAP is 5 + 86 = 91.
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Figure 4: Suboptimality of fixed point methods. DD-
SG’s dual objective converges to the optimal value and
recovers the exact MAP. GMPLP and DD-FP’s dual
objectives converge to sub-optimal fixed points.

sizes they can be guaranteed to optimize the dual of
CC LP and thus find the MAP. DD-SG can still be
thought of as message-passing, since it requires only
local operations (solving each factor individually and
updating the local θc).

Figure 3 shows a perfect graph in which fixed point
methods do not recover the exact MAP. The behav-
ior of the fixed point and subgradient solvers on this
graph is displayed in Figure 4. DD-FP and GMPLP
become stuck at weak tree agreement fixed points and
do not return the MAP, while DD-SG finds the cor-
rect solution. Because fixed point solvers often con-
verge faster than subgradient methods, for this and
subsequent experiments we used interleaved DD-FP
and DD-SG steps to improve performance while keep-
ing the guarantee of optimality.

5.2 CD2MP

Although DD-SG is optimal for NMRFs with perfect
graphs, we would like to have a monotonic message
passing algorithm with this property. We derive a
message passing algorithm that solves the CC LP via
block coordinate descent in the dual with updates on
pairs of overlapping cliques and prove some optimal-

ity properties for its fixed points in Section 5.2.1. The
CC LP is a packing LP, so its dual is a covering LP:

y∗ = arg min
∑

y (4)

s.t. Aᵀy ≥ f , y ≥ 0 .

where the dimensionality of y is the number of maxi-
mal cliques. Let ca, cb be overlapping cliques. We want
to perform the pairwise coordinate descent update for
ys = {ya, yb}, fixing y \ ys. Let

hi = max(0, (fi −
∑

{j|i∈cj ,yj /∈ys}

yj))∀i ∈ ∪ys

sa = max
i∈ca\cb

hi , sb = max
i∈cb\ca

hi , q = max
i∈cb∩ca

hi

The relevant part of the LP is:

y∗s = arg min
ya,yb

ya + yb (5)

s.t. ya ≥ sa , yb ≥ sb , ya + yb ≥ q .

Clearly y∗a+y∗b = max{sa+sb, q}. This can be obtained
via the update rule

ya ← max{sa, 0.5(sa − sb + q)} , (6)

and similarly for yb with a and b reversed. This update
is repeated for each pair of overlapping cliques until
convergence. Note that convergence is guaranteed be-
cause the algorithm monotonically decreases the dual
objective function. We will refer to the algorithm as
CD2MP, short for pairwise coordinate descent message
passing.

The CD2MP algorithm has a message passing inter-
pretation, in which messages are communicated be-
tween pairs of cliques, and between those cliques and
the nodes that they contain. The messages, and their
semantics in terms of the covering interpretation of
the CC LP are described in Table 1. In terms of these
messages, we can rewrite Equation 6 as

ya ← max{λab, 0.5(λab − λba + max
i∈ca∩cb

λiab)} . (7)

The CD2MP algorithm is a useful tool for solving the
dual problem. However, we set out to solve the primal
problem, so a solution is only useful if we can recover
the primal solution. Suppose y∗ is an optimal solution
to the dual. By the complementary slackness theorem,
all xi whose corresponding constraints in the dual are
loose for y∗ (their slack variables are greater than zero)
must be zero in the primal optimal solution. Any xi
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Sender Receiver Message Covering LP Interpretation
Clique a Node i λai = ya I have λai units of a available.

Node i Clique a λia = max{0, fi − λ−{a}i } I need ≥ λia units of a.

Node i Cliques a, b λiab = max{0, fi − λ−{a,b}i } I need ≥ λiab units between a and b.
Clique a Clique b λab = maxi∈ca\cb λia I must have ≥ λab units of a

Table 1: Message Passing Interpretation of CD2MP. In the above, λ−si =
∑
d:i∈cd,d/∈s λdi, the sum of the messages

from cliques that i is in, except the set of cliques s.

whose corresponding constraint is tight and is not ad-
jacent to any other xi with a tight constraint must
have value one, since this gives a higher value for the
decoded solution and does not violate the constraints.
If there are sets of xi with tight constraints whose in-
duced subgraph is connected, decoding is non-trivial
for this part of the solution. However we obtain par-
tial decoding in the sense that the other decoded xis
must belong to an optimal solution.

5.2.1 Properties of CD2MP

A key property of CD2MP is that it monotonically
improves the dual objective function, so it is guaran-
teed to converge to a fixed point. We can prove the
following properties of these fixed points:

Theorem 5.1. Fixed Points of CD2MP are Optimal
with Unambiguous Decoding

Sketch of Proof. Let y be a converged solution that
is uniquely decodable to integral primal solution x
(i.e. there are no two adjacent nodes with tight con-
straints). We want to show that y and x are opti-
mal. By duality, it is sufficient to show that they
have the same objective function value. The dual solu-
tion has value

∑
y. The decoded primal solution has

value
∑
i:xi=1 fi =

∑
j:∃i:i∈cj ,

∑
k:i∈ck

yk=fi
yj , the sum

of the yi that contain nodes with tight constraints.
It remains to show that the cliques ci that contain
no nodes with tight constraints have yi = 0. Sup-
pose clique ca has no nodes with tight constraints, and
cb overlaps with ca. Since y is a fixed point, either
ya + yb = maxi∈ca∩cb λiab or ya = λab, yb = λba. In
either case it can be shown that ya = 0.

Theorem 5.2. Fixed points of CD2MP are dual opti-
mal for perfect graphs with clique number equals two.

Sketch of Proof. Assume that CD2MP has converged
to y for a problem with perfect graph G. Suppose
that S is a maximal set of nodes in G that have tight
constraints and form a connected graph. Let ys be the
set of maximal cliques containing nodes in S. From
duality and the previous theorem, it is sufficient to
show that for any such S there exists a legal decoding
x s.t.

∑
i∈S,xi=1 fi =

∑
y∈ys y. For all nodes i in

S, fi =
∑
i∈cj yj , so it is enough to show that it is

possible to enable exactly one node (whose constraint
is tight) per maximal clique in ys, which would give us∑
i∈S,xi=1 fi =

∑
xi=1

∑
i∈cj yj =

∑
y∈ys y. Since G

is perfect, the subgraph induced by S is also perfect.
As the clique number equals two and the subgraph
induced by S is perfect, its color number also equals
two. The color with the largest number of nodes is the
maximum stable set, and must cover every clique, and
thus every maximal clique (since the maximal cliques
are just the cliques in this case).

Both of these properies are shared by DD-FP and GM-
PLP, which can also be interpreted as coordinate de-
scent in the dual; however, in the experimental sec-
tion we find that CD2MP is successful even when DD-
FP and GMPLP are not. The primary difference be-
tween the algorithms is that the coordinate space of
the CD2MP updates is larger than that of GMPLP.
GMPLP updates messages from a single clique to its
variables, while DD-FP updates the local parameters
of a single variable in its neighboring cliques; both can
be regarded as individual updates of single-variable pa-
rameters. In contrast, CD2MP acts on pairs of cliques,
giving it a strictly larger set of update directions that
include jointly changing the parameters of all variables
in the overlap of the two cliques. We conjecture that
the fixed points of the CD2MP algorithm are dual op-
timal for perfect graphs in general. This conjecture is
supported by the experimental results that we present
in the next section.

6 EXPERIMENTS

The optimality and convergence properties of the algo-
rithms described in this paper were investigated using
the classes of perfect graphs used in Jebara (2009):
tree, complement of tree, bipartite, complement of bi-
partite, line graph of bipartite, and complement of line
graph of bipartite. For each type of perfect graph,
1000 graphs containing between 8 and 50 nodes were
generated. Each node was assigned a weight chosen
uniformly at random, fn ∼ U[0, 1]. Trees were formed
by repeatedly joining connected components at nodes
chosen uniformly at random. Bipartite graphs were
formed by creating two sets of nodes; for each node in
the first set, a random number of connections to the
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Figure 5: Outcome of applying each algorithm to each type of graph. Outcomes are (1) recovered exact MAP,
(2) recovered sub-optimal solution, and (3) did not converge and recovered sub-optimal solution.

second set were added. Convergence was determined
by comparing the change in the objective between two
iterations to a threshold. If an algorithm did not con-
verge after 5000 iterations, it was terminated and the
solution returned by the last iteration was used.

Figure 5 shows the results of applying each algorithm
to each graph. As expected, CC LP and its dual re-
covered the MAP for each graph via an interior-point
method. Because interior-point methods are not mes-
sage passing algorithms, having loops in the perfect
graph has no effect. DD-SG also recovered the MAP
for each graph. CD2MP always recovered the MAP,
supporting our conjecture regarding its optimality for
finding the MAP for NMRFs with perfect graphs.

DD-FP and GMPLP failed to recover the MAP in
some cases, although they find the MAP for the ma-
jority of generated graphs. EMPLP, NMPLP, and
MAPLPR always recovered the MAP for trees and bi-
partites; optimality is only guaranteed for these graphs
in which pair-wise constraints correspond to maximal
clique constraints. Max-product (MP) only always re-
covered the MAP for trees, the only type of perfect
graph tested that does not contain loops. Max-product
over the factor graphs (MPFG) behaved similarly.

7 DISCUSSION

There is considerable interest in the theoretical prop-
erties of techniques for solving queries on graphical

models. A question of particular interest is to identify
the set of problems that message passing algorithms
can solve optimally, or can be solved efficiently by
other techniques such as LP relaxations. Jebara (2009)
shows that MRFs with pairwise nand clique functions
(NMRFs) are amenable to polynomial time MAP re-
covery by LP relaxation methods for a special class
of graphs called perfect graphs, and gives a method
for converting an arbitrary MRF into an equivalent
NMRF. We applied dual decomposition to NMRFs
with perfect graphs, showing that DD-SG is guaran-
teed to find the MAP. Thus, our contribution repairs
the claim of Jebara (2009) that there exists a message
passing algorithm that can recover the MAP for MRFs
whose equivalent NMRFs are perfect. We also intro-
duced a new convergent message passing algorithm for
NMRFs, CD2MP, and proved some properties regard-
ing the optimality of its fixed points. Experimental
results on randomly generated perfect graphs support
the conjecture that CD2MP always recovers the MAP
for NMRFs with perfect graphs. Future work is to
prove or disprove this conjecture.
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M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and
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