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Modeling complex dynamical systems is a difficult problem with a wide range of ap-
plications in prediction, discrimination, and simulation. Classical stochastic models
make a number of simplifying assumptions to improve tractability (e.g. linear dynam-
ics, Gaussian uncertainty). While such assumptions lead to algorithms which are both
fast and optimal under the assumptions, there are a great many real world problems
for which these assumptions are false. Recently, computational power has increased
to the point where another method becomes feasible – purely example-based, or “non-
parametric”, models. Yet these are limited because their computational requirements
grow exponentially with the number of variables we observe about the system. For
dynamical systems, in which we generally observe the past, this means that processes
with any substantial past-dependence become intractable. In this thesis we present a
novel dynamical system model making use of a nonparametric estimate of uncertainty,
with an information-theoretic criterion for reducing the model’s required dimension
while preserving as much of the predictive power in the observations as possible. To
explore its behavior, we apply this technique to three dynamical systems – a “toy”
nonlinear system (random telegraph waves), a real-world time series from predictive
literature (Santa Fe laser data), and a more cutting-edge application (on-line signa-
ture authentication). Each of these examples demonstrates techniques for improving
the model’s performance and evidence of its effectiveness.
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Chapter 1

Introduction

1.1 Problems of Information Extraction

The problem of modeling complex systems is one of the oldest and most fundamental

in science and engineering. The human mind is a formidable tool for finding patterns

and hypothesizing structure within such systems; the development of the theory of

mechanics, electricity, and so forth are testaments to the ability of humans to find

an imposed structure within observations. However, in modern applications we often

deal with systems which are either too complex to understand in such an analytic way,

or in situations where we would like to be able to capture this structure automatically,

without requiring human intervention.

This is the essential problem of data mining – how to extract knowledge, or

find structure, within observations. Given a large number of observation variables,

which are important to the quantity of interest? In what way do they relate? Often,

15



16 Chapter 1. Introduction

even with complex systems, the brain is capable of discerning order; thus we know it

can be done, and some researchers examine the brain searching for an idea as to how.

Yet the answer remains elusive, and so for problems which do not behave according

to “simple” models, it is of great interest to find an automated solution to these kinds

of questions.

To put this another way, if we have a system which we believe to be inherently

nonrandom (or rather, “not-very-random”) controlled for instance by a relatively

small number of “hidden” states which we can only observe indirectly, can we find

these states within our observations of the system and relate the states to its behavior?

Some of the most prominent examples of such seemingly complex but intu-

itively nonrandom systems are found in the tasks necessary for human/computer

interaction. Recognition tasks are a fundamental part of biometric authentication

systems, which are gaining attention and support in security applications. Applica-

tions such as automatic dictation or pen-based text input use recognition of individual

words and models of sentence structure to produce more natural interfaces to com-

puters. Everyday systems such as handwriting generally exhibit a large variation

between examples of the same word, yet are instantly recognizable to the human

brain. Additionally, the dependency structure within such signals is quite long, and

so the number of samples which may be relevant to estimating high-level variables

such as the word or the identity of the writer is large.

In addition, the “necessary” relationships and “acceptable deviations” (ran-

domness) are very difficult to describe. Other coordinate bases (Fourier, wavelets,

etc) are an attempt to describe a simple coordinate system in which, it is hoped,

important information is well-separated from the incidental. However, none of these

achieve as much as we would like (though of course, some coordinate systems are bet-
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ter than others). It is simply that although our brains know how to detect the hidden

relationships representing a word, or underlying biological motion, we are unable to

consciously describe those relationships; this is probably a good indication that the

relationships themselves are quite complex in nature. One possible explanation for

this is that the mind is primarily a vast store of experience, and that our analysis of

such systems is based mostly on a comparison to previously seen examples. Nonpara-

metric approaches use exactly this sort of methodology – the model uses as large a

store of examples as can be managed in the hopes that there are enough to be “close”

to any future observation.

1.2 Simplicity versus Capacity

Such “difficult-to-describe” systems are often the bane of parametric modeling. We

like to use simple models and simple relationships, such as linear functions with

Gaussian uncertainties, in order to make a problem more tractable. Often, this is a

good idea and a reasonable set of assumptions, and the algorithms which have been

developed allow “optimal” (assuming that reality fits the model) performance at low

computational costs.

Unfortunately when the relationships of the data become too complex, we

are forced to turn to models with high capacity. Such models have a great deal of

flexibility inherent in them; however, this comes at a price of increased number of

parameters which must be selected (learned) and so an increased difficulty in use,

often both in computation and in required observation data size.

For instance, it could be argued that given enough data and processing power,
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nearly any system can be modeled nonparametrically — by assembling a database of

all the observations and the corresponding response of the system, we could simply

predict the system’s behavior by looking up instances of the past which are close to

our current observations, and make a prediction based on them. This is nearly ideal

in that it is a very flexible model – it is capable of modeling highly nonlinear relation-

ships, capturing noise dynamics, etc – but has an extremely high computational cost

associated with it. It is only recently that computing has become powerful enough

to contemplate implementing such procedures, and even now there is never “enough”

processing power for every task we would like to attempt. In part this is because as

the number of variables we are allowed to observe rises, the dimension of the model

grows; and the amount of data necessary to accurately model the observations’ re-

lationships grows exponentially with the dimension. We have a trade-off between

our desire to utilize more observations for their information about the system and

our ability to handle those observations. This tradeoff is made all the worse by the

fact that we often do not know how helpful any particular type of observation is.

We could at least handle this tradeoff intelligently if we knew which information we

should keep.

In Section 2.7, we will present a model which does exactly this. We find the

“most informative” of a parameterized family of subspaces in order to reduce our

computation cost while retaining the most value for the dimensions we keep. We use

a nonparametric estimate of the mutual information between the quantity of interest

(in a dynamical system, the future of the process) and the retained subspace in order

to determine what subspace to keep.
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1.3 Many open questions

Unfortunately, there are some basic questions which we have not addressed above,

much less proposed solutions to. For instance, how do we even go about measuring

the performance of a particular model? The most standard answer is to choose mean-

squared-error; many applications choose this simply because everyone else seems to,

or because they do not question its appropriateness. However, in many cases it bears

little resemblance to the metric we ourselves impose on a solution; solutions which

minimize squared error need not be those which “look best”. But human qualitative

judgment is not a quantitative method, and we do not know how to adapt a model

so that, in the end, it “looks good”. Perhaps no quantitative method can maximize

such an abstract criterion; but without addressing the question of a “good” quality

metric we cannot proceed.

Another difficult question is posed by the very idea of “prediction” using a

nonparametric uncertainty model; such an action is not well-defined. We could, for

example, choose the “most likely” value; however, there can be many equally likely

alternatives with no way to choose between them. Worse, there is no guarantee that

always selecting “high likelihood” predictions will produce sample paths which meet

any quality criterion described above. In fact, it makes little sense to select any single

point as representative of a future sample; and yet prediction is one of the most basic

concepts in system theory. A model which cannot produce some kind of prediction is

lacking a basic and necessary quality.

The scope of such questions stretches well beyond that of this thesis; yet some

kind of answer to them must and will be proposed. The difficulties (and sometimes

even advantages!) caused by the differences between nonparametric and more canon-
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ical approaches will appear again in each of the three application chapters. In each,

we will go into more detail about the nature of the question (how does one measure

the quality of this process? how does prediction relate to a process of this type?) and

discuss the appropriateness or inappropriateness of our solutions.



Chapter 2

Preliminary Information

The focus of this chapter is to present the background and concepts which are nec-

essary for development of the thesis. Section 2.1 provides a background of entropy,

likelihood and hypothesis testing. In Section 2.2 we discuss criteria for prediction

and sample path synthesis in a generalized noise framework. Section 2.3 gives a brief

introduction to the linear-quadratic-Gaussian assumption and its solution for station-

ary systems, the Wiener filter. We then cover the basics of nonparametric density

estimation, the Parzen density, and kernel functions in Section 2.4, and discuss the

application of these ideas to the problem of entropy estimation in Section 2.5. In

Section 2.7 we state a more precise formulation of our model and problem, and dis-

cuss our technique for searching the model space for good representations.

21
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2.1 Entropy and Likelihood

2.1.1 Entropy and Mutual Information

The contents of this thesis are heavily dependent on ideas from information theory,

specifically the concepts of entropy and mutual information. Thus, we provide some

of the definitions and results which will be made use of later. For a full development

of the subject of entropy and information theory, see [4].

Entropy is a measure of randomness, or equivalently of uncertainty. For a

(continuous) random variable X distributed according to a density function p(x)

with support S, the (differential) entropy is defined to be

H(p) = Ep[− log p(x)] = −
∫

S

p(x) log p(x)dx (2.1)

For a process X = {Xt} (a time-indexed sequence of random variables) the

entropy rate is defined as [4]

H(X ) = lim
N→∞

1

N
H(X1, . . . , XN)

when the limit exists. It is easy to show that stationarity of X is a sufficient condition

for convergence of the limit.

The relative entropy, or Kullback-Leibler divergence between two probability
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distributions p(x) and q(x) is given by

D(p‖q) = Ep

[
log

p(x)

q(x)

]

Although this quantity does not behave as a true distance metric (for instance, it

is not symmetric), it does have some distance-like properties that make it useful to

think of it in this way. Specifically, D(p‖q) is always non-negative and equals zero if

and only if p = q.

Mutual information provides us with a quantifiable measure of the information

shared between two random variables, specifically the reduction in entropy when one

of the two is known. Some useful equivalent forms of this are given:

I(X; Y ) = I(Y ; X) = I(X; f(Y )) f(·) any invertible function

= D(p(x, y)‖p(x)p(y))

= H(X) − H(X|Y )

= H(X) + H(Y ) − H(X,Y )

A note with respect to these forms and our application: the third form H(X) −
H(X|Y ) has an intuitive interpretation, namely the reduction in uncertainty of the

“variable of interest” X given some observations Y . However, since we will usually

be dealing with a continuous value for our conditioned variable Y , computationally

speaking we will be manipulating the the last form, H(X) + H(Y ) − H(X,Y ).

In addition, we will find the data processing inequality to be of great impor-

tance, as it describes the concept of information loss. It states that

I(X; Y ) ≥ I(X; f(Y )) for any f(·)
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with equality if (but not only if) f(·) is bijective. That is, we can at best preserve

information by processing data; we can never have more than the original data, and

if we are not careful we can destroy it.

In statistics, there is a notion of sufficiency which is related to these concepts.

If we observe a random variable Y , related to a system controlled by the underlying

variable X, any statistic f(·) forms a Markov chain:

X → Y → f(Y )

implying graphically that, conditioned on the value of Y , f(Y ) is independent of X.

A sufficient statistic of Y for X is a function f(·) (generally not invertible) for which

the following is also a Markov chain

X → f(Y ) → Y

This is equivalent to an equality of mutual information:

I(X; Y ) = I(X; f(Y ))

So a sufficient statistic is one which has attained the absolute maximum mutual

information.

This property is generally taken to be a boolean notion; either a statistic is

sufficient or it is not. However, within non-sufficient statistics there are degrees of

loss. This creates the notion of relative sufficiency [20]. Such a concept is useful

since there are many cases when a true sufficient statistic of dimension less than the

original Y is not known or does not exist, yet (perhaps due to data volume) the data

must still be summarized by some function. In such cases it behooves us to use as
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“nearly sufficient” a statistic as we can. In the future we will sometimes refer to such

“relatively sufficient” functions as “informative statistics”.

2.1.2 Likelihood & Hypothesis Testing

Later in the thesis we will be discuss using our models for discriminative purposes,

meaning, selecting or rejecting a model as “fitting” new data. This is fundamentally

a question of the likelihood p(x). For a more complete treatment of the subject see

e.g. [26].

Suppose we wish to decide between two hypotheses H0 and H1, given a vector

of observations X. If we define PD, PF to be the probabilities of detection (decide

Ĥ = H1 when H1 is true) and false-alarm (Ĥ = H1 when H0 is true), respectively,

we can ask to find the decision rule which maximizes PD for PF ≤ α. This is the

Neyman-Pearson criterion.

Theorem 1 (Neyman-Pearson Rule) Define p0(X), p1(X) to be the probability

density function of X under H0, H1 respectively, and let L(X)
.
= p1(X)

p0(X)
. The deci-

sion rule which maximizes PD for PF ≤ α has the form

Ĥ =
{H0 L(X) ≤ λ

H1 L(X) > λ

Proof. See [26].
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This gives us the likelihood ratio test:

p1(X)

p0(X)

Ĥ=H1≥
<

Ĥ=H0

λ

where λ has been chosen so that PF = α. We could also choose λ so that PF = 1−PD,

i.e. that we wish the probability of incorrectly deciding H1 to equal the probability

of incorrectly deciding H0. In this case we find that λ = 1; this is also called the

maximum likelihood test.

We can apply any monotonic transformation without changing the test; it is

common to take the logarithm, giving

log p1(X) − log p0(X)

Ĥ=H1≥
<

Ĥ=H0

log λ

It is worth mentioning that if X = {Xi}n
1 , with Xi independent, then the

average log-likelihood,

n−1 log L(X) = n−1
∑

log p(xi|H1) − n−1
∑

log p(xi|H0)

provides an equivalent test. It should also be noted that this framework is easily

extensible to M hypotheses.

The likelihood ratio test ties in directly to the Kullback-Leibler distance func-

tion as well, since

D(p1‖p0) = Ep1 [log(
p1

p0

)] and‘D(p0‖p1) = −Ep0 [log(
p1

p0

)]
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So the KL distance has an interpretation as the average log value of the likelihood

ratio when H1 is true, or as the negative of the average log likelihood ratio when H0 is

true; thus relating the distance between two hypotheses to our ability to discriminate

between them.

Finally, we can even construct a test for a single hypothesis with unknown

alternatives, e.g.
H1 : X = X1

H0 : X �= X1

In this case, without any sort of prior knowledge of the alternatives when X �= X1,

we cannot calculate PF , but given p(X ) we know the entropy rate of X and for e.g.

a symmetric threshold test

|H(X ) +
1

N
log p(X1, . . . , XN)| ≤ η ⇒ H1

we can calculate η from a given PD. We will discuss this further as it relates to one

of our applications, in Chapter 5. A more detailed treatment of entropy rates and

hypothesis testing can be found in [4].

2.2 Model-based synthesis

Whenever one talks about prediction, there is implicit an idea of the cost (or loss)

function associated with that prediction. A predictor cannot be good or bad except in

relation to a particular cost function. Typically this function is taken to be e.g. mean-

squared-error. The MSE predictor, however, may lead to atypical predictions (in

symmetric bimodal distributions, for instance, it will select the center). Unfortunately

this simply highlights that often the loss function we would like to use is not so simple
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x

p(
x 

| y
)

Figure 2.1: A bimodal density with ML estimate (triangle) and MSE estimate (square)

to evaluate, but instead corresponds to some more heuristic ideal. In cases like this,

a more sensible predictor from a likelihood standpoint might be the max likelihood

estimate (argmax p(x)). This carries with it its own difficulties, however, since the

ML estimate may not even be unique, and the ML sample path may not be typical,

and so may not bear resemblance to any observed sequences.

The idea of evaluating the quality of sample path realizations is even less well-

defined. For a model to truly capture the dynamics of a system, it should be able

to produce not just the most likely sample path, but a set of sample paths which

(one hopes) approximates the true distribution of such paths. Again, evaluating the

quality of these new sample paths implies more analytic knowledge of the system then

we are likely to have. Consequently, this forms another open question arising from a

methodology which does not conform to a traditional predictive representation. Fully

exploring such questions is beyond the scope of this thesis, but we will address them

empirically later in the thesis.
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2.3 Linear methods & the Wiener Filter

In the past, a large body of the work on dynamical systems has been in the regime of

the Linear-Quadratic-Gaussian (LQG) assumptions, namely linear system dynamics

with gaussian noise, optimizing for a quadratic cost function. We briefly review some

of this work here, as it will be used later for comparison.

Suppose we wish to predict a stationary process X = {Xj} from observations

yj, where each yj is a vector y = [y1, · · · , yM ]. Let Ryy be the covariance matrix for

y, so

(Ryy)i,j = E[yi, yj]

Denote the cross-covariance between X and y as

Rxy = [E[x, y1], · · · , E[x, yM ]]

Then, an optimal α in the sense that it minimizes

E
[
(Xi − αTy)2

]

will solve the normal equations,

RT
xy = Ryyα

If Ryy is positive definite, then α is unique and given by

α = R−1
yyRT

xy



30 Chapter 2. Preliminary Information

A more detailed treatment and proofs can be found in [26].

2.4 Nonparametric Density Estimation

Sometimes, however, it is not desirable to make this assumption of Gaussianity for

any randomness in the system. In some cases, when attributes of the system are well

known, it may be judged that another type of parametric density is more suitable

for fitting to the data. But other times it is more desirable to simply let the data

observed about the system dictate the modeled randomness, unconstrained (or as

loosely as possible) by an apriori form. This last is the goal of nonparametric density

estimators.

2.4.1 Parzen Window Estimator

A common form of nonparametric density estimator is the Parzen window, or kernel,

estimate. Given data observations {Xi}N
1 , we define

f̂(x) =
1

N

N∑
i=1

Kh(x − Xi) (2.2)

where

Kh(x) =
1

h
K(

x

h
) (2.3)

Here, K(·) is the kernel function and h represents the kernel size, or bandwidth. K(·) is

usually taken to be a symmetric density function itself, so that f̂(·) is also guaranteed

to be a valid density function. However, we must select the form of the kernel function
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Figure 2.2: A kernel density estimate from 4 samples; kernels shown as dashed

(shape) K(·) and the bandwidth h.

Criteria of Fit

Before we can address how best to construct this estimator, we must try to describe a

cost function for our estimate. Currently, the two most commonly used cost functions

are the Mean Integrated Squared Error (MISE)

MISE = E

[∫
(f̂(x) − f(x))2dx

]
(2.4)

and the Kullback-Leibler divergence,

D(f‖f̂) =

∫
f(x)(log f(x) − log f̂(x))dx (2.5)

In general, we will choose to base our methods on the second, due to its similarity

to likelihood. KL divergence measures a kind of distance in likelihood, and so it

is more plausibly applied to selecting density estimates for hypothesis testing and
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sampling from the density, both likelihood-based tasks, than a squared-error criterion.

(The MISE criterion is generally considered a good choice for density visualization,

however.)

Kernel Shape and Size

Selection of an optimal kernel shape and size is an important area of research on

these techniques. Ideally, one would like to do both; however each is difficult even

individually and a method for doing both well has been elusive. In general, we would

like to choose our kernel so it is smooth (differentiable) and relatively efficient to

evaluate. It may also be that we would like a kernel with “tails”, as choosing a

kernel with relatively small support may cause outliers to unduly influence the kernel

size (see below). An asymptotic argument yields the (asymptotic) optimality (with

respect to Mean Integrated Squared Error) of the Epanetchnikov kernel [23],

Ke =
{ 3

4
√

5
(1 − t2

5
) |t| ≤ √

5

0 otherwise

Unfortunately, the improvement it offers over other kernel shapes is small, in terms of

relative data requirements to achieve the same MISE [23]. Furthermore, the fact that

it has finite support will be problematic for our purposes – when evaluating likelihood

it would be possible for a single observation outside the support to force our estimate

to zero. Often the small MISE improvement is not worth risking such concerns, and

convenience or habit encourages us to simply choose a Gaussian shape.

Selection of kernel size is a crucial decision, however. The two criteria above

lead to different schools of bandwidth estimators. There has been considerable work

for the MISE case, for the “least-squares cross-validation” approach [2, 5], the “plug-
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in estimator” method [11, 22], and several others. The KL-distance case, however,

has received less attention; the most common method is the leave-one-out maximum

likelihood approach [5]. Bearing in mind that for the rest of the thesis these density

estimates will be used for calculating likelihoods and sampling, it seems natural to

select the KL-distance as our error measure, and so we will refrain from further

discussion of the alternatives.

Another justification for our use of this metric can be found through compar-

ison to parametric model estimation. It can be shown that for a parametric model

p̂, minimizing the KL divergence D(p‖p̂) is equivalent to performing maximum like-

lihood parameter estimation. So KL divergence is widely applied as a cost function

(albeit under another name) in parametric modeling; thus it is probably reasonable

to use it for nonparametric as well.

To minimize D(f‖f̂), we equivalently minimize the portion dependent on f̂ :

− ∫
f(x) log f̂(x). If we define the leave-one-out estimator

f̂j(x) =
1

N − 1

∑
i�=j

Kh(x − Xi) (2.6)

then we can write as an estimate of this quantity the function

CVML =
1

N

N∑
i=1

log f̂i(Xi) (2.7)

Notice that it is important to use the leave-one-out estimate for f̂ , since otherwise the

ML bandwidth solution would be h → 0, giving a sum of δ-functions at the observed

data points.
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Variable kernels

Although asymptotically we can expect good performance from the kernel estimation

method, we would still like to find ways to improve its small-sample performance. One

way this might be possible is to attempt to imbue the kernel size with a sense of the

local structure; for instance, it makes sense that samples in the tails of a distribution

be more “spread”, while keeping samples in dense regions from being over-smoothed.

A good method for doing so is given by [23], the “variable” or “adaptive” kernel size.

The basic idea is this: define hi = h · αi to be the bandwidth at Xi. Given an

estimate of the distribution, use that estimate to assign samples with low probability

a high proportionality constant α, and samples with high probability a small α. For

example, using the kth nearest neighbor estimate, we could define hi = h · di,k, where

di,k is the distance to the kth nearest neighbor of Xi. For the adaptive approach,

this new estimate may be used to iterate the process. Later in the thesis we shall see

examples of advantages gained by using a variable kernel size.

Multivariate densities

A few more issues arise when dealing with multivariate densities. Specifically, it is

now possible to choose kernel shapes and sizes which have unequal width in various

directions. Proposals for selecting kernel shape include using the covariance structure

of the data [9] and iteratively searching over rotations and kernel sizes [19]. Certainly

executing such a search can become computationally intensive, due to the coupled

nature of all the quantities being estimated. Most of the efficient univariate estimators

(such as the plug-in estimate [11, 22]) do not appear to be easily extensible to the
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multivariate case. Lastly, we note that what is really needed is a method of capturing

a local structure property to both shape and bandwidth; but a solution to this has

yet to be found. Further discussion will take place later in the thesis, in Section 4.2.

2.5 Nonparametric Entropy Estimation

2.5.1 Entropy

If we wish to use entropy or mutual information as a criterion, for example to search

for nearly sufficient functions, we need to evaluate (or more commonly, estimate) the

entropy of a random variable. When p(x) is not known exactly, we must estimate

H, which may or may not involve estimating p explicitly. In fact, there are many

techniques for finding an estimate of the entropy H [18, 2]. Unfortunately most of

these techniques are for estimating the entropy in a single dimension, and do not

extend easily to multidimensional distributions. If, however, we have explicitly an

estimate of the distribution p̂(x), from samples xi, a simple solution presents itself:

Ĥ = −
∫

p̂(x) log p̂(x)dx

However, this is not at all easy to calculate; in order find something with more

reasonable computational requirements we will be forced to make an approximation

somewhere. We mention two possible estimates, which differ only in where the ap-

proximation takes place.

The first possibility presents itself from the expectation interpretation of en-
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tropy: using the law of large numbers to approximate the expectation, we can write

−Ĥ = E[log p̂(x)] ≈ 1

N

N∑
i=1

log p̂i(xi) (2.8)

where p̂i is the estimated p.d.f. leaving out data point xi (see e.g. [13, 23]). This

method gives us an approximate integral of our estimated density function, easing

the computational burden associated with the integration.

2.5.2 ISE Approximation

The second possibility is to approximate the integrand (p log p) of Equation 2.1. It

turns out that, expanding p(x) log p(x) in a Taylor expansion around a uniform density

u(x) and keeping terms out to second order, we have

−Ĥ = −
∫

p(x) log p(x) ≈
∫

(p(x) − u(x))2dx + a constant

This can give us a useful approximation of the gradient of H(p); for more details see

[8].

There is a good justification for this expansion in the case that we are maximiz-

ing entropy. For a finite region of support, the distribution which maximizes entropy

is the uniform distribution. Therefore, as we get closer and closer to the maximum our

approximation becomes better. Unfortunately, maximizing mutual information is not

quite so simple – it involves both maximizing the marginal entropy while minimizing

the joint. However, it turns out that even in this region, the approximation is still

reasonable. Empirical trials have shown that gradient estimates using this estimate

are accurate enough for our use.
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As with the previous estimate, the computation involved in calculating this

estimate is O(N2) in the number of data points in the density estimate. It does,

however, allow us a few more advantages. There is a slight computational advantage

(of constant order), but the main draw of this approach is that it possesses an auto-

matic saturation effect. Namely, if (as above) the function we are training is confined

to a finite region of support, our gradient will cease before reaching the edge of that

support. A true entropy estimate will continue to expand the region of support as

large as possible, giving a nonzero gradient outward for points at the very edge of

the region. A neural network (see below), with its saturating nonlinearity, will thus

continue to increase its weights ad infinitum. Thus one cannot be assured that the

network weights will converge; so one must use distance in the output space to deter-

mine a stopping time. By using ISE instead, we are assured that our network weights

will not grow beyond a reasonable scale (see [8]).

2.6 Neural Networks and Backpropagation

Connectionist techniques, especially neural networks, have become widely used in the

past few decades. A neural network, or alternatively an N-layer perceptron, is defined

to be a function of the form

f(x1, . . . , xM) = σ


∑

iN

αN,iN σ


∑

iN−1

αN−1,iN−1
σ

(
. . .

(∑
i1

α1,i1xi1

))





where σ(·) is a saturating nonlinearity, in our case the hyperbolic tangent function.

They hold the promise of many desirable properties, but also have a number

of drawbacks. Among the properties which are most useful in our context is the
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Figure 2.3: A Dynamical System Model

fact that, for a sufficiently large network structure, the output can be shown to be a

universal approximator [1]. In addition, there exists an efficient method of updating

the network weights based on gradient information at the output, generally referred

to as back-propagation [3].

2.7 Learning in Dynamical Systems

In this thesis we will be dealing with the modeling of dynamical systems, and so we

must ask the question of what class of models we shall attempt to incorporate. We

would like the class of models to be large enough that it either contains the true

system of our application(s), or a “good” approximation in some sense. However, the

model must be limited enough to give us a structure to search over tractably.

We will consider a generalized dynamical system shown in Figure 2.3. Here,

xk denotes the time series we wish to model; Y denotes a random variable related

(causally) to X . The yk are our observed values of Y; and G(·) is a possibly nonlinear,

possibly vector-valued function. The underling assumption in this diagram is that

G(y) is a sufficient statistic for y, and that the conditional distribution, p(xk|G(yk)) is
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constant over time. Here, y could include past values of the process x, or side informa-

tion about x from another observed process. If there is no side information available,

this reduces to p(xk|G(xk−1 . . . xk−N)); for example any stable auto-regression of the

form xk = G(xk−1, . . . , xk−N)+ νk for νk i.i.d. falls into this category. It can be noted

that these are equivalent to a Markov chain whose state includes all N of these past

values [7].

To summarize, we assume the state of the system is (or is observable within)

the vector yk; G(yk) represents that portion of the state which is germane to the pre-

diction of xk, and p(xk, G(yk)) describes the relation between the state and the signal

observations. Thus the problem of modeling the process is equivalent to modeling

the function G(·) and the distribution p(x,G(·)).

In order to search over dynamical systems of this type and be able to model

a system as such, we must further limit our model to a parameterized form for Ĝ

and search over the set of parameters. In general, any differentiable function Ĝ will

do; within the rest of this thesis we have selected Ĝ in the form of a neural network,

because of its approximation power and efficient form for the differential parameter

updates (see Section 2.6). Although all of the following experiments are restricted to

a single layer, the methodology is also applicable to multiple layers.

Since by hypothesis, G(y) is a sufficient statistic for y (for predicting x), we

know that

I(x;y) = I(x; G(y))

and that for any Ĝ,

I(x;y) ≥ I(x; Ĝ(y))

So if we wish to come as close to G as possible, in the sense that we reduce as
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much uncertainty about x as if we knew G exactly, we should maximize the quantity

I(x; Ĝ(y)). Note that to achieve this bound with equality, we need not be able to

represent G exactly – representing any invertible transformation of G is sufficient. Of

course, some transformations of G may have simpler relationships p(x,G(·)).

Throughout the rest of this thesis we will refer to such a functions G(·) (or

approximations Ĝ(·)) alternately as statistics, or functionals of the data, and as sub-

spaces of the data space, meaning the space induced by the function (and its density).

G(·) can be thought of as a differentiable projection from Y whose image is of di-

mension less than or equal to G’s. Therefore, G’s inverse image in Y is of the same

dimension, and G describes an equivalence between all points of Y mapping to the

same G(y). If our statistics are sufficient for x, equivalent points in Y contain exactly

the same information about x.

Thus, the basic idea of searching over model space is as follows: choose an

initial Ĝ, and model p(x, Ĝ(y)) from observed data. Estimate I(x; Ĝ(y)) from the

estimated p̂(·) and use its gradient with respect to the parameters of Ĝ to increase

I(x; Ĝ(y)).

For a step-by-step treatment of the learning algorithm, see Appendix A.
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Learning Random Telegraph Waves

The rest of this thesis will be devoted to applying the idea of mutual information-

based learning of system dynamics to various problems. We begin by constructing

a simple dynamical system to highlight a few of the areas in which more canonical

methods can fail. Yet we take care to keep the system simple enough to allow us to

analytically characterize the performance of the algorithm, a characterization which

will be nearly impossible for any real-world systems.

3.1 Random Telegraph Waves

Although there is a common stochastic process which is normally known by this title,

we will usurp the name for a signal as defined below. Let XM = {xk} be a random

41
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(a) (M=4) (b) (M=20)

Figure 3.1: Random Telegraph Waves of differing memory depths

telegraph wave with memory M (RTWM ). Then xk = µk + νk, where

µk =
{ µk−1 with probability pk

−µk−1 with probability 1 − pk

(3.1)

pk = max(α
1

M
|

M∑
i=1

xk−i|, 1) (3.2)

νk ∼ N(0, σ2), independent Gaussian noise (3.3)

where α < 1 is a constant. We selected this process because its parameters are simple

functions of the past, but their relation to the signal’s future is nonlinear. Changing

the process’ memory (M , the length of dependence on the past) changes the observed

dynamics of the system. Figure 3.1 shows a comparison of RTWM signals for different

memory depths (M = 4 and M = 20).

For Figure 3.1 and for the rest of this chapter, we will use the parameters

α = .75, µ = |µk| = .8, and σ = .1.
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3.2 Process Analysis

Before discussing our methodology or results, it behooves us to briefly discuss the

characteristics of the signal defined above. This will give us some insight into how to

proceed, and also some bounds and expectations about our possible performance on

such a signal.

First of all we can ask the question, what are the true sufficient statistics of

our signal? For an RTWM , it is clear that the full state at time k − 1 is at most

{µk−1, xk−1, . . . , xk−M}, since pk can be calculated from {xk−i} and νk is indepen-

dent of any observation. We also note that I(xk; {µk−1, f(xpast)}) is maximized for

f(xpast) = pk, since xk is independent of the process’ past given µk (it is Gaussian

with mean µk) and µk is independent of the past given {µk−1, pk} (it is Bernoulli).

We can then calculate the entropy of the process given this state

H(XM) = Eµk−1,pk
H(xk|µk−1, pk) (3.4)

= −
∑

µk−1∈{±µ}

∫ 1

0

p(µk−1, pk)

∫
p(xk|µk−1, pk) log p(xk|µk−1, pk)dxkdpk(3.5)

By symmetry of the definition, p(µk = µ) = .5 and p(pk|µk) = p(pk), and so we can

write

H(XM) =

∫ 1

0

p(pk)H(xk|µk−1 = µ, pk)dpk (3.6)

Here, p(xk|µk−1, pk) is a weighted sum of two Gaussians; but p(pk) is not so easy.

Define qk = 1
M

∑M
i=1 xk−i and note that I(xk, {µk−1, pk}) = I(xk, {µk−1, qk}), because

pk is a function of qk, and I(xk, {µk−1, pk}) is maximal with respect to observations
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of past x. So, we can replace pk above with qk, and we know that

qk =
1

M

M∑
i=1

xk−i

=
1

M

M∑
i=1

µk−1 +
1

M

M∑
i=1

νk−1

So qk is distributed as the sum of M + 1 Gaussians, each with variance σ2

M
. The

weights of these Gaussians are unknown, but can be estimated from large sample

sets. Then we may integrate (numerically in practice) to find

H(XM) =

∫
p(qk)H(xk|µk−1 = µ, qk)dqk (3.7)

giving us an estimate of the true entropy rate of an RTWM . Estimates for M ∈
{4, 20} can be found in Table 3.1.

We might also ask the question, how easily can one differentiate between two

RTWM ’s? To answer this we attempt to calculate D(p(XM1)‖p(XM2)), specifically

for the example of M1,M2 ∈ {4, 20},M1 �= M2. We write

D(pXM1
‖pXM2

) = −H(pXM1
) −

∫ ∫ ∫
pXM1

(q1, q2)pXM1
(x|q1)pXM2

(x|q2)dxdq1dq2

(3.8)

Unfortunately again, exact calculation of these quantities would require the joint

density

p(q1, q2) = p

(
1

M1

M1∑
i=1

xk−i,
1

M2

M2∑
i=1

xk−i

)

which is more difficult to estimate than its marginals described above. Therefore, we

make another simplifying approximation – that the two quantities are independent

(which they clearly are not, though the approximation improves with larger separation

between M1 and M2). This allows us to define a random variable which is entropically
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equivalent to “first-order knowledge” of XM , namely

ζM ∼ pM ∗ N(µ, σ2) + (1 − pM) ∗ N(−µ, σ2)

(where pM is the average probability of switching for an RTWM ) and use it to

approximate

D(pXM1
(x)‖pXM2

(x)) ≈ pζM1
(x)‖D(pXM2

(x)) (3.9)

We know H(XM), and the second term in (3.8) then becomes

∫
pXM1

(q2)

∫
pζM1

(x) log pXM2
(x|q2)dxdq2

We can approximate pXM1
(q2) the same way we did pXM1

(q1) above, and the other two

distributions are weighted sums of two Gaussians. Again, in practice we numerically

integrate to find the results in Table 3.1.

Table 3.1: Approximate Entropy rates and KL-distance for XM=4 and XM=20 (in bits)

M1 H(M1) D(M1‖M2)

4 -0.589 .556
20 -0.644 .760

Finally, we might wish to have some lower bound on our expected perfor-

mance at estimating the entropy rate or at the task of differentiation. Because of the

symmetry of the signal, an RTWM of any M will have the same 0th-order statistics,

meaning it will be ±µ with probability .5, plus Gaussian noise. We might therefore

naively attempt to differentiate on the basis of p(xk|µk−1). Since I(pk; µk−1) �= 0, we

find that H(xk|µk−1) is upper bounded by but approximately equal to H(ζ), where ζ

is as defined above. (Except for very small M , this is a less strained approximation

than the one in Equation 3.9.) As can be seen from the results in Table 3.2, the re-

sults are quite far from the true distributions, and are probably unsuitable for signal
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differentiation.

Table 3.2: First-order model approximate entropy & KL-distance (bits)

M1 H(ζM1) D(ζM1‖ζM2)

4 -.400 .054
20 -.548 .050

This indicates that not just any statistic will work; we need to capture in-

formation which is present not only in the prior mean, but also in the switching

probability in order to discriminate between these waveforms. Intuitively, this is be-

cause both types of waveform have nearly the same average probability of switching;

since the probability of switching is not influenced greatly by a single sample for large

M , we observe periods of infrequent switching until the probability of doing so grows

to significance as which point we will observe a number of rapid switches until p has

once again fallen. So although given a long window of the past we can easily tell the

difference, a myopic data window would be fruitless. This also provides a justifica-

tion for the data summarization – we have the hopes of achieving good separability

with only one statistic, whereas any single observation of the past would be unable

to distinguish the two dynamics.

3.3 Learning Dynamics

In this section we will address a few practical concerns for the implementation. Specif-

ically, there are a number of parameters alluded to in Section 2.7. Our notation as

we discuss these issues will follow the notation of that section.
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3.3.1 Subspaces & the Curse of Dimensionality

We know we can capture the dynamics of our system, and all the information we need,

if we can reliably estimate the joint pdf p(xk, xk−1, . . . , xk−M). Unfortunately, the data

required to do so nonparametrically goes up exponentially with M , and therefore the

computation involved in evaluating or sampling from such a distribution also increases

exponentially. So we must constrain the problem somehow, in order to assuage our

computation or data-availability concerns. Normally, this is through selection of a

parameterization for the density p(·); but as we have already said this may be overly

constraining — there may be no parameterized density we are confident will capture

the uncertainty. So instead, we parameterize the portion of the data used, in that

we find a lower-dimensional description of it. This lower-dimensional form describes

a subspace near which the data points cluster. Then we can perform our density

estimate on this subspace, and achieve a better quality estimate with fewer data.

3.3.2 A form for Ĝ

Before we can do anything else, we must select a parametric shape for the functions

of the past we will allow, namely Ĝ. We have already said that Ĝ will take the form

of a multilayer perceptron; so the size of this perceptron is what we must decide. We

will first decide the number of output nodes, since this also determines the size of the

pdf we must estimate; then we will discuss the size of the network.

We know from the previous section that it is possible to access all relevant

information about an RTWM from its past M data values (with the small exception

that µk−1 is not actually observable, but under the assumption that σ  µ it is
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practically unambiguous). We also know that the information about xk in {xk−1, . . .}
is accessible in a compact form; explicitly in the form {µk−1, pk}. So, in the language

of Section 2.7,

G(xk−1, . . . , xk−M) = (µk−1, pk)

In the interest of characterization, we decide upon a form for Ĝ which cannot

quite capture this exact statistic. The purpose of restricting ourselves to functions Ĝ

which cannot completely represent the sufficient statistics of the system is to more

closely resemble the situations we will deal with later, where the statistics we are

searching for, their form, and even how many we require are not known. We wish to

show that even in such cases, there is a reasonable expectation that, having simply

guessed at these quantities, we can still learn Ĝ’s which capture useful information

about the system. By restricting ourselves in a known situation we can gauge our

performance loss.

With the goal of demonstrating a degree of such robustness, we select a di-

mension for Ĝ(·). The true sufficient statistic is two-dimensional; therefore we will

only allow the output of Ĝ to be one-dimensional. This will put us close to, but still

shy of, true sufficiency.

However, in analyzing the true sufficient statistic it can be noted that, since

µk−1 is a discrete random variable, and pk has a limited range (pk ∈ [0, 1]) if we

had a complicated enough function for Ĝ it would be possible to represent both

unambiguously in a single number (e.g. Ĝ(·) = 2 ∗ µk−1 + pk). Therefore we choose

Ĝ so this cannot be achieved. It is possible to represent (a good approximation of)

this function with a two-layer perceptron; so we again force ourselves to fall short

by restricting ourselves to a single-layer network. Finally, we should note again that
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the true sufficient statistic is actually only almost observable – although sign(xk−1)

provides an excellent estimate of µk−1, there is always a small chance (a function of

the values of µ and σ) that the noise term is large enough to obscure the value of

µk−1.

So, our form for Ĝ is:

Ĝ(xk−1, . . . , xk−M) = s

(
M∑
i=1

αixk−i

)

where s(·) is a sigmoid function, specifically the hyperbolic tangent (see Section 2.6).

3.3.3 Regularization

Often, machine learning problems can be difficult or ill-posed, with a large number

of degrees of freedom or a large number of local minima or maxima. Such problems

are simply too unconstrained to ensure that good solutions are found. To assist the

learning process, we can add regularization penalties. The concept of regularization

is to penalize solutions which are “too complicated” [24]. Examples (for functions

such as ours) include encouraging sparseness (few nonzero coefficients), or low-energy.

Regularization, of course, introduces its own parameters: what type of penalty to

apply and the tradeoff of the relative importance of simplicity to quality of fit. The

former we choose to encourage sparseness – an L1 penalty (fixed reduction amounts);

the latter we choose based on experience and experimentation.

One important consequence of using regularization can be illustrated with a

simple example. Suppose we have a process X with E[Xk] = 0, and there is no
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information to be gleaned from {Xk−n1 , . . . , Xk−n2}. In that case,

E

[
n2∑

i=n1

αiXk−i

]
= 0

and without weight decay, there is no reason for {αi}n2
n1

to change at all, whereas the

desirable thing would be for such “useless” weights to be zero. In expectation, of

course, it doesn’t matter; but such “false dependencies” will increase the variance of

our estimator and so affect small-sample performance.

3.3.4 Dataset size

There are several data sets for which we must select required sizes. Each has various

pros and cons associated with increasing or decreasing size, and so each must be

evaluated separately.

First, there is the overall training data set. This is the set of all points which

will be used to train our informative functions. If this set is too small, statistical

variations within it can lead to selection of informative features which are actually

anomalies; however, larger data sets may not be available, and we may wish to reserve

some of our training data for later cross-validation, to estimate new data’s likelihood

under our model. In this particular case, the size of this set is not a problem; we can

simply generate as much as we like.

Secondly, but related to the first, is the size of the dataset to be used at any

one time in estimating the joint pdf p(xk, Ĝ(xpast)). Again, if this set is too small, we

may train towards anomalously “informative” functions. If it is too large, however,

we pay a heavy computational penalty – we evaluate a nonparametric pdf (or rather
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its gradient) on its own examples and so the cost is quadratic in the number of points

used. This set can be chosen to be the complete training data set, or a random

subset which changes over time as the learning progresses. In the first case, the best

estimate of the information gradient given the examples is always used to update the

statistic; in the latter, we use a stochastic estimate whose expectation is equal to the

best estimate, but with a variance dependent on the size of the subset we use. It is

interesting to note that in addition to the computational speedup gained by selecting

the latter method, it may also give the learning process some robustness to local

maxima, since there is a chance of mis-estimating the gradient and perturbing away

from a local max. Of course, doing so may also slow the learning process.

Finally, there is the size of the data used in the estimate p̂(x, Ĝ(xpast)). Once

again, each evaluation of the pdf is linear in this size (so that evaluating a length-M

process implies MN operations), and all the data which forms it must be saved. This

too could be stochastically estimated by only using a subset of the available data at

any one evaluation, but the costs of finding a suitable kernel size alone would seem to

make this a less desirable technique. Note as well that there is a minimum number

of evaluations we can perform when we estimate the entropy rate of a process — we

must evaluate a long enough data sequence that the process looks ergodic; else the

likelihood will not converge.

All of these concerns are problem-specific, with no way currently to automat-

ically determine them such that we guarantee good performance. Each induces an

intrinsic tradeoff between computational expense and accuracy. Therefore we decide

the parameters based on experimental trials, and to some degree based on how long

we can stand to wait for the calculations to run: a training data set of 1000 points,

of which at any time step of the training process we will use 100 to estimate the

information gradient; and a density-estimate data set of 200 points.
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3.4 Learned Statistics

We cannot assume that we know, apriori, the length of the past dependence of a

signal. In the case of the RTWM , we know that M samples are sufficient, but

without knowing M how do we choose a statistic length? In fact, in the future we

may not even know that there exists a finite M with that trait. Therefore we would

hope that our technique be robust to an incorrect choice of the dependence length N .

To demonstrate this, we learn statistics for varying N , on two different RTWM ’s.

Our first concern is that we be able to overspecify the dependence length

N > M and, in training, discern the fact that there is no more information to be

gleaned from past samples. The presence of a weight-decay term will encourage such

unimportant data values to be de-emphasized. Figure 3.2 shows the weights of learned

networks of size N = 25 for RTWM ’s with M ∈ {4, 20}. As can be seen, there is a

strong dependence on the previous value xk−1, which is expected since it provides the

most information about the state µk−1. For small M , M = 4, we see that the recent

past has much more information relative to the past beyond M ; and although for the

larger M = 20 the dependence length is less clear-cut, the information is obviously

more uniformly distributed across a large region of the past than for M = 4. So we

are not unjustified in hoping to be robust to the presence of some extraneous data.

We are also concerned with our ability to extract information out of too little

data, for example the situation where we have under-specified the dependence and

chosen N < M . In a situation like this, it is difficult to read anything into the selection

of weights themselves, since it is difficult to analytically describe the dependence that

might be exploited. Thus this situation will instead be examined in Section 3.5.
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(a) (M=4) (b) (M=20)

Figure 3.2: Informative functions of the past for RTWM ; weights as a function of
delay

We can, however, verify that the learned functions do indeed induce low-

entropy densities. Figure 3.3 shows the joint densities between the learned statistics

and the next data point (the data point being only found near ±µ. Low entropy,

in this case, simply means that for a given statistic value, most of the probability is

located on one side or the other, and there are few if any modes directly across from

one another.

3.5 Empirical Entropy Rates and Likelihood

In evaluating the performance of our model, it is natural for us to use the likelihood

of random telegraph waves as a measure of quality. What we should see is that the

likelihood of a matching RTWM corresponds to our analytically estimated entropy

rate for such an RTWM , and that mismatched RTWM s correspond to our estimated

KL divergence between the two processes.
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Figure 3.3: Estimated densities p(xk, Ĝ(xk−1, . . .))
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One way in which we might estimate our model’s entropy rate is to simply

calculate the entropy of the pdf we model with. Similar to our joint and marginal

entropy estimates during training, we can find the leave-one-out conditional entropy

estimate of our Parzen window density. In general we should expect this method to

underestimate entropy (overestimate likelihood). This is because we are reusing the

training data for this estimate, and our training procedure minimizes the conditional

entropy for the training set. Also, our kernel size is chosen to maximize leave-one-out

likelihood. If we had an abundance of data we might want to improve our estimate by

choosing kernel size to maximize the likelihood of a cross-validation data set instead.

If our access to new data is limited, however, our original training set may be the

best estimate available.

A better estimate of entropy rate can be found by using cross-validation data

and taking its likelihood under our model. We can also then take data from another

process, and find its likelihood under our model; their difference will be the estimated

KL divergence. It also gives a graphical view of an maximum likelihood hypothesis

test.

Examples of such estimates are shown in Figure 3.4. These two plots show

the accumulated log-likelihood of new data from RTWM processes with M = 4 and

M = 20, under one of the models p̂XM=4,N=25 or p̂XM=20,N=25. Dashed lines indicate

the negative entropy rate of each process estimated analytically (middle and lowest

dashed lines) and the distribution’s leave-one-out conditional entropy estimate (top-

most dashed line)

Figure 3.4 shows a comparison of likelihoods between different processes under

a given model; but if we wished to test which of these two process classes a new sample

path belonged to, we would instead compare the likelihood of that path under each
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(a) (M=4 model) (b) (M=20 model)

Figure 3.4: Compare process likelihoods under fixed model

(a) (M=4 process) (b) (M=20 process)

Figure 3.5: Compare a process likelihood under different models

of our two models. In such a case, we would also be concerned with the variance

of our likelihood with respect to our data sets, specifically the evaluation data (the

samples to be classified) and the data set used for modeling p̂. Such a test would take

the form of a likelihood ratio, or a difference of log-likelihoods. Figure 3.5 shows the

average and standard deviation of 100 of such tests.

Figures 3.4 and 3.5 show the performance of models based on learned statistics

when the statistic’s past dependence length was overestimated. We would also like

to have some idea of the variation of performance as that dependence is changed,
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(a) (M=4 process) (b) (M=20 process)

Figure 3.6: Compare a process likelihood under different models

especially when it is underestimated. To illustrate this, Figure 3.6 shows a compos-

ite plot of the same quantities as Figure 3.5, but in five sections as N varies over

{4, 5, 10, 20, 25}, with changes in N occurring at the obvious discontinuities.

3.6 Generative Models

Another use of such a model is as a generator of new sample paths. If our model has

truly captured both the dynamics of the system and its uncertainty, we should be able

to generate new, plausible data simply by sampling from our conditional distribution.

3.6.1 Comparison to linear filter

We can first get a feel for how well some of our competition might capture the dynam-

ics; we do so by modeling the system in the traditional LQG regime. A straightfor-



58 Chapter 3. Learning Random Telegraph Waves

ward and common method is the Wiener filter (Section 2.3). The underlying model

becomes that of a linear autoregression with additive iid Gaussian noise, that is

yk = A · [yk−1, . . . , yk−N ] + vk

This bears some similarity to the method above, namely using a linear function of the

past observations to give information about the future sample value, and choosing A

to minimize the variance of vk is equivalent to minimizing the entropy of vk under the

assumption that vk is a iid Gaussian process. The additional capacity we expect from

the nonparametric approach is therefore twofold: first, that a nonparametric vk will

be capable of describing much more complex uncertainty than a unimodal Gaussian,

and secondly that vk need not be iid, but can vary its statistics based on (in our

case) the value of A · [ypast]. This allows not only a more flexible description of the

uncertainty (which for a RTW is obviously not identical at all time steps) but also

frees us from the role of A · [ypast] as a predictor of yk.

Because we know that this system does not exhibit a linear predictive dynamic,

we do not expect to be able to do as well under such assumptions. In fact, we can

expect predictions which are in fact highly unlikely; for instance when the probability

of switching is .5, an MSE predictor will select xk near 0, a value which will rarely

occur in the true waveform. Such problems are the cause of synthesis paths which

are atypical and thus “visually dissimilar” to the true system (see Figure 3.7).

3.6.2 Synthesis paths from a nonparametric density model

As was discussed in Section 2.2, analytic characterization of the quality of synthesis is

a difficult prospect. Therefore we present example telegraph waves sampled from our
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(M=4) (M=20)

Figure 3.7: Sample paths realized from the Wiener filter

(N=4) (N=25)

Figure 3.8: Synthesized sample paths with over- and under-complete information

learned models in Figure 3.8 for visual inspection and evaluation. These examples

show a comparison between paths where the model’s length was over- or under-

estimated.



60 Chapter 3. Learning Random Telegraph Waves

As we would expect, the quality of the synthesized waveform is higher in the

case when N > M , meaning that all the information present in the past of the signal

was available for use. Notably, even the M = 20, N = 4 case possesses qualities

associated with a true M = 20 random telegraph wave, although it also possesses

sequences which we are unlikely to see in true random telegraph waves (e.g. µk = +µ

for many more than M samples). This is simply another indication that even when

not all possible information is accessible, useful information is still contained in the

partial past, and is extracted by the statistic.

3.7 Conclusions

We can see that, at least for our synthetic example, we are able to extract informa-

tive statistics from the past. Given a sufficient window of the past, we are capable

of capturing most of the information present, even though we are not capable of

representing the system’s sufficient statistics exactly. Some confidence in this will

be necessary later, when we are not sure of the form or even existence of sufficient

statistics. We also seem to have some robustness to over- and under-estimating the re-

quired window size; when overestimated, the extraneous inputs were de-emphasized,

and when underestimated the performance suffered (as it must) but still, clearly some

useful information was extracted. This will be important in later problems, when we

do not know the scope of the future’s dependence on the past.

With respect to this particular dataset, we are able to show that we have

captured much of the nature of the uncertainty in the system, despite its nonlinear

relationship. The hypothesis tests constructed using the models’ likelihood showed

good differentiation between the two types of processes, and the entropy rate of the
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process could be estimated giving the possibility of a single-hypothesis test (accept

or reject as a process XM).
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Chapter 4

Real-World Data: Laser Intensity

We now turn to a real-world time-series, for which it will be more difficult to char-

acterize the results of our model but which will highlight a number of issues which

were not apparent in the simpler random telegraph wave process. In this case we are

unable to write down a sufficient statistic for the system, nor is its intrinsic dimension

known. Therefore, we use entropy estimates to gauge our performance as we increase

the number of learned statistics and so estimate the process dimension. Synthesis

results are shown and discussed, and the versatility of the nonparametric density for

capturing varying uncertainty is demonstrated.

4.1 Time series description

The data set in question is from the Santa Fe Time Series Competition; specifically

data set A. It is a discretization of NH3 laser intensity measurements. This system of

63
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Figure 4.1: Laser intensity time series training data

“spontaneous periodic and chaotic pulsations” is best approximated analytically using

nonlinear differential equations, specifically the Lorenz equations and the Lorenz-

Haken model [25]. The data available for training and model estimation consists of

1000 points of this time series, shown in Figure 4.1. Features immediately of note to a

human observer are the linearly amplifying, near-periodic oscillation with “random”

collapses. We have chosen to restrict ourselves to the same available data used in

the actual competition in order to preserve the standard of the original challenge.

Much of the difficulty in this time series comes from the relatively small volume of

data available in comparison to the scale on which interactions take place. Therefore,

to deviate from the confines of the competition by e.g. synthesizing more data for

training by simulating the Lorenz-Haken model might undermine the quality of the

data set for evaluative purposes. In addition, situations with small data volumes pose

an important test for nonparametric estimators, which will fail if not given a sufficient

number of examples.
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4.2 Learning multidimensional statistics

For this process (like any real-world system) we do not know the true underlying

dynamics, and so we cannot determine the form or even existence of a sufficient

representation of the past. We do not even know the minimum dimension of such a

representation, and so we will be required to estimate it. Since the process clearly

involves an oscillation of varying amplitude, we can hypothesize that at least two

statistics will be necessary to capture the information in both quantities, and so it

will be necessary to discuss the learning of a vector-valued Ĝ and how one might

select its dimension.

As it turns out there are some difficulties in simply performing the learning

step simultaneously with multiple statistics. First of all, doing so increases the number

of local minima which any gradient-based algorithm can become trapped by. Also, it

was observed that two statistics would sometimes appear to “compete” for the same

information, reversing gradients often and slowing convergence. Thus for the moment

we chose to implement a greedy, sequential training algorithm in order to further

constrain the learning problem. This algorithm adapts the first dimension to capture

as much information as possible, at which point the next dimension attempts to absorb

only the remaining information. At each step we train the ith dimension of Ĝ(·),
denoted Ĝi(·), to maximize the conditional information I(xk; Ĝi(xpast)|Ĝ1...i−1(xpast)).

In theory this procedure of conditioning on already learned dimensions when training

each subsequent dimension will eventually capture all available information. However,

it may not do so with the minimum dimension possible. Just as we elect to use a

simple function for Ĝ(·), trading some representational power for ease of training, we

risk some suboptimality to decrease the ill-posedness of the learning process.
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Use of such a sequential method may also change the form of Ĝ. In the

case that each output of Ĝ is a single-layer network there is no difference; but if Ĝ

has multiple layers it must take the form of several parallel multi-layer perceptrons

(increasing the total number of parameters in the structure). Alternatively one could

restrict subsequent statistic training to updates of their final layer only; but if the

required information has already been lost as irrelevant to the original output in a

previous layer such a system will be unable to retrieve it (this is the data processing

inequality at work). In our case, however, we have restricted ourselves to single-layer

networks and so we need not address these ramifications in full.

In Chapter 3 it was demonstrated that even when the true dependence of

the signal on the past is longer than the statistic allows, useful information can

nevertheless be extracted. In the absence of more information about the signal’s

dependency we simply hypothesize a length to capture all the necessary information.

Figure 4.2 shows the results of sequential learning of statistics; the weights are plotted

as a function of delay time. They support our original intuition — the first two

statistics capture the oscillatory nature of the process, since together they are capable

of discerning both phase and amplitude. All of the functions are orthogonal, as well.

But there is some subtlety here as well — although the weights are regularized, they

do not utilize only one oscillatory period; this is probably related to the fact that the

signal is not perfectly periodic. Additionally, as we shall see later, two statistics are

not enough to capture the full dynamics.

How many of such statistics do we need in order to “reasonably” capture the

system dynamics? The answer to this question depends strongly on the desired ap-

plication for which the model will be used. However, to give us an idea of the amount

of information we have captured, we can graph the resulting entropy rate estimates

(using Equation 2.8) after learning each statistic. Such an estimate can be seen in
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Figure 4.2: First three learned statistics for the Santa Fe laser data (weights versus
delay time)

Figure 4.3. There is an evident knee in this curve, indicating that at three statistics

we have ceased to improve our model. Although this does not necessarily mean that

our model has fully captured the system dynamics, it does indicate that the training

algorithm has ceased to be able to extract more information. As this is real-world

data, neither we nor any method can definitively determine the intrinsic dimension

of the process; but the plot certainly gives good indication of the dimensionality our

method will require.

4.3 Multivariate Density Estimation

Because we have determined to learn multiple statistics, we must now perform our

density estimate on a higher-dimensional p.d.f., a considerably more difficult task. In
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Figure 4.3: Conditional entropy with increasing statistic dimension

this section we will address some of the problems which can arise and the application

of techniques which were not necessary in the preceding chapter.

The problem of kernel size selection becomes much more difficult in high di-

mension. Although in the “large-data limit” a global, spherical kernel will accurately

estimate the distribution function, the computation costs associated with nonpara-

metric estimators means that often we cannot afford to use the volume of data which

would be necessary. In many cases, including this one, the limited availability of

data precludes the attempt even if the cost were acceptable. Because of this, any

inhomogeneities of the distribution function can be best accounted for by our choice

of kernel size.

In general, optimal kernel choice (size and shape) is an ill-posed problem.

Finding good methods and evaluating their performance is an open area for future

research. In order to use kernel density estimates we must choose a method, and so
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we evaluate a few empirically.

The first possible solution is to use a kernel with a directional shape and size,

as discussed in Section 2.4.1. Normalizing the variance in each dimension as [9] may

help, but in truly inhomogeneous densities, for example multimodal densities, this

approach may not address the problem. A multivariable search over the kernel size in

each direction may be able to capture such shape-related estimate improvements, but

is a relatively computationally intensive task. It may also be that the optimal kernel

shape is regionally dependent; but finding such regional shapes is an open problem

[19].

As was mentioned in Section 2.4.1, another possibility is to use a fixed shape

but vary size over the space. Using such a variable kernel, with each point affecting

an area proportional to its neighborhood’s density, can avoid oversmoothing which

would otherwise adversely affect the estimate. Again, required quality depends on the

use to which this will be put; it may be that the likelihood estimate will be relatively

unaffected by oversmoothing (although its usefulness for discrimination might not

be!) but for synthesis, accuracy in low-entropy regions may be more critical. The

advantages of a local kernel size can be demonstrated by observing the marginal

distributions over two dimensions of the statistic learned on the laser intensity data.

The data points themselves can be seen in the scatter-plot of Figure 4.4; notice that

the regions of the interior of the plot exhibit low-entropy, while the outer ring’s entropy

appears to be higher. The ML estimates of kernel size, both global (left) or variable

(right), are shown in Figure 4.5. Notice that the presence of randomness in the outer

region has caused considerable oversmoothing of the inner, low entropy region for the

global case. A complete comparison of all pairs can be found in Figures 4.7 and 4.8.

It turns out that these spirals are related to the phase of the time series, and
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that at low amplitude there is very little ambiguity in the phase of the next point.

Therefore any synthesized waveform should display the same kind of structure, and

oversmoothing will produce a spurious randomness effect. (It also appears to drift

slightly after each collapse; this and the fact that we have only two complete examples

causes the visible bifurcation along the spiral arms of Figures 4.4 and 4.5(b). However,

it seems unlikely that any distribution estimate would capture this drift from so few

examples.)

One test of whether this visual improvement in the kernel density estimate

has, in fact, improved our model is evaluation of the likelihood of the sequence’s

true continuation (which was not used for training). We compare the accumulated

one-step-ahead log-likelihood of this data in Figure 4.6. The likelihood under a local

kernel model is shown as solid; the global kernel as dashed. By improving our estimate

of uncertainty to more accurately reflect the process, we have increased the likelihood

of the evaluation data. This agrees with our visual comparison, that the locally

tightened estimate agrees with the true system’s distribution better than the globally

determined version.

It is also worth noting that, although the kernel size is known to be of critical

importance in terms of estimating likelihood or sampling, empirically it appears that

it is of less importance for estimating the entropy gradient for learning purposes.

It does have an effect, in that learning from identical initial conditions and data

with slightly different fixed kernel sizes do not always result in the same feature

selection, but did not appear to produce statistics which were significantly more or

less informative. Philosophically speaking, relatively larger kernels for learning may

be better, since intuitively it seems that a larger kernel size should correspond to

“larger-scale” similarities and differences. Still, it is difficult to speculate on the

exact effects of a change in kernel size. An in-depth analysis of the exact effects of
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Figure 4.4: Scatterplot of training data 2-d marginal

(a) global kernel (b) variable kernel

Figure 4.5: Effect of kernel size choice on density
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Figure 4.6: Accumulated 1-step-ahead log likelihood for true continuation under local
(solid) and global (dashed) kernel size density estimates

this choice on functions of the density, such as the information gradient, is an open

area of research and beyond the scope of this thesis.

4.4 Synthesizing new sample paths

A visual test of whether we have captured the dependencies and randomness of a

signal is the similarity of a generated sample path and our human expectations.

Failing to capture the true dependency structure or ascribing too much randomness

to the system will result in sample paths which fail to capture the long-term patterns

of the signal; ascribing too little randomness results in repetitious patterns with little

or no deviation from the observed data set.

A sample path generated with three statistics and the ML variable kernel size

density estimate can be compared to the true continuation and to other synthesis

results in Figure 4.9. Notice that statistics of sufficient dimension (3) have captured

the long term structure (overall shape, and increasing oscillation with collapses) of
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global kernel density estimate variable kernel density estimate

X vs. Ĝ1

X vs. Ĝ2

X vs. Ĝ3

Figure 4.7: Joint densities of x and each dimension of Ĝ, with global vs. local kernel
size choice
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global kernel density estimate variable kernel density estimate

Ĝ1 vs. Ĝ2

Ĝ1 vs. Ĝ3

Ĝ2 vs. Ĝ3

Figure 4.8: Joint densities between dimensions of Ĝ, with global vs. local kernel size
choice
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the signal, in contrast to methods with less relatively sufficient statistics (model of

dimension 2 or linear model).

Notice that the two-dimensional statistic is unable to reproduce synthesis paths

which conform to our expectations of the signal. This is an effect of the insufficiency

of that statistic. Because we have learned the statistics sequentially, both features of

this model are present as Ĝ1 and Ĝ2 of the 3-dimensional model. Except for a differ-

ence in kernel size (which empirically is slight) the distribution used is the same as

p(X, Ĝ1, Ĝ2) as depicted by the marginals in Figures 4.7 and 4.8. Thus, the additional

information gained by Ĝ3 can be gauged by the remaining plots: p(X, Ĝ3),p(Ĝ1, Ĝ3,

and p(Ĝ2, Ĝ3). These plots indicate that the increase in information from Ĝ3 is proba-

bly less than that from Ĝ1 or Ĝ2, since most of the probability appears to be clustered

in the a small range of values of (X, Ĝ1, Ĝ2). However, there is some visible struc-

ture present, indicating that there is still some information in Ĝ3. This intuition is

corroborated by both the entropy estimates in Figure 4.3 and the synthesis results of

Figure 4.9.

If instead of new sample path synthesis we wished to pursue a predictive ap-

proach, we could select the ML prediction of each point given the previous points.

Note that such an approach is not necessarily the ML sample path, since the entire

path is not selected in a joint manner; such a joint selection would be quite compu-

tationally costly. It is also not the most likely sample k steps in the future, since it

makes use of the previous selections for a one-step-ahead prediction; this too would

be very costly. A point by point, one-step-ahead ML prediction is feasible, if some-

what more costly than mere sampling (see Section A); such a sample path is shown

in Figure 4.10. Notice that it does not capture the structure of the observed data;

this indicates that in the trained model its collapsing structure has been (perhaps

correctly) attributed to the randomness inherent in the model’s form. This also illus-
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Figure 4.9: Comparison of true continuation data (top) with synthesized paths from
(in order): 3-dimensional statistic with local kernel, 3d stat with global kernel, 2d
stat with local kernel, and a linear filter.
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Figure 4.10: One-step-ahead ML prediction path

trates one of the points made earlier, in Section 2.2 – although this is the most likely

path, it is atypical, and does not exhibit the dynamics we expect.

We can see some of the flexibility of the nonparametric density by examining

the conditional distribution p(Xt|Xpast). Specifically, we show the conditional distri-

butions induced at various points by the continuation data (as if we were observing

the continuation one sample at a time). Such densities provide us with a view of

the variable entropy over portions of the signal. Examples of the conditional dis-

tribution at three different times are shown in Figure 4.11. These illustrate several

different possibilities for the distribution: relatively certain (low-entropy, (a)), very

uncertain (high-entropy, (b)), and bimodalities (c). The true datum associated with

each of these three distributions is also shown. The third plot (c) actually shows the

conditional distribution just as the collapse occurs. At this time sample, a normal

oscillation would continue in an upward swing, but instead the waveform collapses.

We can see in the distribution that this has been described by a bimodality, indicating

that model believes a collapse is not guaranteed, but neither is it completely unlikely.

We also can look at the progression of such distributions as a function of time.
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(a) low-entropy (b) high-entropy (c) at the collapse

Figure 4.11: Example conditional distributions of the continuation data; diamond
indicates true datum

p(
x 

| x
   

   
)

pa
st

^

time  k

Figure 4.12: Conditional distribution of continuation data over time

Figure 4.12 shows log p(Xt|Xpast), represented as an intensity image (black = low

probability). From this image it is clear that the model has attributed a high degree

of uncertainty to those regions with high amplitude, and much less in the lower part

of each oscillation. This makes sense, because as was mentioned above, the model has

associated the collapse with a random event, and so indicates (through high-entropy

conditional distributions) that it cannot accurately predict the next sample in this

region. After the oscillation has settled into a low-amplitude pattern the uncertainty

shrinks again.
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4.5 Conclusions

We have shown that it is possible to apply our framework to model a real-world

system, either estimating or simply guessing such quantities as past dependence length

and minimum required dimension. The fact that these quantities will be unknown

in almost all real-world systems makes it very important that any method be able

to cope with their possible misestimation, and perform as well as possible under the

circumstances.

We showed that it was possible to learn multi-dimensional statistics, in or-

der to capture the behavior of systems with more complex behavior than that seen

in the previous chapter. We also demonstrated that we can use the estimated con-

ditional entropy of the model to gauge improvements through increasing subspace

dimension. This gave us a clear indication of the information loss due to a given

level of approximation, and a stopping criterion for learning additional statistics. We

also demonstrated the improvement in synthesis quality which resulted from using a

statistic which was closer to sufficiency.

We discussed the importance of the density estimator for likelihood-based dis-

crimination and especially for sample synthesis. We then implemented a technique

which appeared to improve the density estimator considerably, through using a local

adaptive kernel size to capture anisotropies in the data. This improved density esti-

mator also resulted in increased likelihood for the continuation data, indicating that

the improvement was indicative of the true uncertainty structure.

Finally, we evaluated how well we had managed to capture the dynamics of

the system through new sample path generation. It was seen that, for a sufficient
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dimension of the statistic (3), we were able to capture both the short and long-term

structures of the signal, as compared to a simple linear filter or even a nonparametric

model with fewer than the required number of dimensions.



Chapter 5

Handwriting and Signatures

A person’s handwriting, and especially their signature, is very consistent — so con-

sistent it can be recognized with a high degree of accuracy by most people, given only

a small set of examples. As such it has comprised one of the world’s oldest “secure”

forms of identification.

We can consider the time-series of a stroke of handwriting as a two-dimensional

dynamical system. For simplicity, we will remove the uncertainty of the text from

this description, and limit ourselves to fixed-text strokes, of which signatures are the

most obviously applicable subset. It is possible to imagine that such a system is

locally linear, but likely not be globally linear. Its uncertainty is hard to describe

analytically, but there is no reason to think it Gaussian — for example, our signature

variations are not a “mean signature” and some additive independent randomness;

there is uncertainty in the overall shape of each letter. The uncertainty at any given

point may easily be bimodal — for example, near a reversal of direction there is

probability in both the forward and reverse directions but no probability of simply

81
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stopping. In fact, it is arguable that such a system is not even stationary. We will

discuss each of these points in more detail later, but suffice it to say that to attack

this problem with a conventional, linear approach would be quite difficult.

To this end, we apply the same techniques we have been developing in the past

chapters. By learning features of the data which are maximally informative about the

state, and nonparametric descriptions of the inherent uncertainty in that state, we

attempt to capture the dynamics well enough to synthesize plausible new signatures,

or develop an accurate test of the plausibility of a new signature. The models in

this section were trained using only eight example signatures, thus showing that the

method can be effective without a large database for comparison.

5.1 Signature Synthesis

Although the commercial applications of a method for synthesizing signatures may be

more limited than discrimination, we can still find uses for sample path generation.

For instance, our ability to use the model to generate plausible new signatures will

be indicative of how completely we have captured the dynamics. Also, in many

discrimination applications it is desirable to have an underlying generative model so

as to be able to overcome challenges such as missing data or variable-length sequences

[12].
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5.1.1 Sampling versus Prediction

New signature path realization is a situation where the differences between sampling

and predictive methods such as a nearest-training-example or max-likelihood selection

becomes clear. Given a set of example signatures, if we merely choose the most likely

sample, the example whose past most closely resembles the current past without

adding new uncertainty, it is quite likely that we will simply regenerate one of the

signatures from our database. Perhaps this produces a plausible new signature, but

it will usually produce the same signatures, much the same as simply selecting one of

our original examples. The ML path, while perhaps different from any example, will

also be deterministic. Clearly, while both these are by definition plausible signatures,

this does not meet the goal of signature synthesis. Conditional distribution sampling,

then, is a more logical course of action.

5.1.2 Coordinate System Choice

Inherent in every algorithm but often overlooked is the fundamental question of a

coordinate system for the data. For example, audio recognition algorithms may be

simpler in the frequency domain than as a sampled time series. Indeed, we have suc-

cessfully overlooked this issue on both previous examples; but in this case it behooves

us to examine it.

This is not to say that we must search for the perfect coordinate system.

Indeed, there is a coordinate system in which any given problem becomes trivial —

for example, suppose we have a solution and we use it to define a coordinate system.

Then, in these coordinates, our task becomes simple. But such a statement is hardly
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helpful in finding a solution in the first place. We merely note that some coordinate

systems may be better than others, and would like to ensure that we use a “good”

one.

Essentially, good coordinate systems are those in which we have thrown away

irrelevant portions of the data, and collected together helpful information. For ex-

ample, transformation to a frequency domain collects together information about

frequency bands (which was of course present in the original data, but less easily ac-

cessible) and allows us, if we wish, to throw away portions we consider unimportant,

for example high frequencies. We want a transformation which will collect useful in-

formation – just like our formulation of finding informative statistics. So why worry

about choosing a coordinate system – why not simply let our learning algorithm find

such statistics for us?

The answer is simple – one should always use any apriori information available

to simplify before turning a machine-learning algorithm loose. The parametric form

of our statistics determines in part the shape of all reachable functions of the data.

In order to include a particular kind of transformation (e.g. Fourier coefficients) the

form for Ĝ might need to be very complicated indeed. The more complicated Ĝ

becomes, the more difficult it is to learn — more local maxima, slower training, etc.

If we can simplify this form to a fixed transformation followed by a Ĝ with fewer free

parameters, we make the learning procedure easier.

Use of such a transformation allows us to apply any apriori knowledge of what

information is useless and expunge it, collecting useful portions of the data together

as best we can. In many problems, we enter with some ideas and intuition about the

problem, and our own expectations of what will work and how well. A good algorithm

should provide means of incorporating such prescience in a reasonably principled way;
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and one such way is through this choice of coordinate systems.

Of course, the possibilities for such a choice are nearly endless, and so in

the interest of brevity and our general desire to retain a degree of automation to

the system, we will restrict ourselves to a few simple coordinate choices. They will

stem from the most obvious features of the data — the (x, y) coordinate system,

a differential (∆x, ∆y) system, and the feature of fraction of time elapsed. In the

interest of preserving some degree of smoothness, we will use these features to predict

a differential update; predicting actual (x, y) positions behaved similarly but appeared

less “plausible” due to discontinuities. Specifically, the three coordinate systems we

shall use for observations are:

• a time-series of standard (x, y) locations

(∆xk, ∆yk) ∼ p((∆xk, ∆yk)|G([xk−1, yk−1, xk−2, . . . , yk−N ]))

• a differential time-series (∆x, ∆y)

(∆xk, ∆yk) ∼ p((∆xk, ∆yk)|G([∆xk−1, ∆yk−1, ∆xk−2, . . . , ∆yk−N ]))

• and a differential system augmented by the time elapsed thus far,

(∆xk, ∆yk) ∼ p((∆xk, ∆yk)|G([∆xk−1, ∆yk−1, ∆xk−2, . . . , ∆yk−N , k/L]))

where L is the total number of samples in the signature, and

(∆xk, ∆yk) = (xk − xk−1, yk − yk−1)
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(a) (b) (c) (d)

Figure 5.1: (a) Example signature; (b) synthesis using only local (dx, dy) information;
(c) local (x, y) information; (d) local (dx, dy) augmented by time

In our implementation we chose N = 10; most signatures were 150-200 samples total

in length, so features of only 10 samples means they encapsulate only local stroke

information. An example signature and synthesis results for each of these three cases

can be seen in Figure 5.1. A more sizeable data set is found in Figure 5.2.

One can see the effect of the coordinate system choice in these synthesis paths.

The first synthesized path (column b) used only differential information and was usu-

ally of unacceptable quality. Sometimes it was unrecognizable, and at other times it

would seem to begin a signature but lacked enough context to unambiguously discern

its current position within the word, and can repeat sections (such as the double-h in

Figure 5.1(b)). This indicates that transformation into that coordinate system has

lost essential information, and the model is attributing deterministic elements of the

dynamics to uncertainty. The missing context can be restored in more than one way

— when we give the statistics access to the exact (x, y) position, it is much more

capable of discerning its current position within the stroke; or, one can add nearly

the same information by forcibly augmenting the statistics by a value indicating the

percentage of time elapsed. The former approach tends to do well at the beginning,

but becomes less plausible toward the end of the stroke. This is because we always

begin at the origin, but do not always end a signature near the same point. Thus,
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the accumulation of drift within the stroke has caused there to be less data available,

or more precisely larger data variation, near the end of the signature than at the

beginning. It is also possible for the (x, y) data to become confused when a stroke

crosses over itself with a similar dynamic, such as the ‘o’ in the name “John”. Such

problems do not occur when given elapsed time, since the beginning and end of the

‘o’ are clearly differentiated in time, but there is still some context missing, which

will cause effects such as not following a straight line.

This “missing context” is actually a deep issue, stemming from the basic fact

that we have violated our original assumptions with this data set. Namely, we have

assumed that our time series is a stationary process, but a signature is not — its

dynamics are very dependent on the written text and on the current position within

it. In a signature, each value of the state will only occur exactly once. Yet, by using

several examples we can still pretend that our process is stationary, and attempt to

isolate a version of context so that matching signature regions have matching (or close)

state values. Thus, our statistics are actually trying to extract enough information

that, given their value, the process looks stationary; and finding a good statistic is

similar to automatic “continuous segmentation” and registration of the signatures.

Similar segmentation issues form of the inherent challenges in most other

model-based signature matching algorithms. Generally, they are forced by the non-

stationarity of the process to segment the stroke discretely and model each segment

separately [16, 14]. Within the context of a single, short segment of signature, then,

they are able to apply models which require stationarity. Yet any such discrete seg-

mentation must be artificial, since the state of a continuous stroke is intrinsically a

continuous variable. In our method, however, we are able to recapture the local, sta-

tionary dynamics without resorting to external or discrete segmentation algorithms.

Even when we augment the features by a discrete time value, the smoothness of the
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density estimate ensures that there is continuity of the state.

Of course, manually augmenting the feature set carries with it its own questions

and issues. For instance, if we are using a spherical kernel, the bandwidth parameter

will be influenced by the scale of the new feature. By expanding this scale we increase

the relative importance of the feature, in this example to the limiting case that only

examples of the kth time-sample influence the model at time k. Decreasing scale

approaches the limit wherein the feature provides no effective information at all. In

an attempt to deal with this in a principled manner, we chose to normalize the scale

of the new feature to be approximately the same as the features we had previously

learned. If our learned features fill the perceptron’s finite region of support, this will

be approximately the variance of a uniform distribution over that region.

5.2 Signature Verification

More so than synthesizing new signatures, people are interested in verifying them.

With very little experience, we as humans can confirm to a reasonable accuracy

whether a new signature matches an example set or not. Notably, we do so without

ever seeing examples of forgery attempts. This ability is the basis of one of our oldest

methods of authentication, and one which it seems we are still trying to hold on to.

In order to do so it is necessary to find ways to correctly and automatically perform

such verification. We shall demonstrate that the information-theoretic concepts of

entropy rates and typicality form a framework well-suited to such tasks, while most

other discriminative techniques applied to this problem have more difficulty. A brief

comparison to existing methods will then show the unique suitability of our framework

for the treatment of this problem.
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(a) (b) (c) (d)

Figure 5.2: More synthesized signatures: (a) Training examples; (b) (dx, dy); (c)
(x, y); (d) (dx, dy) + t
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5.2.1 A Single-Hypothesis Test

In some problems it is the case that we wish to distinguish between a single hypothesis

and unknown alternatives. This could be the case when the alternative hypotheses

are too numerous to be modeled, for instance a hypothesis test versus “everything

else”, or it could be that the alternatives are small but difficult to model, perhaps

because data about them is simply unavailable.

The task of signature verification is a perfect example of such a system. Al-

though we presumably have data representing the true signature, we have no way

to model an entire world full of possible forgers. One might try to circumvent this

by asking many people to forge a particular signature, and then building a model

of “the generic forger”, but this is undesirable for several reasons. First, it requires

more manpower than we might like, since it involves many people practicing and then

forging each signature we want to verify. And such a model should be unnecessary

— humans can discriminate without any examples of forgeries. Even with a number

of examples, there is no reason to believe that such a model would aid discrimina-

tion with a particular, specific forger, whose exact style cannot possibly have been

seen by the universal model. Each verification task is in fact a two-hypothesis test

between acceptance and rejection in favor of an unknowable, and so unmodelable,

forger. Therefore we would like to use a test in which the second, alternative model

is unnecessary.

It is possible to construct such a “one-sided” hypothesis test in a similar man-

ner to the Neyman-Pearson multi-hypothesis test formulation. Suppose that we have

a stationary process {Xt} distributed according to a known distribution p({Xt}). We
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know that the average log-likelihood converges to a limit, namely:

1

N

N∑
t=1

log p(Xt|Xt−1, . . .) →
∫

p(X ) log p(X )dX

in probability as N → ∞ by the A.E.P. More formally, this is

∀ε > 0, α ∈ (0, 1] ∃N0 : ∀N > N0,

P

(
|H(X ) +

1

N
log p(X0,X1, . . . ,XN)| < ε

)
> (1 − α)

The A.E.P tells us, therefore, that there is a fixed relationship between a bound

[−H(X )− ε,−H(X )+ ε], the number of evaluated samples N0, and the probability α

that the average log-likelihood of those samples will fall within the bound. Therefore

given any two of these quantities it is possible to compute the third. The quantity α

represents PD, the probability that we will correctly accept a true sequence from this

process. We can further note that our upper and lower bounds around −H(X ) need

not be symmetric to have this convergence property; later it will be useful to think

of our bound asymmetrically, i.e. [−H(X ) − ε0,−H(X ) + ε1]

The difficulty arises because of the unknowability of the divergence between

X and the alternative(s). Without any further information about an alternative Y it

is impossible to determine the probability of incorrectly accepting a process of that

type. We cannot even say whether the log likelihood of Y under X ’s model will

approach a value larger, smaller, or even the same as X itself.

However, when we consider this problem in a practical light, with the appli-

cation of signature dynamics in mind, things are a little more reassuring. In general

signatures of different dynamics should always have lower log-likelihood than true
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signatures. This is because of the rather special circumstances that lead to the other

possibility. If a process is to have higher likelihood than another in this formulation,

it means that the signature must not only have very similar dynamics (so that the

modes of both distributions are near at almost all time samples) but also have less

deviation from those modes than the typical example of a true signature. So, in order

for this to occur in our application, a forger would need to be in some sense better at

signing than the owner himself. It seems unlikely that such a scenario could occur;

its occurance would also seem to indicate an end of the usefulness of signatures for

authentication.

So, practically speaking, we can apply a test which accepts the signature if its

log-likelihood is higher than −H(X )− ε0, and rejects otherwise. We can find (or, for

unknown p(·), estimate) the probability of rejecting a correct signature given a fixed

number of samples N0. However, we are still unable to characterize the probability

of false acceptance — but the better our model, the lower this probability will be.

This kind of likelihood-based evaluation appears to be unique in the online sig-

nature verification community. There are an abundance of methods which have been

applied to select features of signature dynamics for discrimination, including neural

networks [16], genetic algorithms [10], and stochastic modeling techniques from linear

autoregressions [17, 15] to Hidden Markov Models [21, 6]. Yet it is surprising that

even of those methods which construct a model of the signature, that model is never

evaluated; instead, its parameters are used as features for some other comparison

metric (maximum acceptable distance from a template, hash tables, neural networks,

etc). Methods which relied on training a metric in general could not deal with a

lack of example forgeries; and fixed metrics were generally lacking in theoretical jus-

tifications. Indeed, our own likelihood formulation could be interpreted in terms of

distance in a feature space, since likelihood is a function of the distance of observed
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examples. However, our formulation has a principled interpretation to that distance

and thus makes clear the implications of lacking a forgery model.

5.2.2 Model Inaccuracies

As we noted in Section 5.1, it may be that our model does not completely capture

the dynamics of the system. This is generally disastrous for synthesis; however, for

hypothesis testing its effects are not necessarily so unacceptable.

The reason for this is simple. Suppose that we have failed to disambiguate

between two states S1 and S2 within the process X . Then, instead of p(x|S1) and

p(x|S2), we possess only p(x|S1 or S2). If we attempt to synthesize with this distri-

bution, we could select x while in state S1 such that p(x|S1) = 0, leading to a sample

path which does not inherit the observed characteristics for the simple reason that

not all of those characteristics have been detected. However, if we only mean to use

p(·) to perform a hypothesis test, the effect may be less. This is because a true signal

of this type will still have the reasonable likelihood

p(x|S1 or S2) ≥ p(S1|S1 or S2)p(x|S1)

and a similar process Y will only have higher likelihood under the ambiguous model

than the correct model if it matches the ambiguity. That is to say, if Y exhibits

behavior while thought to be in S1 similar to to X ’s behavior in S2 or vice versa. So

unless the model’s inaccuracy actually happens to correspond to a characteristic of

Y , we suffer little penalty for the unmodeled dynamics.
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(x, y) (dx, dy) (dx, dy) + t

Figure 5.3: Estimated PDF of average likelihoods for test signatures (solid), training
(dotted), and forgeries (dashed) for “ihler” and “john”

5.2.3 Verification Results

We now show some results of using our previously learned models to find the likeli-

hood of various signatures. We will use these likelihoods to attempt to discriminate

between true signatures and a set of forgeries. As stated earlier, we cannot say any-

thing definitive about the likelihood of rejecting a new forger’s attempts. However, to

show that faking such dynamics is at least reasonably difficult, we enlisted a number

of “skilled” forgers. This means simply that the forgers had as much time as they

liked to practice each signature, knew that dynamics will play a part in the eval-

uation, and had access to the same training set of example signatures used by the

verification algorithm. Each of the three models (differing in coordinate systems), for

both synthesized signatures above, are shown.

Our framework of a single hypothesis test requires that we not only have the

means to calculate likelihood of new data, but that our model also provides us an

estimate of the distribution of the overall likelihood, so that we may select a region
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of acceptance. Due to our general nonparametric emphasis and framework, we have

opted to simply calculate the likelihood of each example signature with respect to the

model achieved by simply removing that signature from the examples. These values

can then be used to nonparametrically estimate the distribution of such likelihoods.

Their estimated distribution is shown by the dotted line in Figure 5.3.

We then calculate and plot the estimated pdfs of the likelihood of a cross-

validation set of true signatures and a set of forgeries on the full model. Approximately

30 signatures of each case were evaluated for the estimate. These distributions are

shown by the solid and dashed lines in Figure 5.3.

As can be seen, the likelihood of the true signatures is reasonably separated

from that of the forgery attempts. In addition, the distribution estimated from the

training set and that estimated from the new data appear relatively close, still sep-

arated from that of the forgeries, suggesting that even the small sample set used for

training can provide a complete enough description of the signature dynamics to allow

signature authentication.

We note that many signature-authentication algorithms make use of additional

“side-observations”, quantities such as pen angle or pen pressure which were not used

here. As was discussed early on, however, it is straightforward to add any type of

observation to the vector input of Ĝ(·); we need not be confined to the time series

itself. One would expect, then, that if there is consistency in these variables for a given

signer the algorithm would incorporate it. Alternatively, additional observations could

be added directly to the feature vector (output of Ĝ(·)) just as we added elapsed time.

Furthermore, it is then easy to deal with situations where we lack that observation,

since we can simply marginalize over the unobservable variable.
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5.3 Conclusions

In applying our modeling technique to the dynamics of signatures, we have demon-

strated that it is capable of capturing the nonlinear relationships and nongaussian

uncertainty despite the fact that signatures are inherently nonstationary. We have

shown that the model can capture the dynamics completely enough to be used in a

generative application, which is a good indication that we have captured most of the

information we might need for discriminative purposes.

We then applied the trained model to the task of signature authentication,

using the framework of entropy rates and likelihood. Most existing literature on

signatures has difficulty coping with single-model discriminative problems or lacks

a principled interpretation of acceptance criteria. Our model, on the other hand,

implies an appealing and principled interpretation to signature distance (likelihood-

based), the single-hypothesis discrimination problem and its intrinsic challenges, and

the implications of a given acceptance criterion. We explored the implications of this

framework, and then evaluated the likelihood of cross-validation signatures (both real

and “skilled” forgery examples) on our previously trained models to give an indication

of the performance of the estimator in discriminative purposes. Results were very

encouraging; further research will have to be done to fully explore the effectiveness

of this methodology.

Finally we would like to state that although all the previous work has been for

single-stroke signatures, it is certainly possible to extend it to multiple-stroke, either

by simply learning models for each stroke separately and combining their likelihoods,

or by artificially stringing together each stroke as a single long time-series and learning

features of the entire sequence.



Chapter 6

Conclusions

In this thesis, we have presented and explored a novel approach to modeling dy-

namical systems. This model combines simple feature statistics of the past with a

nonparametric estimate of the relation and uncertainty of these features to the future.

The features are selected using an information-theoretic criterion, allowing control of

the model dimension while retaining access to large numbers of past observations for

their information about the future.

This technique is an attempt to answer a fundamental research question, the

question behind tasks of data mining or feature extraction: how do we find and model

relationships between our observations and a random variable? Yet it brings up its

own fundamental questions as well; questions such as, what is the role of prediction

when our model of uncertainty is no longer unimodal? How should one evaluate

a model’s performance — prediction, likelihood, or something else entirely? These

types of questions have been addressed empirically throughout the thesis.
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We have shown the application of our technique to modeling a number of

different processes. Each application was used to highlight different aspects of the

technique itself, giving examples of its strengths and weaknesses, and ways to improve

its performance. We will reiterate some of these findings here.

First of all, we showed examples of extremely simple processes with which

more traditional descriptions of dynamics and uncertainty were unable to cope. Even

if the exact dependence on the past is known, there can still be advantages to using

a nonparametric uncertainty description. In the case that the parametric model is

correct, of course, there are great advantages in computation and quality which can be

achieved by a parametric approach. If we believe a parametric description can capture

the system’s behavior, we should always choose to use it. However, there are many

occasions when we cannot describe the system parametrically, and we can improve our

model using nonparametric techniques. In that case, we must find ways to restrain

the exponential growth of complexity. Yet we must do so without compromising the

information present in our observations. Section 2.7 discusses our approach to this

problem, and the dynamical system model employed.

We applied this technique first to a very simple dynamical system, a concocted

random telegraph-like waveform. This system was chosen to give a simple, analyt-

ically comprehensible data set with which to evaluate performance. We used this

scenario to find results for various possible situations. When we had access to enough

past observations to produce statistics which were sufficient for the entire past, i.e.

containing all available information, we were able to learn functions which were close

to sufficient in a likelihood sense – that the negative log-likelihood given our statistic

could be close to the actual entropy rate. When somewhat more than enough data

was available, we continued to produce nearly-sufficient functionals; and when too lit-

tle data was available we nevertheless produced statistics which, while not sufficient,
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were informative about the state of the system.

An important outcome of this experiment was to highlight the importance of

using regularization to constrain the function’s training. Using an L1 penalty to cull

unhelpful variables improved the reliability of a function’s informativeness. This acts

as a complexity control for what is essentially an ill-posed problem.

We also showed that this system can be used for both discriminative or gen-

erative models. The trained system was capable of both discerning to which of two

different modeled dynamics new data corresponded, and of producing reasonable new

sample path realizations. Possessing such a generative model is important not only

for synthesis, but also for discrimination when portions of a sequence are missing, or

we wish to use sequences of variable length.

We next applied the technique to a data set from the Santa Fe Time Series

Competition. The dynamical system was quite structured to the human eye, and we

showed that, even using a relatively short window of the past, informative subspaces

were capable of capturing this dynamic well enough to produce new realizations which

carried the same long-term dependencies.

This second data set was the first to require learning a statistic of more than

one dimension. Two or more dimensional subspaces carried with them a number of

new problems, including the increased difficulty in estimating a density and increased

number of parameters in training. To simplify the situation we again chose a simple

functional form, and elected to learn each dimension’s parameters sequentially so

as to decouple them. We also demonstrated the importance of kernel size in the

density estimate, primarily in the estimate used to model behavior after learning.

A likelihood-maximizing non-uniform kernel size based on nearest-neighbor distance
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earned our recommendation, although several other techniques were attempted and

briefly discussed.

Lastly, we applied the technique to a very challenging real-world data set

— treating signatures as dynamical systems with the aim of using a likelihood based

verification technique. This problem is of great interest due to the inherent advantages

of biometric authentication — means of proving ones identity in some inherent way

(other examples include fingerprints, face recognition, etc). These allow security

methods which cannot be stolen and are (hopefully) very difficult to fake.

We first learned functionals of the signature dynamics, using synthesis results

to highlight the importance of coordinate system transformations, and to discuss the

assumption of stationarity and nonetheless modeling an unstationary process. Despite

the more limited commercial applications of signature synthesis, a generative model

is still of use, since it enables us to perform discrimination in ways which are robust

to variations of sequence length and to deletions within the sequence.

We applied these models to the task of online signature verification. This

showed considerable promise: entropy rate analysis gives us a unique perspective on

a hypothesis test against unknown alternatives. This outlook precisely describes one

of the difficulties of the task, and makes clear what we can and cannot expect from

any such test. In particular, although we cannot estimate the probability of false

acceptance without resorting to an example (a single sample from an immense set of

possible forgers), we can evaluate how well we have modeled the signature with the

knowledge that the better the model we possess, the more difficult forgery becomes;

and we can estimate the probability of false rejection in order to determine a region

of acceptance. This gives us a method of gauging performance even without a single

example forgery. Of course, should forgery examples also be available, we can produce
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an estimate of the false acceptance rate, but no method can guarantee that rate for

any given forger.

Experimental trials indicate that the signature models are reasonably accurate

descriptions and that even from a small number of signatures a model can be trained

and the entropy rate estimated in order to produce a description which is consistent

with the cross-validation set and inconsistent with any of our would-be forgers.

In the future, it is our hope that this or similar techniques will be applied to

more applications requiring difficult information-extraction — image or speech recog-

nition, for instance. The signature modeling appears to be adept at discrimination,

and it is quite possible that a biometric verification scheme could make use of it. Of

course, any improvements in training technique, density estimation, or the computa-

tional complexity would contribute directly toward improving the available quality of

the model, increasing its usefulness and viability. Finally, many uncommon perspec-

tives have appeared as a result of using such a complex description of uncertainty,

most notably the lack of a predictive method and lack of a better quality metric than

likelihood. Further examination of these ideas could lead to better answers for the

questions we were forced to address empirically. All of these issues are open questions

for future research.
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Appendix A

Algorithms

We will use this appendix to present two of the less well-known algorithms which have

been used in the thesis directly, in a more detailed fashion than they have received

in the body of the thesis. The code implementation of these algorithms was written

in PV-WAVE, and is available through the author.

A.1 InfoMax Network Training

This is an overview of the algorithm we use to adapt a neural network to maximize

mutual information between the output features of the network and another (set of)

measurement(s). We shall use the following notation:
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X, xk : the process we wish to model, and its value a time k

Y, yk : observations about the process, e.g. yk = [xk−1 . . . xk−N ]

Ĝ : a neural network function; input size equal to dim(Y )

Ĝ1...m : the fixed portion of G; e.g. features already found

Ĝm+1...n : the portion of G which is to be trained by this procedure

Z : the conjoined data: [X,G(Y )]. zk = (xk, G(yk))

ZP : = X; P refers to the process subspace of Z

ZF : = Ĝ1...m(Y ); F refers to the fixed subspace of G’s outputs

ZT : = Ĝm+1...n(Y ); T refers to the trained portion of the space

We begin by initializing Ĝm+1...n to something, possibly randomly. In general

we should avoid degenerate cases of mutual information, e.g. Ĝi = Ĝj for i �= j or

Ĝi ≡ 0. We must also choose an initial kernel size (and shape if desired). Experience

has indicated that small kernel sizes are very slow to converge to any solution, and

that an oversmoothed estimate still returns reasonable entropy gradients (in that

informative solutions are discovered). Therefore in practice we choose the bandwidth

as simply as possible – a fixed, global size which was larger than any we later saw in

ML bandwidth estimates.

We then repeat the following steps until we have converged:

1) It is possible that we wish to only use a random subset of our full data set {zk}.
In the interest of reducing notation we will continue using {zk} to refer to the

data at this step, but we can and often do reselect the data in this set from a

larger pool every N iterations. As discussed in Section 3.3.4, this has the effect

of giving us a faster but noisier gradient estimate below.
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2) Find entropy gradients in “output space” Z. We shall use the identity

I(ZP ; ZF+T ) = H(ZP ) + H(ZF+T ) − H(Z)

where H(ZP ) is fixed, so we must evaluate the gradient of H(ZF+T ) and H(Z)

at each point zk:

∇I|zk
= ∇H(ZF+T )|zk

−∇H(Z)|zk

3) In practice, we evaluate ∇H using the ISE approximation. Define J =
∫

(p̂(z)−
u(z))2dz where u is the uniform density over a hypercube with sides of length

d centered at the origin. Minimizing this criterion J will maximize (approxi-

mate) entropy. Closer analysis [8] in the case that the kernel function K(·) is

a Gaussian with variance σ2 yields the following gradient estimate in terms of

the network parameters α:

−∂H

∂α
=

∂J

∂α
=

1

N

∑
k

εk
∂

∂α
g(yk, α)

where ∂g
∂α

is the network sensitivity and εk are the vector-valued error directions

of zk:

εk = fr(zk) − 1

N

∑
i�=k

κa (zk − zi)

and the functions fr(zk) and κa(zk − zi) have interpretations (for entropy maxi-

mization) of a boundary repulsion vector and a repulsion vector from the other

samples. These are given by

fr(zk)i ≈ 1

dn+1

∏
j �=i

(
(K ∗ u)

(
yki +

d

2

)
− (K ∗ u)

(
yki − d

2

))
(A.1)

κa(z) = K(z) ∗ ∇K(z) (A.2)

= −
exp

(
− zT z

4σ2

)
(2n+2π(n+1)/2σn+3)

z (A.3)
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4) We now have the gradient of I with respect to the output space {zk} (an n + 1

dimensional vector for each zk); however, we only need or want the gradient

for the directions in which we will train. Thus we zero out the contributions in

dimensions we cannot or do not wish to alter: (∇I)P = 0 and (∇I)F = 0.

5) We next propagate this gradient information back to the network weights of

Ĝm+1...n. This is a well-known algorithm and will not be discussed further here;

for more information see e.g. [3].

After sufficient convergence or a fixed number of iterations, we cease updating

the network and take Ĝm+1...n to be fixed from this point forth. We then keep some

set of data, either a subset of the training data (possibly the entire set), or perhaps

a new cross-validation data set, to form the examples for our Parzen kernel density.

We use one of the techniques described in Section 2.4.1 to determine a kernel size for

this density, and our model is complete.

A.2 Sampling from the conditional of a kernel den-

sity estimate

At many points in the thesis, we generate new synthesis paths by sampling from our

estimated distribution conditioned on the observed variables. For completeness we

present here the algorithm for such sampling.

Sampling can be done efficiently from a Parzen density estimate because of its

form as a summation of density functions. That is, suppose we have a kernel density
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estimate

p̂(X) =
∑

Ki(X − Xi)

where the subscript i on Ki(·) indicates that the kernel function may vary from

example to example, perhaps by kernel size or shape, and the notation X = [XS, XC ]

is used to differentiate between those dimensions of X which we wish to sample (S)

and those which we condition on (C). Then,

p̂(X|XC) =
p̂(XS, XC)

p̂(XC)
(A.4)

=

∑
i K

C
i (XC − XC

i ) · KS
i (XS − XS

i |XC − XC
i )∑

KC
i (XC − XC

i )
(A.5)

We shall make a convenient name change — denote

q(i) =
KC

i (XC − XC
i )∑

KC
i (XC − XC

i )
(A.6)

and

q(XS|i) = KS
i (XS − XS

i |XC − XC
i ) (A.7)

so we can rewrite Equation A.4 as

q(XS) =
∑

I

q(XS|I)q(I)

implying that

(xS, i) ∼ q(XS, I) ⇒ xS ∼ q(XS)

Now, the form for q(XS|I) is quite simple, since by Equation A.7 we have

xS ∼ XS
i + νS

i where νS
i ∼ KS

i (νS|XC − XC
i )
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and Ki in our case is Gaussian. (In fact, in all our experiments the kernel sizes were

uncorrelated between dimensions, making this even easier – but this is not necessary.)

Similarly, it is easy to sample from q(I) since this is a discrete distribution with

weights given in Equation A.6. So we first sample i ∼ q(I), then ν ∼ KS
i , and

x = [xS, xC ] = [(XS
i + ν), xC ] ∼ p̂(X|XC) (A.8)

A.2.1 A brief note on ML sampling

True maximum-likelihood sampling for such a continuous distribution is a computa-

tionally intensive task. A straightforward approach is to discretize the distribution

at a fine enough scale to approximate the distribution, and then select the maximum

value. Such a scale can be determined by the minimum kernel size in the density

estimate, since all features of the distribution will be at least as smooth as the most

peaked kernel. If a more exact value for the ML estimate is still desired, it can then

be found through gradient ascent without risk of local extrema.

This method will provide an ML estimate of the next sample. However, to find

the ML estimate k samples ahead, we would need to propagate these distribution of

values through our model, an extremely intensive computation. Another possibility

would be to generate many sample paths and use their values at time k to estimate

a distribution. Finally, one could use the training data itself to estimate the joint

density between Xt+k and Ĝ(Xtpast).

In practice, we implemented an ML estimate on only one data set, in Chapter 4.

We used only a one-step-ahead prediction, and in that instance the data itself was

discretized, and so we simply found the most likely sample at the data’s own quanti-
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zation level.
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