
Efficient Multiscale Sampling from
Products of Gaussian Mixtures

Alexander T. Ihler, Erik B. Sudderth, William T. Freeman, and Alan S. Willsky
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
ihler@mit.edu, esuddert@mit.edu, billf@ai.mit.edu, willsky@mit.edu

TO APPEAR IN NEURAL INFORMATION PROCESSING SYSTEMS 2003

Abstract

The problem of approximating the product of several Gaussian mixture
distributions arises in a number of contexts, including the nonparametric
belief propagation (NBP) inference algorithm and the training of prod-
uct of experts models. This paper develops two multiscale algorithms
for sampling from a product of Gaussian mixtures, and compares their
performance to existing methods. The first is a multiscale variant of pre-
viously proposed Monte Carlo techniques, with comparable theoretical
guarantees but improved empirical convergence rates. The second makes
use of approximate kernel density evaluation methods to construct a fast
approximate sampler, which is guaranteed to sample points to within a
tunable parameter ε of their true probability. We compare both multi-
scale samplers on a set of computational examples motivated by NBP,
demonstrating significant improvements over existing methods.

1 Introduction

Gaussian mixture densities are widely used to model complex, multimodal relationships.
Although they are most commonly associated with parameter estimation procedures like
the EM algorithm, kernel or Parzen window nonparametric density estimates [1] also take
this form for Gaussian kernel functions. Products of Gaussian mixtures naturally arise
whenever multiple sources of statistical information, each of which is individually mod-
eled by a mixture density, are combined. For example, given two independent observa-
tions y1, y2 of an unknown variable x, the joint likelihood p(y1, y2|x) ∝ p(y1|x)p(y2|x) is
equal to the product of the marginal likelihoods. In a recently proposed nonparametric be-
lief propagation (NBP) [2, 3] inference algorithm for graphical models, Gaussian mixture
products are the mechanism by which nodes fuse information from different parts of the
graph. Product densities also arise in the product of experts (PoE) [4] framework, in which
complex densities are modeled as the product of many “local” constraint densities.

The primary difficulty associated with products of Gaussian mixtures is computational. The
product of d mixtures of N Gaussians is itself a Gaussian mixture with N d components.
In many practical applications, it is infeasible to explicitly construct these components,
and therefore intractable to build a smaller approximating mixture using the EM algorithm.
Mixture products are thus typically approximated by drawing samples from the product
density. These samples can be used to either form a Monte Carlo estimate of a desired
expectation [4], or construct a kernel density estimate approximating the true product [2].

Although exact sampling requires exponential cost, Gibbs sampling algorithms may often
be used to produce good approximate samples [2, 4].

When accurate approximations are required, existing methods for sampling from products
of Gaussian mixtures often require a large computational cost. In particular, sampling is
the primary computational burden for both NBP and PoE. This paper develops a pair of
new sampling algorithms which use multiscale, KD-Tree [5] representations to improve
accuracy and reduce computation. The first is a multiscale variant of existing Gibbs sam-
plers [2, 4] with improved empirical convergence rate. The second makes use of approx-
imate kernel density evaluation methods [6] to construct a fast ε-exact sampler which, in
contrast with existing methods, is guaranteed to sample points to within a tunable parame-
ter ε of their true probability. Following our presentation of the algorithms, we demonstrate
their performance on a set of computational examples motivated by NBP and PoE.

2 Products of Gaussian Mixtures

Let {p1(x), . . . , pd(x)} denote a set of d mixtures of N Gaussian densities, where

pi(x) =
∑

li

wliN (x;µli ,Λi) (1)

Here, li are a set of labels for the N mixture components in pi(x), wli are the normalized
component weights, and N (x;µli ,Λi) denotes a normalized Gaussian density with mean
µli and diagonal covariance Λi. For simplicity, we assume that all mixtures are of equal
size N , and that the variances Λi are uniform within each mixture, although the algorithms
which follow may be readily extended to problems where this is not the case. Our goal is
to efficiently sample from the Nd component mixture density p(x) ∝

∏d

i=1 pi(x).

2.1 Exact Sampling

Sampling from the product density can be decomposed into two steps: randomly select one
of the product density’s Nd components, and then draw a sample from the corresponding
Gaussian. Let each product density component be labeled as L = [l1, . . . , ld], where li
labels one of the N components of pi(x).1 The relative weight of component L is given by

wL =

∏d

i=1 wliN (x;µli ,Λi)

N (x;µL,ΛL)
Λ−1

L =
d

∑

i=1

Λ−1
i Λ−1

L µL =
d

∑

i=1

Λ−1
i µli (2)

where µL, ΛL are the mean and variance of product component L, and this equation may be
evaluated at any x (the value x = µL may be numerically convenient). To form the product
density, these weights are normalized by the weight partition function Z ,

∑

L wL.

Determining Z exactly takes O(Nd) time, and given this constant we can draw N samples
from the distribution in O(Nd) time and O(N) storage. This is done by drawing and sort-
ing N uniform random variables on the interval [0, 1], and then computing the cumulative
distribution of p(L) = wL/Z to determine which, if any, samples are drawn from each L.

2.2 Importance Sampling

Importance sampling is a Monte Carlo method for approximately sampling from (or com-
puting expectations of) an intractable distribution p(x), using a proposal distribution q(x)
for which sampling is feasible [7]. To draw N samples from p(x), an importance sampler
draws M ≥ N samples xi ∼ q(x), and assigns the ith sample weight wi ∝ p(xi)/q(xi).
The weights are then normalized by Z =

∑

i wi, and N samples are drawn (with replace-
ment) from the discrete distribution p̄(xi) = wi/Z.

1Throughout this paper, we use lowercase letters (li) to label input density components, and cap-
ital letters (L = [l1, . . . , ld]) to label the corresponding product density components.

Parallel Gibbs Sampler

Sequential Gibbs Sampler

M
ix

 1
M

ix
 2

M
ix

 1
M

ix
 2

..
.

X

X

..
.

Figure 1: Two possible Gibbs samplers for a product of 2 mixtures of 5 Gaussians. Arrows show the
weights assigned to each label. Top left: At each iteration, one label is sampled conditioned on the
other density’s current label. Bottom left: Alternate between sampling a data point X conditioned on
the current labels, and resampling all labels in parallel. Right: After κ iterations, both Gibbs samplers
identify mixture labels corresponding to a single kernel (solid) in the product density (dashed).

For products of Gaussian mixtures, we consider two different proposal distributions. The
first, which we refer to as mixture importance sampling, draws each sample by randomly
selecting one of the d input mixtures, and sampling from its N components (q(x) = pi(x)).
The remaining d − 1 mixtures then provide the importance weight (wi =

∏

j 6=i pj(xi)).
This is similar to the method used to combine density trees in [8]. Alternatively, we can
approximate each input mixture pi(x) by a single Gaussian density qi(x), and choose
q(x) ∝

∏

i qi(x). We call this procedure Gaussian importance sampling.

2.3 Gibbs Sampling

Sampling from Gaussian mixture products is difficult because the joint distribution over
product density labels, as defined by equation (2), is complicated. However, conditioned
on the labels of all but one mixture, we can compute the conditional distribution over the
remaining label in O(N) operations, and easily sample from it. Thus, we may use a Gibbs
sampler [9] to draw asymptotically unbiased samples, as illustrated in Figure 1. At each
iteration, the labels {lj}j 6=i for d − 1 of the input mixtures are fixed, and the ith label is
sampled from the corresponding conditional density. The newly chosen li is then fixed,
and another label is updated. After a fixed number of iterations κ, a single sample is drawn
from the product mixture component identified by the final labels. To draw N samples, the
Gibbs sampler requires O(dκN 2) operations; see [2] for further details.

The previously described sequential Gibbs sampler defines an iteration over the labels of
the input mixtures. Another possibility uses the fact that, given a data point x̄ in the product
density space, the d input mixture labels are conditionally independent [4]. Thus, one can
define a parallel Gibbs sampler which alternates between sampling a data point conditioned
on the current input mixture labels, and parallel sampling of the mixture labels given the
current data point (see Figure 1). The complexity of this sampler is also O(dκN 2).

3 KD–Trees

A KD-tree is a hierarchical representation of a point set which caches statistics of subsets
of the data, thereby making later computations more efficient [5]. KD-trees are typically
binary trees constructed by successively splitting the data along cardinal axes, grouping
points by spatial location. We use the variable l to denote the label of a leaf node (the index
of a single point), and l to denote a set of leaf labels summarized at a node of the KD-tree.

x xx x x x xx

x xx x x x xx

x xx x xx x x

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{3,4}{1,2} {5,6} {7,8}

x xx x x x xx

x xx x x x xx

x xx x xx x x

(a) (b)
Figure 2: Two KD-tree representations of the same one-dim. point set. (a) Each node maintains a
bounding box (label sets l are shown in braces). (b) Each node maintains mean and variance statistics.

Figure 2 illustrates one-dimensional KD-trees which cache different sets of statistics. The
first (Figure 2(a)) maintains bounding boxes around the data, allowing efficient computa-
tion of distances; similar trees are used in Section 4.2. Also shown in this figure are the
label sets l for each node. The second (Figure 2(b)) precomputes means and variances of
point clusters, providing a multi-scale Gaussian mixture representation used in Section 4.1.

3.1 Dual Tree Evaluation

x xx x x x xx

D
minD

max

oooo oo oo

Figure 3: Two KD-tree representations
may be combined to efficiently bound
the maximum (Dmax) and minimum
(Dmin) pairwise distances between sub-
sets of the summarized points (bold).

Multiscale representations have been effectively
applied to kernel density estimation problems.
Given a mixture of N Gaussians with means {µi},
we would like to evaluate

p(xj) =
∑

i

wiN (xj ;µi,Λ) (3)

at a given set of M points {xj}. By representing
the means {µi} and evaluation points {xj} with
two different KD-trees, it is possible to define a
dual–tree recursion [6] which is much faster than
direct evaluation of all NM kernel–point pairs.

The dual-tree algorithm uses bounding box statistics (as in Figure 2(a)) to approximately
evaluate subsets of the data. For any set of labels in the density tree lµ and location tree lx,
one may use pairwise distance bounds (see Figure 3) to find upper and lower bounds on

∑

i∈lµ

wiN (xj ;µi,Λ) for any j ∈ lx (4)

When the distance bounds are sufficiently tight, the sum in equation (4) may be approxi-
mated by a constant, asymptotically allowing evaluation in O(N) operations [6].

4 Sampling using Multiscale Representations

4.1 Gibbs Sampling on KD-Trees

Although the pair of Gibbs samplers discussed in Section 2.3 are often effective, they some-
times require a very large number of iterations to produce accurate samples. The most diffi-
cult densities are those for which there are multiple widely separated modes, each of which
is associated with disjoint subsets of the input mixture labels. In this case, conditioned
on a set of labels corresponding to one mode, it is very unlikely that a label or data point
corresponding to a different mode will be sampled, leading to slow convergence.

Similar problems have been observed with Gibbs samplers on Markov random fields [9].
In these cases, convergence can often be accelerated by constructing a series of “coarser

scale” approximate models in which the Gibbs sampler can move between modes more eas-
ily [10]. The primary challenge in developing these algorithms is to determine procedures
for constructing accurate coarse scale approximations. For Gaussian mixture products,
KD-trees provide a simple, intuitive, and easily constructed set of coarser scale models.

As in Figure 2(b), each level of the KD-tree stores the mean and variance (biased by kernel
size) of the summarized leaf nodes. We start at the same coarse scale for all input mixtures,
and perform standard Gibbs sampling on that scale’s summary Gaussians. After several
iterations, we condition on a data sample (as in the parallel Gibbs sampler of Section 2.3)
to infer labels at the next finest scale. Intuitively, by gradually moving from coarse to fine
scales, multiscale sampling can better explore all of the product density’s important modes.

As the number of sampling iterations approaches infinity, multiscale samplers have the
same asymptotic properties as standard Gibbs samplers. Unfortunately, there is no guar-
antee that multiscale sampling will improve performance. However, our simulation results
indicate that it is usually very effective (see Section 5).

4.2 Epsilon-Exact Sampling using KD-Trees

In this section, we use KD-trees to efficiently compute an approximation to the partition
function Z, in a manner similar to the dual tree evaluation algorithm of [6] (see Section 3.1).
This leads to an ε-exact sampler for which a label L = [l1, . . . , ld], with true probability
pL, is guaranteed to be sampled with some probability p̂L ∈ [pL − ε, pL + ε]. We denote
subsets of labels in the input densities with lowercase script (li), and sets of labels in the
product density by L = l1×· · ·× ld. The approximate sampling procedure is similar to
the exact sampler of Section 2.1. We first construct KD-tree representations of each input
density (as in Figure 2(a)), and use a multi–tree recursion to approximate the partition
function Ẑ =

∑

ŵL by summarizing sets of labels L where possible. Then, we compute
the cumulative distribution of the sets of labels, giving each label set L probability ŵL/Ẑ.

4.2.1 Approximate Evaluation of the Weight Partition Function
We first note that the weight function (equation (2)) can be rewritten using terms which
involve only pairwise distances (the quotient is computed elementwise):

wL =
(

d
∏

j=1

wlj

)

·
∏

(li,lj>i)

N (µli ;µlj ,Λ(i,j)) where Λ(i,j) =
ΛiΛj

ΛL

(5)

This equation may be divided into two parts: a weight contribution
∏d

i=1 wli , and a distance
contribution (which we denote by KL) expressed in terms of the pairwise distances between
kernel centers. We use the KD-trees’ distance bounds to compute bounds on each of these
pairwise distance terms for a collection of labels L = l1×· · ·×ld. The product of the upper
(lower) pairwise bounds is itself an upper (lower) bound on the total distance contribution
for any label L within the set; denote these bounds by K+

L
and K−

L
, respectively.2

By using the mean K∗
L

= 1
2

(

K+
L

+ K−
L

)

to approximate KL, we incur a maximum error
1
2

(

K+
L
− K−

L

)

for any label L ∈ L. If this error is less than Zδ (which we ensure by
comparing to a running lower bound Zmin on Z), we treat it as constant over the set L and
approximate the contribution to Z by

∑

L∈L

ŵL = K∗
L

∑

L∈L

(
∏

i

wli) = K∗
L

∏

i

(
∑

li∈li

wli) (6)

This is easily calculated using cached statistics of the weight contained in each set. If the
error is larger than Zδ, we need to refine at least one of the label sets; we use a heuristic
to make this choice. This procedure is summarized in Algorithm 1. Note that all of the

2We can also use multipole methods such as the Fast Gauss Transform [11] to efficiently compute
alternate, potentially tighter bounds on the pairwise values.

MultiTree([l1, . . . , ld])

1. For each pair of distributions (i, j > i), use their bounding boxes to compute
(a) K

(i,j)
max ≥ maxli∈li,lj∈lj

N (xli − xlj ; 0, Λ(i,j))

(b) K
(i,j)
min ≤ minli∈li,lj∈lj

N (xli − xlj ; 0, Λ(i,j))

2. Find Kmax =
∏

(i,j>i) K
(i,j)
max and Kmin =

∏

(i,j>i) K
(i,j)
min

3. If 1
2

(Kmax − Kmin) ≤ Zminδ, approximate this combination of label sets:
(a) ŵL = 1

2
(Kmax + Kmin) (

∏

wli
), where wli

=
∑

li∈li
wli is cached by the KD-trees

(b) Zmin = Zmin + Kmin (
∏

wli
)

(c) Ẑ = Ẑ + ŵL

4. Otherwise, refine one of the label sets:
(a) Find arg max(i,j) K

(i,j)
max/K

(i,j)
min such that range(li) ≥ range(lj).

(b) Call recursively:
i. MultiTree([l1, . . . , Nearer(Left(li), Right(li), lj), . . . , ld])

ii. MultiTree([l1, . . . , Farther(Left(li), Right(li), lj), . . . , ld])
where Nearer(Farther) returns the nearer (farther) of the first two arguments to the third.

Algorithm 1: Recursive multi-tree algorithm for approximately evaluating the partition function Z
of the product of d Gaussian mixture densities represented by KD–trees. Zmin denotes a running
lower bound on the partition function, while Ẑ is the current estimate. Initialize Zmin = Ẑ = 0.

Given the final partition function estimate Ẑ, repeat Algorithm 1 with the following modifications:
3. (c) If ĉ ≤ Ẑuj < ĉ + ŵL for any j, draw L ∈ L by sampling li ∈ li with weight wli/wli

3. (d) ĉ = ĉ + ŵL

Algorithm 2: Recursive multi-tree algorithm for approximate sampling. ĉ denotes the cumulative
sum of weights ŵL. Initialize by sorting N uniform [0, 1] samples {uj}, and set Zmin = ĉ = 0.

quantities required by this algorithm may be stored within the KD–trees, avoiding searches
over the sets li. At the algorithm’s termination, the total error is bounded by

|Z − Ẑ| ≤
∑

L

|wL − ŵL| ≤
∑

L

1
2

(

K+
L
− K−

L

)

∏

wli ≤ Zδ
∑

L

∏

wli ≤ Zδ (7)

where the last inequality follows because each input mixture’s weights are normalized.
This guarantees that our estimate Ẑ is within a fractional tolerance δ of its true value.

4.2.2 Approximate Sampling from the Cumulative Distribution

To use the partition function estimate Ẑ for approximate sampling, we repeat the approx-
imation process in a manner similar to the exact sampler: draw N sorted uniform random
variables, and then locate these samples in the cumulative distribution. We do not explicitly
construct the cumulative distribution, but instead use the same approximate partial weight
sums used to determine Ẑ (see equation (6)) to find the block of labels L = l1×· · ·× ld

associated with each sample. Since all labels L ∈ L within this block have approximately
equal distance contribution KL ≈ K∗

L
, we independently sample a label li within each set

li proportionally to the weight wli .

This procedure is shown in Algorithm 2. Note that, to be consistent about when approxima-
tions are made and thus produce weights ŵL which still sum to Ẑ, we repeat the procedure
for computing Ẑ exactly, including recomputing the running lower bound Zmin. This al-
gorithm is guaranteed to sample each label L with probability p̂L ∈ [pL − ε, pL + ε]:

|p̂L − pL| =

∣

∣

∣

∣

ŵL

Ẑ
−

wL

Z

∣

∣

∣

∣

≤
2δ

1 − δ
, ε (8)

Proof: From our bounds on the error of K∗
L, |wL

Z
− ŵL

Z
| =

|KL−K∗

L|

Z

∏

wli ≤ δ(
∏

wli) ≤ δ and
| ŵL

Z
− ŵL

Ẑ
| = ŵL

Z
|1 − 1

Ẑ/Z
| ≤ ŵL

Z
|1 − 1

1−δ
| ≤ ŵL

Z
δ

1−δ
≤ 1+δ

1−δ
δ. Thus, the estimated probability

of choosing label L has at most error |wL

Z
− ŵL

Ẑ
| ≤ |wL

Z
− ŵL

Z
| + | ŵL

Z
− ŵL

Ẑ
| ≤ 2δ

1−δ
.

5 Computational Examples
5.1 Products of One–Dimensional Gaussian Mixtures
In this section, we compare the sampling methods discussed in this paper on three chal-
lenging one–dimensional examples, each involving products of mixtures of 100 Gaussians
(see Figure 4). We measure performance by drawing 100 samples, constructing a kernel
density estimate using likelihood cross–validation [1], and calculating the KL divergence
from the true product density. We repeat this test 250 times for each of a range of parameter
settings of each algorithm, and plot the average KL divergence versus computation time.

For the product of three mixtures in Figure 4(a), the multiscale (MS) Gibbs samplers dra-
matically outperform standard Gibbs sampling. In addition, we see that sequential Gibbs
sampling is more accurate than parallel. Both of these differences can be attributed to the
bimodal product density. However, the most effective algorithm is the ε–exact sampler,
which matches exact sampling’s performance in far less time (0.05 versus 2.75 seconds).
For a product of five densities (Figure 4(b)), the cost of exact sampling increases to 7.6
hours, but the ε–exact sampler matches its performance in less than one minute. Even
faster, however, is the sequential MS Gibbs sampler, which takes only 0.3 seconds.

For the previous two examples, mixture importance sampling (IS) is nearly as accurate
as the best multiscale methods (Gaussian IS seems ineffective). However, in cases where
all of the input densities have little overlap with the product density, mixture IS performs
very poorly (see Figure 4(c)). In contrast, multiscale samplers perform very well in such
situations, because they can discard large numbers of low weight product density kernels.

5.2 Tracking an Object using Nonparametric Belief Propagation
NBP [2] solves inference problems on non–Gaussian graphical models by propagating the
results of local sampling computations. Using our multiscale samplers, we applied NBP
to a simple tracking problem in which we observe a slowly moving object in a sea of ran-
domly shifting clutter. Figure 5 compares the posterior distributions of different samplers
two time steps after an observation containing only clutter. ε–exact sampling matches the
performance of exact sampling, but takes half as long. In contrast, a standard particle
filter [7], allowed ten times more computation, loses track. As in the previous section,
multiscale Gibbs sampling is much more accurate than standard Gibbs sampling.

6 Discussion
For products of a few mixtures, the ε–exact sampler is extremely fast, and is guaranteed to
give good performance. As the number of mixtures grow, ε–exact sampling may become
overly costly, but the sequential multiscale Gibbs sampler typically produces accurate sam-
ples with only a few iterations. We are currently investigating the performance of these
algorithms on large–scale nonparametric belief propagation applications.

References
[1] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.
[2] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric belief propagation.

In CVPR, 2003.
[3] M. Isard. PAMPAS: Real–valued graphical models for computer vision. In CVPR, 2003.
[4] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Technical

Report 2000-004, Gatsby Computational Neuroscience Unit, 2000.
[5] K. Deng and A. W. Moore. Multiresolution instance-based learning. In IJCAI, 1995.
[6] A. G. Gray and A. W. Moore. Very fast multivariate kernel density estimation. In JSM, 2003.
[7] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice.

Springer-Verlag, New York, 2001.
[8] S. Thrun, J. Langford, and D. Fox. Monte Carlo HMMs. In ICML, pages 415–424, 1999.
[9] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restora-

tion of images. IEEE Trans. PAMI, 6(6):721–741, November 1984.
[10] J. S. Liu and C. Sabatti. Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian

computation. Biometrika, 87(2):353–369, 2000.
[11] J. Strain. The fast Gauss transform with variable scales. SIAM J. SSC, 12(5):1131–1139, 1991.

(a) Input Mixtures

Product Mixture 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

Computation Time (sec)

K
L

D
iv

er
ge

nc
e

Exact
MS ε−Exact
MS Seq. Gibbs
MS Par. Gibbs
Seq. Gibbs
Par. Gibbs
Gaussian IS
Mixture IS

(b) Input Mixtures

Product Mixture 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Computation Time (sec)

K
L

D
iv

er
ge

nc
e

Exact
MS ε−Exact
MS Seq. Gibbs
MS Par. Gibbs
Seq. Gibbs
Par. Gibbs
Gaussian IS
Mixture IS

(c) Input Mixtures

Product Mixture 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

Computation Time (sec)

K
L

D
iv

er
ge

nc
e

Exact
MS ε−Exact
MS Seq. Gibbs
MS Par. Gibbs
Seq. Gibbs
Par. Gibbs
Gaussian IS
Mixture IS

Figure 4: Comparison of average sampling accuracy versus computation time for different algo-
rithms (see text). (a) Product of 3 mixtures (exact requires 2.75 sec). (b) Product of 5 mixtures (exact
requires 7.6 hours). (c) Product of 2 mixtures (exact requires 0.02 sec).

Target Location
Observations
Exact NBP

Target Location
ε−Exact NBP
Particle Filter

Target Location
MS Seq. Gibbs NBP
Seq. Gibbs NBP

(a) (b) (c)

Figure 5: Object tracking using NBP. Plots show the posterior distributions two time steps after an
observation containing only clutter. The particle filter and Gibbs samplers are allowed equal compu-
tation. (a) Latest observations, and exact sampling posterior. (b) ε–exact sampling is very accurate,
while a particle filter loses track. (c) Multiscale Gibbs sampling leads to improved performance.

