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Abstract

Since the development of loopy belief propagation, there has been considerable
work on advancing the state of the art for approximate inference over distributions
defined on discrete random variables. Improvements include guarantees of con-
vergence, approximations that are provably more accurate, and bounds on the re-
sults of exact inference. However, extending these methods to continuous-valued
systems has lagged behind. While several methods have been developed to use be-
lief propagation on systems with continuous values, recent advances for discrete
variables have not as yet been incorporated.
In this context we extend a recently proposed particle-based belief propagation
algorithm to provide a general framework for adapting discrete message-passing
algorithms to inference in continuous systems. The resulting algorithms behave
similarly to their purely discrete counterparts, extending the benefits of these more
advanced inference techniques to the continuous domain.

1 Introduction

Graphical models have proven themselves to be an effective tool for representing the underlying
structure of probability distributions and organizing the computations required for exact and ap-
proximate inference. Early examples of the use of graph structure for inference include join or
junction trees [1] for exact inference, Markov chain Monte Carlo (MCMC) methods [2], and vari-
ational methods such as mean field and structured mean field approaches [3]. Belief propagation
(BP), originally proposed by Pearl [1], has gained in popularity as a method of approximate infer-
ence, and in the last decade has led to a number of more sophisticated algorithms based on conjugate
dual formulations and free energy approximations [4, 5, 6].

However, the progress on approximate inference in systems with continuous random variables has
not kept pace with that for discrete random variables. Some methods, such as MCMC techniques, are
directly applicable to continuous domains, while others such as belief propagation have approximate
continuous formulations [7, 8]. Sample-based representations, such as are used in particle filtering,
are particularly appealing as they are relatively easy to implement, have few numerical issues, and
have no inherent distributional assumptions. Our aim is to extend particle methods to take advantage
of recent advances in approximate inference algorithms for discrete-valued systems.

Several recent algorithms provide significant advantages over loopy belief propagation. Double-
loop algorithms such as CCCP [9] and UPS [10] use the same approximations as BP but guarantee
convergence. More general approximations can be used to provide theoretical bounds on the results
of exact inference [5, 3] or are guaranteed to improve the quality of approximation [6], allowing
an informed trade-off between computation and accuracy. Like belief propagation, they can be
formulated as local message-passing algorithms on the graph, making them amenable to parallel
computation [11] or inference in distributed systems [12, 13].
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In short, the algorithmic characteristics of these recently-developed algorithms are often better, or at
least more flexible, than those of BP. However, these methods have not been applied to continuous
random variables, and in fact this subject was one of the open questions posed at a recent NIPS
workshop [14].

In order to develop particle-based approximations for these algorithms, we focus on one particular
technique for concreteness: tree-reweighted belief propagation (TRW) [5]. TRW represents one
of the earliest of a recent class of inference algorithms for discrete systems, but as we discuss in
Section 2.2 the extensions of TRW can be incorporated into the same framework if desired.

The basic idea of our algorithm is simple and extends previous particle formulations of exact infer-
ence [15] and loopy belief propagation [16]. We use collections of samples drawn from the con-
tinuous state space of each variable to define a discrete problem, “lifting” the inference task from
the original space to a restricted, discrete domain on which TRW can be performed. At any point,
the current results of the discrete inference can be used to re-select the sample points from a vari-
able’s continuous domain. This iterative interaction between the sample locations and the discrete
messages produces a dynamic discretization that adapts itself to the inference results.

We demonstrate that TRW and similar methods can be naturally incorporated into the lifted, discrete
phase of particle belief propagation and that they confer similar benefits on the continuous problem
as hold in truly discrete systems. To this end we measure the performance of the algorithm on an
Ising grid, an analogous continuous model, and the sensor localization problem. In each case, we
show that tree-reweighted particle BP exhibits behavior similar to TRW and produces significantly
more robust marginal estimates than ordinary particle BP.

2 Graphical Models and Inference

Graphical models provide a convenient formalism for describing structure within a probability dis-
tribution p(X) defined over a set of variables X = {x1, . . . , xn}. This structure can then be applied
to organize computations over p(X) and construct efficient algorithms for many inference tasks,
including optimization to find a maximum a posteriori (MAP) configuration, marginalization, or
computing the likelihood of observed data.

2.1 Factor Graphs

Factor graphs [17] are a particular type of graphical model that describe the factorization struc-
ture of the distribution p(X) using a bipartite graph consisting of factor nodes and variable nodes.
Specifically, suppose such a graph G consists of factor nodes F = {f1, . . . , fm} and variable nodes
X = {x1, . . . , xn}. Let Xu ⊆ X denote the neighbors of factor node fu and Fs ⊆ F denote the
neighbors of variable node xs. Then, G is consistent with a distribution p(X) if and only if

p(x1, . . . , xn) =
1

Z

m∏
u=1

fu(Xu). (1)

In a common abuse of notation, we use the same symbols to represent each variable node and its
associated variable xs, and similarly for each factor node and its associated function fu. Each factor
fu corresponds to a strictly positive function over a subset of the variables. The graph connectivity
captures the conditional independence structure of p(X), enabling the development of efficient exact
and approximate inference algorithms [1, 17, 18]. The quantity Z, called the partition function, is
also of importance in many problems; for example in normalized distributions such as Bayes nets, it
corresponds to the probability of evidence and can be used for model comparison.

A common inference problem is that of computing the marginal distributions of p(X). Specifically,
for each variable xs we are interested in computing the marginal distribution

ps(xs) =

∫
X\xs

p(X) ∂X.

For discrete-valued variables X , the integral is replaced by a summation.

When the variables are discrete and the graph G representing p(X) forms a tree (G has no cy-
cles), marginalization can be performed efficiently using the belief propagation or sum-product al-
gorithm [1, 17]. For inference in more general graphs, the junction tree algorithm [19] creates a
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tree-structured hypergraph ofG and then performs inference on this hypergraph. The computational
complexity of this process isO(ndb), where d is the number of possible values for each variable and
b is the maximal clique size of the hypergraph. Unfortunately, for even moderate values of d, this
complexity becomes prohibitive for even relatively small b.

2.2 Approximate Inference

Loopy BP [1] is a popular alternative to exact methods and proceeds by iteratively passing “mes-
sages” between variable and factor nodes in the graph as though the graph were a tree (ignoring
cycles). The algorithm is exact when the graph is tree-structured and can provide excellent approx-
imations in some cases even when the graph has loops. However, in other cases loopy BP may
perform poorly, have multiple fixed points, or fail to converge at all.

Many of the more recent varieties of approximate inference are framed explicitly as an optimiza-
tion of local approximations over locally defined cost functions. Variational or free-energy based
approaches convert the problem of exact inference into the optimization of a free energy function
over the set of realizable marginal distributionsM, called the marginal polytope [18]. Approximate
inference then corresponds to approximating the constraint set and/or energy function. Formally,

max
µ∈M

Eµ[logP (X)] +H(µ) ≈ max
µ∈M̂

Eµ[logP (X)] + Ĥ(µ)

where H is the entropy of the distribution corresponding to µ. Since the solution µ may not corre-
spond to the marginals of any consistent joint distribution, these approximate marginals are typically
referred to as pseudomarginals. If both the constraints in M̂ and approximate entropy Ĥ decompose
locally on the graph, the optimization process can be interpreted as a message-passing procedure,
and is often performed using fixed-point equations like those of BP.

Belief propagation can be understood in this framework as corresponding to an outer approxima-
tion M̂ ⊇ M enforcing local consistency and the Bethe approximation to H [4]. This viewpoint
provides a clear path to directly improve upon the properties of BP, leading to a number of differ-
ent algorithms. For example, CCCP [9] and UPS [10] make the same approximations but use an
alternative, direct optimization procedure to ensure convergence. Fractional belief propagation [20]
corresponds to a more general Bethe-like approximation with additional parameters, which can be
modified to ensure that the cost function is convex and used with convergent algorithms [21]. A
special case includes tree-reweighted belief propagation [5], which both ensures convexity and pro-
vides an upper bound on the partition function Z. The approximation ofM can also be improved
using cutting plane methods, which include additional, higher-order consistency constraints on the
pseudomarginals [6]. Other choices of local cost functions lead to alternative families of approxi-
mations [8].

Overall, these advances have provided significant improvements in the state of the art for approxi-
mate inference in discrete-valued systems. They provide increased flexibility, theoretical bounds on
the results of exact inference, and can provably increase the quality of the estimates. However, these
advances have not been carried over into the continuous domain.

For concreteness, in the rest of the paper we will use tree-reweighted belief propagation (TRW) [5]
as our inference method of choice, although the same ideas can be applied to any of the discussed
inference algorithms. As we will see shortly, the details specific to TRW are nicely encapsulated
and can be swapped out for those of another algorithm with minimal effort.

The fixed-point equations for TRW lead to a message-passing algorithm similar to BP, defined by

mxs�fu(xs) ∝
∏
fv∈Fs

mfv�xs
(xs)

ρv

mfu�xs
(xs)

, mfu�xs
(xs) ∝

∑
Xu\xs

fu(Xu)
1/ρu

∏
xt∈Xu\xs

mxt�fu(xt)

(2)

The parameters ρv are called edge weights or appearance probabilities. For TRW, the ρ are required
to correspond to the fractional occurrence rates of the edges in some collection of tree-structured
subgraphs of G. The choice of ρ affects the quality of the approximation; the tightest upper bound
can be obtained via a convex optimization of ρ which computes the pseudomarginals as an inner
loop.
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3 Continuous Random Variables

For continuous-valued random variables, many of these algorithms cannot be applied directly. In
particular, any reasonably fine-grained discretization produces a discrete variable whose domain size
d is quite large. The domain size is typically exponential in the dimension of the variable and the
complexity of the message-passing algorithms is O(ndb), where n is the total number of variables
and b is the number of variables in the largest factor. Thus, the computational cost can quickly
become intractable even with pairwise factors over low dimensional variables. Our goal is to adapt
the algorithms of Section 2.2 to perform efficient approximate inference in such systems.

For time-series problems, in which G forms a chain, a classical solution is to use sequential Monte
Carlo approximations, generally referred to as particle filtering [22]. These methods use samples to
define an adaptive discretization of the problem with fine granularity in regions of high probability.
The stochastic nature of the discretization is simple to implement and enables probabilistic assur-
ances of quality including convergence rates which are independent of the problem’s dimensionality.
(In sufficiently few dimensions, deterministic adaptive discretizations can also provide a competitive
alternative, particularly if the factors are analytically tractable [23, 24].)

3.1 Particle Representations for Message-Passing

Particle-based approximations have been extended to loopy belief propagation as well. For example,
in the nonparametric belief propagation (NBP) algorithm [7], the BP messages are represented as
Gaussian mixtures and message products are approximated by drawing samples, which are then
smoothed to form new Gaussian mixture distributions. A key aspect of this approach is the fact that
the product of several mixtures of Gaussians is also a mixture of Gaussians, and thus can be sampled
from with relative ease. However, it is difficult to see how to extend this algorithm to more general
message-passing algorithms, since for example the TRW fixed point equations (2) involve ratios and
powers of messages, which do not have a simple form for Gaussian mixtures and may not even form
finitely integrable functions.

Instead, we adapt a recent particle belief propagation (PBP) algorithm [16] to work on the tree-
reweighted formulation. In PBP, samples (particles) are drawn for each variable, and each message
is represented as a set of weights over the available values of the target variable. At a high level,
the procedure iterates between sampling particles from each variable’s domain, performing inference
over the resulting discrete problem, and adaptively updating the sampling distributions. This process
is illustrated in Figure 1. Formally, we define a proposal distribution Ws(xs) for each variable xs
such that Ws(xs) is non-zero over the domain of xs. Note that we may rewrite the factor message
computation (2) as an importance reweighted expectation:

mfu�xs
(xs) ∝ E

Xu\xs

fu(Xu)
1/ρu

∏
xt∈Xu\xs

mxt�fu(xt)

Wt(xt)

 (3)

Let us index the variables that are neighbors of factor fu as Xu = {xu1
, . . . , xub

}. Then, after
sampling particles {x(1)s , · · · , x(N)

s } from Ws(xs), we can index a particular assignment of parti-

cle values to the variables in Xu with X(~j)
u = [x

(j1)
u1 , . . . , x

(jb)
ub ]. We then obtain a finite-sample

approximation of the factor message in the form

mfu�xuk

(
x(j)uk

)
∝ 1

N b−1

∑
~i:ik=j

fu (X(~i)
u

)1/ρu ∏
l 6=k

mxul
�fu

(
x
(il)
ul

)
Wxul

(
x
(il)
ul

)
 (4)

In other words, we construct a Monte Carlo approximation to the integral using importance weighted
samples from the proposal. Each of the values in the message then represents an estimate of the
continuous function (2) evaluated at a single particle. Observe that the sum is over N b−1 elements,
and hence the complexity of computing an entire factor message isO(N b); this could be made more
efficient at the price of increased stochasticity by summing over a random subsample of the vectors
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(1) Sample{
x
(i)
s

}
∼Ws(xs)

(1)

(2) Inference on discrete system

(3) Adjust
Wt(xt)

(3)

µ
(
x
(i)
s

)
µ
(
x
(j)
t

)
f
(
x
(i)
s , x

(j)
t

)

Figure 1: Schematic view of particle-based inference. (1) Samples for each variable provide a
dynamic discretization of the continuous space; (2) inference proceeds by optimization or message-
passing in the discrete space; (3) the resulting local functions can be used to change the proposals
Ws(·) and choose new sample locations for each variable.

~i. Likewise, we compute variable messages and beliefs as simple point-wise products:

mxs�fu

(
x(j)s

)
∝
∏
fv∈Fs

mfv�xs

(
x
(j)
s

)ρv
mfu�xs

(
x
(j)
s

) , bs(x
(j)
s ) ∝

∏
fv∈Fs

mfv�xs

(
x(j)s

)ρv
(5)

This parallels the development in [16], except here we use factor weights ~ρ to compute messages
according to TRW rather than standard loopy BP.

Just as in discrete problems, it is often desirable to obtain estimates of the log partition function for
use in goodness-of-fit testing or model comparison. Our implementation of TRW-PBP gives us a
stochastic estimate of an upper bound on the true partition function. Using other message passing
approaches that fit into this framework, such as mean field, can provide a similar a lower bound.
These bounds provide a possible alternative to Monte Carlo estimates of marginal likelihood [25].

3.2 Rao-Blackwellized Estimates

Quantities about xs such as expected values under the pseudomarginal can be computed using the
samples x(i)s . However, for any given variable node xs, the incoming messages to xs given in (4) are
defined in terms of the importance weights and sampled values of the neighboring variables. Thus,
we can compute an estimate of the messages and beliefs defined in (4)–(5) at arbitrary values of xs,
simply by evaluating (4) at that point. This allows us to perform Rao-Blackwellization, conditioning
on the samples at the neighbors of xs rather than using xs’s samples directly.

Using this trick we can often get much higher quality estimates from the inference for small N . In
particular, if the variable state spaces are sufficiently small that they can be discretized (for example,
in 3 or fewer dimensions the discretized domain size d may be manageable) but the resulting factor
domain size, db, is intractably large, we can evaluate (4) on the discretized grid for only O(dN b−1).
More generally, we can substitute a larger number of samples N ′ � N with cost that grows only
linearly in N ′.

3.3 Resampling and Proposal Distributions

Another critical point is that the efficiency of this procedure hinges on the quality of the proposal
distributions Ws. Unfortunately, this forms a circular problem – W must be chosen to perform
inference, but the quality of W depends on the distribution and its pseudomarginals. This interde-
pendence motivates an attempt to learn the sampling distributions in an online fashion, adaptively
updating them based on the results of the partially completed inference procedure. Note that this
procedure depends on the same properties as Rao-Blackwellized estimates: that we be able to com-
pute our messages and beliefs at a new set of points given the message weights at the other nodes.

Both [15] and [16] suggest using the current belief at each iteration to form a new proposal dis-
tribution. In [15], parametric density estimates are formed using the message-weighted samples
at the current iteration, which form the sampling distributions for the next phase. In [16], a short
Metropolis-Hastings MCMC sequence is run at a single node, using the Rao-Blackwellized belief
estimate to compute an acceptance probability. A third possibility is to use a sampling/importance
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Figure 2: 2-D Ising model performance. L1 error for PBP (left) and TRW-PBP (center) for varying
numbers of particles; (right) PBP and TRW-PBP juxtaposed to reveal the gap for high η.

resampling (SIR) procedure, drawing a large number of samples, computing weights, and prob-
abilistically retaining only N . In our experiments we draw samples from the current beliefs, as
approximated by Rao-Blackwellized estimation over a fine grid of particles. For variables in more
than 2 dimensions, we recommend the Metropolis-Hastings approach.

4 Ising-like Models

The Ising model corresponds to a graphical model, typically a grid, over binary-valued variables with
pairwise factors. Originating in statistical physics, similar models are common in many applications
including image denoising and stereo depth estimation. Ising models are well understood, and
provide a simple example of how BP can fail and the benefits of more general forms such as TRW.
We initially demonstrate the behavior of our particle-based algorithms on a small (3 × 3) lattice
of binary-valued variables to compare with the exact discrete implementations, then show that the
same observed behavior arises in an analagous continuous-valued problem.

4.1 Ising model

Our factors consist of single-variable and pairwise functions, given by

f(xs) = [ 0.5 0.5 ] f(xs, xt) =

[
η 1− η

1− η η

]
(6)

for η > .5. By symmetry, it is easy to see that the true marginal of each variable is uniform, [.5 .5].
However, around η ≈ .78 there is a phase transition; the uniform fixed point becomes unstable and
several others appear, becoming more skewed toward one state or another as η increases. As the
strength of coupling in an Ising model increases, the performance of BP often degrades sharply,
while TRW is comparatively robust and remains near the true marginals [5].

Figure 2 shows the performance of PBP and TRW-PBP on this model. Each data point represents
the median L1 error between the beliefs and the true marginals, across all nodes and 40 randomly
initialized trials, after 50 iterations. The left plot (BP) clearly shows the phase shift; in contrast,
the error of TRW remains low even for very strong interactions. In both cases, as N increases the
particle versions of the algorithms converge to their discrete equivalents.

4.2 Continuous grid model

The results for discrete systems, and their corresponding intuition, carry over naturally into contin-
uous systems as well. To illustrate on an interpretable analogue of the Ising model, we use the same
graph structure but with real-valued variables, and factors given by:

f(xs) = exp

(
− x2s
2σ2

l

)
+ exp

(
− (xs − 1)2

2σ2
l

)
f(xs, xt) = exp

(
−|xs − xt|

2

2σ2
p

)
. (7)

Local factors consist of bimodal Gaussian mixtures centered at 0 and 1, while pairwise factors
encourage similarity using a zero-mean Gaussian on the distance between neighboring variables.
We set σl = 0.2 and vary σp analagously to η in the discrete model. Since all potentials are Gaussian
mixtures, the joint distribution is also a Gaussian mixture and can be computed exactly.
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Figure 3: Continuous grid model performance. L1 error for PBP (left) and TRW-PBP (center) for
varying numbers of particles; (right) PBP and TRW-PBP juxtaposed to reveal the gap for low σp.

Figure 3 shows the results of running PBP and TRW-PBP on the continuous grid model, demon-
strating similar characteristics to the discrete model. The left panel reveals that our continuous grid
model also induces a phase shift in PBP, much like that of the Ising model. For sufficiently small
values of σp (large values on our transformed axis), the beliefs in PBP collapse to unimodal distri-
butions with an L1 error of 1. In contrast, TRW-PBP avoids this collapse and maintains multi-modal
distributions throughout; its primary source of error (0.2 at 500 particles) corresponds to overdis-
persed bimodal beliefs. This is expected in attractive models, in which BP tends to “overcount”
information leading to underestimates of variance; TRW removes some of this overcounting and
may overestimate uncertainty.

Figure 4: Bounds on the log partition
function.

As mentioned in Section 3.1, we can use the results of
TRW-PBP to compute an upper bound on the log parti-
tion function. We implement naive mean field within this
same framework to achieve a lower bound as well. The
resulting bounds, computed for a continuous grid model
in which mean field collapses to a single mode, are shown
in Figure 4. With sufficiently many particles, the values
produced by TRW-PBP and MF inference bound the true
value, as they should. With only 20 particles per variable,
however, TRW-PBP occasionally fails and yields “upper
bounds” below the true value. This is not surprising; the
consistency guarantees associated with the importance-
reweighted expectation take effect only when N is suffi-
ciently large.

5 Sensor Localization
We also demonstrate the presence of these effects in a simulation of a real-world application. Sensor
localization considers the task of estimating the position of a collection of sensors in a network given
noisy estimates of a subset of the distances between pairs of sensors, along with known positions
for a small number of anchor nodes. Typical localization algorithms operate by optimizing to find
the most likely joint configuration of sensor positions. A classical model consists of (at a minimum)
three anchor nodes, and a Gaussian model on the noise in the distance observations.

In [12], this problem is formulated as a graphical model and an alternative solution is proposed
using nonparametric belief propagation to perform approximate marginalization. A significant ad-
vantage of this approach is that by providing approximate marginals, we can estimate the degree
of uncertainty in the sensor positions. Gauging this uncertainty can be particularly important when
the distance information is sufficiently ambiguous that the posterior belief is multi-modal, since in
this case the estimated sensor position may be quite far from its true value. Unfortunately, belief
propagation is not ideal for identifying multimodality, since the model is essentially attractive. BP
may underestimate the degree of uncertainty in the marginal distributions and (as in the case of the
Ising-like models in the previous section) collapse into a single mode, providing beliefs which are
misleadingly overconfident.

Figure 5 shows a set of sensor configurations where this is the case. The distance observations
induce a fully connected graph; the edges are omitted for clarity. In this network the anchor nodes
are nearly collinear. This induces a bimodal uncertainty about the locations of the remaining nodes
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Figure 5: Sensor location belief at the target node. (a) Exact belief computed using importance
sampling. (b) PBP collapses and represents only one of the two modes. (c) TRW-PBP
overestimates the uncertainty around each mode, but represents both.

– the configuration in which they are all reflected across the crooked line formed by the anchors is
nearly as likely as the true configuration. Although this example is anecdotal, it reflects a situation
which can arise regularly in practice [26].

Figure 5a shows the true marginal distribution for one node, estimated exhaustively using importance
sampling with 5× 106 samples. It shows a clear bimodal structure – a slightly larger mode near the
sensor’s true location and a smaller mode at a point corresponding to the reflection. In this system
there is not enough information in the measurements to resolve the sensor positions. We compare
these marginals to the results found using PBP.

Figure 5b displays the Rao-Blackwellized belief estimate for one node after 20 iterations of PBP
with each variable represented by 100 particles. Only one mode is present, suggesting that PBP’s
beliefs have “collapsed,” just as in the highly attractive Ising model. Examination of the other
nodes’ beliefs (not shown for space) confirms that all are unimodal distributions centered around
their reflected locations. It is worth noting that PBP converged to the alternative set of unimodal
beliefs (supporting the true locations) in about half of our trials. Such an outcome is only slightly
better; an accurate estimate of confidence is equally important.

The corresponding belief estimate generated by TRW-PBP is shown in Figure 5c. It is clearly
bimodal, with significant probability mass supporting both the true and reflected locations. Also,
each of the two modes is less concentrated than the belief in 5b. As with the continuous grid model
we see increased stability at the price of conservative overdispersion. Again, similar effects occur
for the other nodes in the network.

6 Conclusion
We propose a framework for extending recent advances in discrete approximate inference for appli-
cation to continuous systems. The framework directly integrates reweighted message passing algo-
rithms such as TRW into the lifted, discrete phase of PBP. Furthermore, it allows us to iteratively
adjust the proposal distributions, providing a discretization that adapts to the results of inference,
and allows us to use Rao-Blackwellized estimates to improve our final belief estimates.

We consider the particular case of TRW and show that its benefits carry over directly to continuous
problems. Using an Ising-like system, we argue that phase transitions exist for particle versions of
BP similar to those found in discrete systems, and that TRW significantly improves the quality of the
estimate in those regimes. This improvement is highly relevant to approximate marginalization for
sensor localization tasks, in which it is important to accurately represent the posterior uncertainty.

The flexibility in the choice of message passing algorithm makes it easy to consider several instan-
tiations of the framework and use the one best suited to a particular problem. Furthermore, future
improvements in message-passing inference algorithms on discrete systems can be directly incorpo-
rated into continuous problems.

Acknowledgements: This material is based upon work partially supported by the Office of Naval
Research under MURI grant N00014-08-1-1015.
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