
Dynamic Importance Sampling for Anytime Bounds
of the Partition Function

Qi Lou
Computer Science

Univ. of California, Irvine
Irvine, CA 92697, USA
qlou@ics.uci.edu

Rina Dechter
Computer Science

Univ. of California, Irvine
Irvine, CA 92697, USA
dechter@ics.uci.edu

Alexander Ihler
Computer Science

Univ. of California, Irvine
Irvine, CA 92697, USA
ihler@ics.uci.edu

Abstract

Computing the partition function is a key inference task in many graphical models.
In this paper, we propose a dynamic importance sampling scheme that provides
anytime finite-sample bounds for the partition function. Our algorithm balances
the advantages of the three major inference strategies, heuristic search, variational
bounds, and Monte Carlo methods, blending sampling with search to refine a
variationally defined proposal. Our algorithm combines and generalizes recent
work on anytime search [16] and probabilistic bounds [15] of the partition function.
By using an intelligently chosen weighted average over the samples, we construct
an unbiased estimator of the partition function with strong finite-sample confidence
intervals that inherit both the rapid early improvement rate of sampling and the
long-term benefits of an improved proposal from search. This gives significantly
improved anytime behavior, and more flexible trade-offs between memory, time,
and solution quality. We demonstrate the effectiveness of our approach empirically
on real-world problem instances taken from recent UAI competitions.

1 Introduction

Probabilistic graphical models, including Bayesian networks and Markov random fields, provide a
framework for representing and reasoning with probabilistic and deterministic information [5, 6, 8].
Reasoning in a graphical model often requires computing the partition function, or normalizing
constant of the underlying distribution. Exact computation of the partition function is known to be
#P-hard [19] in general, leading to the development of many approximate schemes. Two important
properties for a good approximation are that (1) it provides bounds or confidence guarantees on the
result, so that the degree of approximation can be measured; and that (2) it can be improved in an
anytime manner, so that the approximation becomes better as more computation is available.

In general, there are three major paradigms for approximate inference: variational bounds, heuristic
search, and Monte Carlo sampling. Each method has advantages and disadvantages. Variational
bounds [21], and closely related approximate elimination methods [7, 14] provide deterministic
guarantees on the partition function. However, these bounds are not anytime; their quality often
depends on the amount of memory available, and do not improve without additional memory. Search
algorithms [12, 20, 16] explicitly enumerate over the space of configurations and eventually provide
an exact answer; however, while some problems are well-suited to search, others only improve their
quality very slowly with more computation. Importance sampling [e.g., 4, 15] gives probabilistic
bounds that improve with more samples at a predictable rate; in practice this means bounds that
improve rapidly at first, but are slow to become very tight. Several algorithms combine two strategies:
approximate hash-based counting combines sampling (of hash functions) with CSP-based search [e.g.,
3, 2] or other MAP queries [e.g., 9, 10], although these are not typically formulated to provide anytime

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

behavior. Most closely related to this work are [16] and [15], which perform search and sampling,
respectively, guided by variational bounds.

In this work, we propose a dynamic importance sampling algorithm that provides anytime probabilis-
tic bounds (i.e., they hold with probability 1− δ for some confidence parameter δ). Our algorithm
interleaves importance sampling with best first search [16], which is used to refine the proposal
distribution of successive samples. In practice, our algorithm enjoys both the rapid bound improve-
ment characteristic of importance sampling [15], while also benefiting significantly from search
on problems where search is relatively effective, or when given enough computational resources,
even when these points are not known in advance. Since our samples are drawn from a sequence of
different, improving proposals, we devise a weighted average estimator that upweights higher-quality
samples, giving excellent anytime behavior.

10
2

10
4

−78

−76

−74

−72

−70

−68

−66

−64

time (sec)

up
pe

r
bo

un
d

search
sampling
two-stage
DIS

[16]
[15]

Figure 1: Example: bounds on
logZ for protein instance 1bgc.

Motivating example. We illustrate the focus and contribu-
tions of our work on an example problem instance (Fig. 1).
Search [16] provides strict bounds (gray) but may not improve
rapidly, particularly once memory is exhausted; on the other
hand, importance sampling [15] provides probabilistic bounds
(green) that improve at a predictable rate, but require more and
more samples to become tight. We first describe a “two stage”
sampling process that uses a search tree to improve the baseline
bound from which importance sampling starts (blue), greatly
improving its long-term performance, then present our dynamic
importance sampling (DIS) algorithm, which interleaves the
search and sampling processes (sampling from a sequence of
proposal distributions) to give bounds that are strong in an
anytime sense.

2 Background

Let X = (X1, . . . , XM) be a vector of random variables, where each Xi takes values in a discrete
domain Xi; we use lower case letters, e.g. xi ∈ Xi, to indicate a value of Xi, and x to indicate an
assignment of X . A graphical model over X consists of a set of factors F = {fα(Xα) | α ∈ I},
where each factor fα is defined on a subset Xα = {Xi | i ∈ α} of X , called its scope.

We associate an undirected graph G = (V,E) with F , where each node i ∈ V corresponds to
a variable Xi and we connect two nodes, (i, j) ∈ E, iff {i, j} ⊆ α for some α. The set I then
corresponds to cliques of G. We can interpret F as an unnormalized probability measure, so that

f(x) =
∏
α∈I

fα(xα), Z =
∑
x

∏
α∈I

fα(xα)

Z is called the partition function, and normalizes f(x). Computing Z is often a key task in evaluating
the probability of observed data, model selection, or computing predictive probabilities.

2.1 AND/OR search trees

We first require some notations from search. AND/OR search trees are able to exploit the conditional
independence properties of the model, as expressed by a pseudo tree:
Definition 1 (pseudo tree). A pseudo tree of an undirected graph G = (V,E) is a directed tree
T = (V,E′) sharing the same set of nodes as G. The tree edges E′ form a subset of E, and we
require that each edge (i, j) ∈ E \ E′ be a “back edge”, i.e., the path from the root of T to j passes
through i (denoted i ≤ j). G is called the primal graph of T.

Fig. 2(a)-(b) show an example primal graph and pseudo tree. Guided by the pseudo tree, we can
construct an AND/OR search tree T consisting of alternating levels of OR and AND nodes. Each OR
node s is associated with a variable, which we slightly abuse notation to denote Xs; the children of
s, ch(s), are AND nodes corresponding to the possible values of Xs. The root ∅ of the AND/OR
search tree corresponds to the root of the pseudo tree. Let pa(c) = s indicate the parent of c, and
an(c) = {n | n ≤ c} be the ancestors of c (including itself) in the tree.

2

A" B"

C"D"

E"

F"

G"

(a)

A

B

C F

GD E

(b)

A

B B

0 1

0 1 0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

(c)

Figure 2: (a) A primal graph of a graphical model over 7 variables. (b) A pseudo tree for the primal
graph consistent with elimination order G,F,E,D,C,B,A. (c) AND/OR search tree guided by the
pseudo tree. One full solution tree is marked red and one partial solution tree is marked blue.

As the pseudo tree defines a partial ordering on the variables Xi, the AND/OR tree extends this to one
over partial configurations of X . Specifically, any AND node c corresponds to a partial configuration
x≤c of X , defined by its assignment and that of its ancestors: x≤c = x≤p ∪ {Xs = xc}, where
s = pa(c), p = pa(s). For completeness, we also define x≤s for any OR node s, which is the same
as that of its AND parent, i.e., x≤s = x≤pa(s). For any node n, the corresponding variables of
x≤n is denoted as X≤n. Let de(Xn) be the set of variables below Xn in the pseudo tree; we define
X>n = de(Xn) if n is an AND node; X>n = de(Xn) ∪ {Xn} if n is an OR node.

The notion of a partial solution tree captures partial configurations of X respecting the search order:
Definition 2 (partial solution tree). A partial solution tree T of an AND/OR search tree T is a subtree
satisfying three conditions: (1) T contains the root of T ; (2) if an OR node is in T , at most one of its
children is in T ; (3) if an AND node is in T , all of its children or none of its children are in T .

Any partial solution tree T defines a partial configuration xT of X; if xT is a complete configuration
ofX , we call T a full solution tree, and use Tx to denote the corresponding solution tree of a complete
assignment x. Fig. 2(c) illustrates these concepts.

We also associate a weight wc with each AND node, defined to be the product of all factors fα that
are instantiated at c but not before:

wc =
∏
α∈Ic

fα(xα), Ic = {α | Xc ∈ Xα ⊆ X≤c}

For completeness, define ws = 1 for any OR node s. It is then easy to see that, for any node n, the
product of weights on a path to the root, gn =

∏
a≤n wa (termed the cost of the path), equals the value

of the factors whose scope is fully instantiated at n, i.e., fully instantiated by x≤n. We can extend this
cost notion to any partial solution tree T by defining g(T) as the product of all factors fully instantiated
by xT ; we will slightly abuse notation by using g(T) and g(xT) interchangeably. Particularly, the
cost of any full solution tree equals the value of its corresponding complete configuration. We use
g(x>n|x≤n) (termed the conditional cost) to denote the quotient g([x≤n, x>n])/g(x≤n), where x>n
is any assignment of X>n, the variables below n in the search tree.

We give a “value” vn to each node n equal to the total conditional cost of all configurations below n:

vn =
∑
x>n

g(x>n|x≤n). (1)

The value of the root is simply the partition function, v∅ = Z. Equivalently, vn can be defined
recursively: if n is an AND node corresponding to a leaf of the pseudo tree, let vn = 1; otherwise,

vn =

{∏
c∈ch(n) vc, if AND node n∑
c∈ch(n) wcvc, if OR node n

(2)

2.2 AND/OR best-first search for bounding the partition function

AND/OR best-first search (AOBFS) can be used to bound the partition function in an anytime fashion
by expanding and updating bounds defined on the search tree [16]. Beginning with only the root

3

∅, AOBFS expands the search tree in a best-first manner. More precisely, it maintains an explicit
AND/OR search tree of visited nodes, denoted S. For each node n in the AND/OR search tree,
AOBFS maintains un, an upper bound on vn, initialized via a pre-compiled heuristic vn ≤ h+n , and
subsequently updated during search using information propagated from the frontier:

un =

{∏
c∈ch(n) uc, if AND node n∑
c∈ch(n) wcuc, if OR node n

(3)

Thus, the upper bound at the root, u∅, is an anytime deterministic upper bound of Z. Note that this
upper bound depends on the current search tree S, so we write US = u∅.

If all nodes below n have been visited, then un = vn; we call n solved and can remove the subtree
below n from memory. Hence we can partition the frontier nodes into two sets: solved frontier nodes,
SOLVED(S), and unsolved ones, OPEN(S). AOBFS assigns a priority to each node and expands a
top-priority (unsolved) frontier node at each iteration. We use the “upper priority” from [16],

Un = gnun
∏

s∈branch(n)

us (4)

where branch(n) are the OR nodes that are siblings of some node≤ n. Un quantifies n’s contribution
to the global boundUS , so this priority attempts to reduce the upper bound onZ as quickly as possible.

We can also interpret our bound US as a sum of bounds on each of the partial configurations covered
by S. Concretely, let TS be the set of projections of full solution trees on S (in other words, TS are
partial solution trees whose leaves are frontier nodes of S); then,

US =
∑
T∈TS

UT where UT = g(T)
∏

s∈leaf(T)

us (5)

and leaf(T) are the leaf nodes of the partial solution tree T .

2.3 Weighted mini-bucket for heuristics and sampling

To construct a heuristic function for search, we can use a class of variational bounds called weighted
mini-bucket (WMB, [14]). WMB corresponds to a relaxed variable elimination procedure, respecting
the search pseudo tree order, that can be tightened using reparameterization (or “cost-shifting”) opera-
tions. Importantly for this work, this same relaxation can also be used to define a proposal distribution
for importance sampling that yields finite-sample bounds [15]. We describe both properties here.

Let n be any node in the search tree; then, one can show that WMB yields the following reparametriza-
tion of the conditional cost below n [13]:

g(x>n|x≤n) = h+n
∏
k

∏
j

bkj(xk|xanj(k))
ρkj , Xk ∈ X>n (6)

where Xanj(k) are the ancestors of Xk in the pseudo tree that are included in the j-th mini-bucket
of Xk. The size of Xanj(k) is controlled by a user-specified parameter called the ibound. The
bkj(xk|xanj(k)) are conditional beliefs, and the non-negative weights ρkj satisfy

∑
j ρkj = 1.

Suppose that we define a conditional distribution q(x>n|x≤n) by replacing the geometric mean over
the bkj in (6) with their arithmetic mean:

q(x>n|x≤n) =
∏
k

∑
j

ρkjbkj(xk|xanj(k)) (7)

Applying the arithmetic-geometric mean inequality, we see that g(x>n|x≤n)/h+n ≤ q(x>n|x≤n).
Summing over x>n shows that h+n is a valid upper bound heuristic for vn:

vn =
∑
x>n

g(x>n|x≤n) ≤ h+n

The mixture distribution q can be also used as a proposal for importance sampling, by drawing
samples from q and averaging the importance weights, g/q. For any node n, we have that

g(x>n|x≤n)/q(x>n|x≤n) ≤ h+n , E
[
g(x>n|x≤n)/q(x>n|x≤n)

]
= vn (8)

4

i.e., the importance weight g(x>n|x≤n)/q(x>n|x≤n) is an unbiased and bounded estimator of vn.

In [15], this property was used to give finite-sample bounds on Z which depended on the WMB
bound, h+∅ . To be more specific, note that g(x>n|x≤n) = f(x) when n is the root ∅, and thus
f(x)/q(x) ≤ h+∅ ; the boundedness of f(x)/q(x) results in the following finite-sample upper bound
on Z that holds with probability at least 1− δ:

Z ≤ 1

N

N∑
i=1

f(xi)

q(xi)
+

√
2V̂ar({f(xi)/q(xi)}Ni=1) ln(2/δ)

N
+

7 ln(2/δ)h+∅
3(N − 1)

(9)

where {xi}Ni=1 are i.i.d. samples drawn from q(x), and V̂ar({f(xi)/q(xi)}Ni=1) is the unbiased
empirical variance. This probabilistic upper bound usually becomes tighter than h+∅ very quickly. A
corresponding finite-sample lower bound on Z exists as well [15].

3 Two-step sampling

The finite-sample bound (9) suggests that improvements to the upper bound on Z may be translatable
into improvements in the probabilistic, sampling bound. In particular, if we define a proposal that
uses the search tree S and its bound US , we can improve our sample-based bound as well. This
motivates us to design a two-step sampling scheme that exploits the refined upper bound from search;
it is a top-down procedure starting from the root:

Step 1 For an internal node n: if it is an AND node, all its children are selected; if n is an OR node,
one child c ∈ ch(n) is randomly selected with probability wcuc/un.

Step 2 When a frontier node n is reached, if it is unsolved, draw a sample ofX>n from q(x>n|x≤n);
if it is solved, quit.

The behavior of Step 1 can be understood by the following proposition:
Proposition 1. Step 1 returns a partial solution tree T ∈ TS with probability UT /US (see (5)). Any
frontier node of S will be reached with probability proportional to its upper priority defined in (4).

Note that at Step 2, although the sampling process terminates when a solved node n is reached, we
associate every configuration x>n of X>n with probability g(x>n|x≤n)/vn which is appropriate in
lieu of (1). Thus, we can show that this two-step sampling scheme induces a proposal distribution,
denoted qS(x), which can be expressed as:

qS(x) =
∏

n∈AND(Tx∩S)

wnun/upa(n)
∏

n′∈OPEN(S)∩Tx

q(x>n′ |x≤n′)
∏

n′′∈SOLVED(S)∩Tx

g(x>n′′ |x≤n′′)/vn′′

where AND(Tx ∩ S) is the set of all AND nodes of the partial solution tree Tx ∩ S . By applying (3),
and noticing that the upper bound is the initial heuristic for any node in OPEN(S) and is exact at any
solved node, we re-write qS(x) as

qS(x) =
g(Tx ∩ S)

US

∏
n′∈OPEN(S)∩Tx

h+n′ q(x>n′ |x≤n′)
∏

n′′∈SOLVED(S)∩Tx

g(x>n′′ |x≤n′′) (10)

qS(x) actually provides bounded importance weights that can use the refined upper bound US :
Proposition 2. Importance weights from qS(x) are bounded by the upper bound of S, and are
unbiased estimators of Z, i.e.,

f(x)/qS(x) ≤ US , E
[
f(x)/qS(x)

]
= Z (11)

Proof. Note that f(x) can be written as

f(x) = g(Tx ∩ S)
∏

n′∈OPEN(S)∩Tx

g(x>n′ |x≤n′)
∏

n′′∈SOLVED(S)∩Tx

g(x>n′′ |x≤n′′) (12)

Noticing that for any n′ ∈ OPEN(S), g(x>n′ |x≤n′) ≤ h+n′ q(x>n′ |x≤n′) by (8), and comparing
with (10), we see f(x)/qS(x) is bounded by US . Its unbiasedness is trivial.

5

Algorithm 1 Dynamic importance sampling (DIS)
Require: Control parameters Nd, Nl; memory budget, time budget.
Ensure: N , HM(U), V̂ar({Ẑi/Ui}Ni=1), Ẑ, ∆.

1: Initialize S ← {∅} with the root ∅.
2: while within the time budget
3: if within the memory budget // update S and its associated upper bound US
4: Expand Nd nodes via AOBFS (Alg. 1 of [16]) with the upper priority defined in (4).
5: end if
6: Draw Nl samples via TWOSTEPSAMPLING(S).
7: After drawing each sample:
8: Update N , HM(U), V̂ar({Ẑi/Ui}Ni=1).
9: Update Ẑ, ∆ via (13), (14).

10: end while
11: function TWOSTEPSAMPLING(S)
12: Start from the root of the search tree S:
13: For an internal node n: select all its children if it is an AND node; select exactly
14: one child c ∈ ch(n) with probability wcuc/un if it is an OR node.
15: At any unsolved frontier node n, draw one sample from q(x>n|x≤n) in (7).
16: end function

Thus, importance weights resulting from our two-step sampling can enjoy the same type of bounds
described in (9). Moreover, note that at any solved node, our sampling procedure incorporates the
“exact” value of that node into the importance weights, which serves as Rao-Blackwellisation and can
potentially reduce variance.

We can see that if S = ∅ (before search), qS(x) is the proposal distribution of [15]; as search
proceeds, the quality of the proposal distribution improves (gradually approaching the underlying
distribution f(x)/Z as S approaches the complete search tree). If we perform search first, up to some
memory limit, and then sample, which we refer to as two-stage sampling, our probabilistic bounds
will proceed from an improved baseline, giving better bounds at moderate to long computation times.
However, doing so sacrifices the quick improvement early on given by basic importance sampling. In
the next section, we describe our dynamic importance sampling procedure, which balances these two
properties.

4 Dynamic importance sampling

To provide good anytime behavior, we would like to do both sampling and search, so that early
samples can improve the bound quickly, while later samples obtain the benefits of the search tree’s
improved proposal. To do so, we define a dynamic importance sampling (DIS) scheme, presented in
Alg. 1, which interleaves drawing samples and expanding the search tree.

One complication of such an approach is that each sample comes from a different proposal distribution,
and thus has a different bound value entering into the concentration inequality. Moreover, each sample
is of a different quality – later samples should have lower variance, since they come from an improved
proposal. To this end, we construct an estimator of Z that upweights higher-quality samples. Let
{xi}Ni=1 be a series of samples drawn via Alg. 1, with {Ẑi = f(xi)/qSi(xi)}Ni=1 the corresponding
importance weights, and {Ui = USi}Ni=1 the corresponding upper bounds on the importance weights
respectively. We introduce an estimator Ẑ of Z:

Ẑ =
HM(U)

N

N∑
i=1

Ẑi
Ui
, HM(U) =

[1

N

N∑
i=1

1

Ui

]−1
(13)

where HM(U) is the harmonic mean of the upper bounds Ui. Ẑ is an unbiased estimator of Z
(since it is a weighted average of independent, unbiased estimators). Additionally, since Z/HM(U),
Ẑ/HM(U), and Ẑi/Ui are all within the interval [0, 1], we can apply an empirical Bernstein
bound [17] to derive finite-sample bounds:

6

Theorem 1. Define the deviation term

∆ = HM(U)
(√2V̂ar({Ẑi/Ui}Ni=1) ln(2/δ)

N
+

7 ln(2/δ)

3(N − 1)

)
(14)

where V̂ar({Ẑi/Ui}Ni=1) is the unbiased empirical variance of {Ẑi/Ui}Ni=1. Then Ẑ + ∆ and Ẑ −∆

are upper and lower bounds of Z with probability at least 1− δ, respectively, i.e., Pr[Z ≤ Ẑ + ∆] ≥
1− δ and Pr[Z ≥ Ẑ −∆] ≥ 1− δ.

It is possible that Ẑ −∆ < 0 at first; if so, we may replace Ẑ −∆ with any non-trivial lower bound
of Z. In the experiments, we use Ẑδ, a (1− δ) probabilistic bound by the Markov inequality [11].
We can also replace Ẑ + ∆ with the current deterministic upper bound if the latter is tighter.

Intuitively, our DIS algorithm is similar to Monte Carlo tree search (MCTS) [1], which also grows
an explicit search tree while sampling. However, in MCTS, the sampling procedure is used to grow
the tree, while DIS uses a classic search priority. This ensures that the DIS samples are independent,
since samples do not influence the proposal distribution of later samples. This also distinguishes DIS
from methods such as adaptive importance sampling (AIS) [18].

5 Empirical evaluation

We evaluate our approach (DIS) against AOBFS (search, [16]) and WMB-IS (sampling, [15]) on
several benchmarks of real-world problem instances from recent UAI competitions. Our benchmarks
include pedigree, 22 genetic linkage instances from the UAI’08 inference challenge1; protein, 50
randomly selected instances made from the “small” protein side-chains of [22]; and BN, 50 randomly
selected Bayesian networks from the UAI’06 competition2. These three sets are selected to illustrate
different problem characteristics; for example protein instances are relatively small (M = 100
variables on average, and average induced width 11.2) but high cardinality (average max |Xi| = 77.9),
while pedigree and BN have more variables and higher induced width (average M 917.1 and 838.6,
average width 25.5 and 32.8), but lower cardinality (average max |Xi| 5.6 and 12.4).

We alloted 1GB memory to all methods, first computing the largest ibound that fits the memory budget,
and using the remaining memory for search. All the algorithms used the same upper bound heuristics,
which also means DIS and AOBFS had the same amount of memory available for search. For AOBFS,
we use the memory-limited version (Alg. 2 of [16]) with “upper” priority, which continues improving
its bounds past the memory limit. Additionally, we let AOBFS access a lower bound heuristic for no
cost, to facilitate comparison between DIS and AOBFS. We show DIS for two settings, (Nl=1, Nd=1)
and (Nl=1, Nd=10), balancing the effort between search and sampling. Note that WMB-IS can be
viewed as DIS with (Nl=Inf, Nd=0), i.e., it runs pure sampling without any search, and two-stage
sampling viewed as DIS with (Nl=1, Nd=Inf), i.e., it searches to the memory limit then samples. We
set δ = 0.025 and ran each algorithm for 1 hour. All implementations are in C/C++.

Anytime bounds for individual instances. Fig. 3 shows the anytime behavior of all methods on
two instances from each benchmark. We observe that compared to WMB-IS, DIS provides better
upper and lower bounds on all instances. In 3(d)–(f), WMB-IS is not able to produce tight bounds
within 1 hour, but DIS quickly closes the gap. Compared to AOBFS, in 3(a)–(c),(e), DIS improves
much faster, and in (d),(f) it remains nearly as fast as search. Note that four of these examples are
sufficiently hard to be unsolved by a variable elimination-based exact solver, even with several orders
of magnitude more computational resources (200GB memory, 24 hour time limit).

Thus, DIS provides excellent anytime behavior; in particular, (Nl=1, Nd=10) seems to work well,
perhaps because expanding the search tree is slightly faster than drawing a sample (since the tree
depth is less than the number of variables). On the other hand, two-stage sampling gives weaker early
bounds, but is often excellent at longer time settings.

Aggregated results across the benchmarks. To quantify anytime performance of the methods in
each benchmark, we introduce a measure based on the area between the upper and lower bound of

1http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks/
2http://melodi.ee.washington.edu/~bilmes/uai06InferenceEvaluation/

7

http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks/
http://melodi.ee.washington.edu/~bilmes/uai06InferenceEvaluation/

10
1

10
2

10
3

10
4

−130

−125

−120

time (sec)

lo
gZ

 (
 −

12
4.

97
9

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(a) pedigree/pedigree33

10
0

10
2

10
4

−105

−100

−95

−90

−85

time (sec)

lo
gZ

 (
 u

nk
no

w
n

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(b) protein/1co6

10
0

10
2

10
4

−35

−30

−25

−20

time (sec)

lo
gZ

 (
 u

nk
no

w
n

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(c) BN/BN_30

10
1

10
2

10
3

10
4

−280

−275

−270

−265

−260

time (sec)

lo
gZ

 (
 −

26
8.

43
5

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(d) pedigree/pedigree37

10
0

10
2

10
4

−95

−90

−85

−80

−75

−70

−65

time (sec)

lo
gZ

 (
 u

nk
no

w
n

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(e) protein/1bgc

10
1

10
2

10
3

10
4

−160

−150

−140

−130

−120

time (sec)

lo
gZ

 (
 u

nk
no

w
n

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(f) BN/BN_129

Figure 3: Anytime bounds on logZ for two instances per benchmark. Dotted line sections on some
curves indicate Markov lower bounds. In examples where search is very effective (d,f), or where
sampling is very effective (a), DIS is equal or nearly so, while in (b,c,e) DIS is better than either.

Table 1: Mean area between upper and lower bounds of logZ, normalized by WMB-IS, for each
benchmark. Smaller numbers indicate better anytime bounds. The best for each benchmark is bolded.

AOBFS WMB-IS DIS (Nl=1, Nd=1) DIS (Nl=1, Nd=10) two-stage

pedigree 16.638 1 0.711 0.585 1.321
protein 1.576 1 0.110 0.095 2.511

BN 0.233 1 0.340 0.162 0.865

logZ. For each instance and method, we compute the area of the interval between the upper and
lower bound of logZ for that instance and method. To avoid vacuous lower bounds, we provide each
algorithm with an initial lower bound on logZ from WMB. To facilitate comparison, we normalize
the area of each method by that of WMB-IS on each instance, then report the geometric mean of the
normalized areas across each benchmark in Table 1. This shows the average relative quality compared
to WMB-IS; smaller values indicate tighter anytime bounds. We see that on average, search is more
effective than sampling on the BN instances, but much less effective on pedigree. Across all three
benchmarks, DIS (Nl=1, Nd=10) produces the best result by a significant margin, while DIS (Nl=1,
Nd=1) is also very competitive, and two-stage sampling does somewhat less well.

6 Conclusion

We propose a dynamic importance sampling algorithm that embraces the merits of best-first search
and importance sampling to provide anytime finite-sample bounds for the partition function. The
AOBFS search process improves the proposal distribution over time, while our particular weighted
average of importance weights gives the resulting estimator quickly decaying finite-sample bounds,
as illustrated on several UAI problem benchmarks. Our work also opens up several avenues for future
research, including investigating different weighting schemes for the samples, more flexible balances
between search and sampling (for example, changing over time), and more closely integrating the
variational optimization process into the anytime behavior.

8

Acknowledgements

We thank William Lam, Wei Ping, and all the reviewers for their helpful feedback.

This work is sponsored in part by NSF grants IIS-1526842, IIS-1254071, and by the United States
Air Force under Contract No. FA8750-14-C-0011 and FA9453-16-C-0508.

References
[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,

S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in games, 4(1):1–43, 2012.

[2] S. Chakraborty, K. S. Meel, and M. Y. Vardi. Algorithmic improvements in approximate counting for
probabilistic inference: From linear to logarithmic SAT calls. IJCAI’16.

[3] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi. Distribution-aware sampling and
weighted model counting for SAT. AAAI’14, pages 1722–1730. AAAI Press, 2014.

[4] P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian inference. Artificial Intelligence,
93(1-2):1–27, 1997.

[5] A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.

[6] R. Dechter. Reasoning with probabilistic and deterministic graphical models: Exact algorithms. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 7(3):1–191, 2013.

[7] R. Dechter and I. Rish. Mini-buckets: A general scheme of approximating inference. Journal of ACM, 50
(2):107–153, 2003.

[8] R. Dechter, H. Geffner, and J. Y. Halpern. Heuristics, Probability and Causality. A Tribute to Judea Pearl.
College Publications, 2010.

[9] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimensionality: Discrete
integration by hashing and optimization. In International Conference on Machine Learning, pages
334–342, 2013.

[10] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Low-density parity constraints for hashing-based
discrete integration. In International Conference on Machine Learning, pages 271–279, 2014.

[11] V. Gogate and R. Dechter. Sampling-based lower bounds for counting queries. Intelligenza Artificiale, 5
(2):171–188, 2011.

[12] M. Henrion. Search-based methods to bound diagnostic probabilities in very large belief nets. In
Proceedings of the 7th conference on Uncertainty in Artificial Intelligence, pages 142–150, 1991.

[13] Q. Liu. Reasoning and Decisions in Probabilistic Graphical Models–A Unified Framework. PhD thesis,
University of California, Irvine, 2014.

[14] Q. Liu and A. Ihler. Bounding the partition function using Hölder’s inequality. In Proceedings of the 28th
International Conference on Machine Learning (ICML), New York, NY, USA, 2011.

[15] Q. Liu, J. W. Fisher, III, and A. T. Ihler. Probabilistic variational bounds for graphical models. In Advances
in Neural Information Processing Systems, pages 1432–1440, 2015.

[16] Q. Lou, R. Dechter, and A. Ihler. Anytime anyspace AND/OR search for bounding the partition function.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017.

[17] A. Maurer and M. Pontil. Empirical Bernstein bounds and sample variance penalization. In COLT, 2009.

[18] M.-S. Oh and J. O. Berger. Adaptive importance sampling in Monte Carlo integration. Journal of Statistical
Computation and Simulation, 41(3-4):143–168, 1992.

[19] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189 – 201,
1979.

[20] C. Viricel, D. Simoncini, S. Barbe, and T. Schiex. Guaranteed weighted counting for affinity computation:
Beyond determinism and structure. In International Conference on Principles and Practice of Constraint
Programming, pages 733–750. Springer, 2016.

[21] M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Founda-
tions and Trends R© in Machine Learning, 1(1-2):1–305, 2008.

[22] C. Yanover and Y. Weiss. Approximate inference and protein-folding. In Advances in Neural Information
Processing Systems, pages 1457–1464, 2002.

9

	Introduction
	Background
	AND/OR search trees
	AND/OR best-first search for bounding the partition function
	Weighted mini-bucket for heuristics and sampling

	Two-step sampling
	Dynamic importance sampling
	Empirical evaluation
	Conclusion

