
Incremental Region Selection for Mini-bucket Elimination Bounds

Sholeh Forouzan
Department of Computer Science
University of California, Irvine

Irvine, CA, 92697

Alexander Ihler
Department of Computer Science
University of California, Irvine

Irvine, CA, 92697

Abstract

Region choice is a key issue for many approxi-
mate inference bounds. Mini-bucket elimination
avoids the space and time complexity of exact
inference by using a top-down partitioning ap-
proach that mimics the construction of a junc-
tion tree and aims to minimize the number of re-
gions subject to a bound on their size; however,
these methods rarely take into account functions’
values. In contrast, message passing algorithms
often use “cluster pursuit” methods to select re-
gions, a bottom-up approach in which a pre-
defined set of clusters (such as triplets) is scored
and incrementally added. In this work, we de-
velop a hybrid approach that balances the advan-
tages of both perspectives, providing larger re-
gions chosen in an intelligent, energy-based way.
Our method is applicable to bounds on a variety
of inference tasks, and we demonstrate its power
empirically on a broad array of problem types.

1 INTRODUCTION

Mini-bucket elimination (MBE) (Dechter and Rish, 2003)
is a popular bounding technique for reasoning tasks de-
fined over graphical models. MBE is often used to de-
velop heuristic functions for search and optimization tasks
(Dechter and Rish, 2003; Kask and Dechter, 2001; Mari-
nescu and Dechter, 2007; ?; Marinescu et al., 2014), al-
though it has also been used to provide bounds on weighted
counting problems such as computing the probability of ev-
idence in Bayesian networks (Rollon and Dechter, 2010;
Liu and Ihler, 2011).

MBE obtains its bounds by approximating the variable or
“bucket” elimination process. Rather than exactly eliminat-
ing each variable, MBE partitions the functions into smaller
sets of bounded complexity; eliminating within each par-
tition separately gives an upper or lower bound. A sin-

gle control variable allows the user to easily trade off be-
tween accuracy and computation (memory and time). A
recent extension called weighted mini-bucket (WMB) also
serves to connect mini-bucket to the framework of vari-
ational bounds, allowing iterative reparameterization up-
dates to improve the WMB bound.

The partitioning of a bucket into mini-buckets of bounded
size can be accomplished in many ways, each resulting in
a different accuracy. Viewed from a variational perspec-
tive, this corresponds to the critical choice of regions in
the approximations, defining which sets of variables will
be reasoned about jointly.

Traditionally, MBE is guided only by the graph structure,
using a scope-based heuristic (Dechter and Rish, 2003) to
minimize the number of buckets. However, this ignores
the influence of the functions themselves on the bound.
More recent extensions such as Rollon and Dechter (2010)
have suggested ways of incorporating the function values
into the partitioning process, with mixed success. A more
bottom-up construction technique is the relax-compensate-
recover (RCR) method of Choi and Darwiche (2010),
which constructs a sequence of mini-bucket-like bounds of
increasing complexity.

Variational approaches typically use a greedy, bottom-up
approach termed cluster pursuit. Starting with the small-
est possible regions, the bounds are optimized using mes-
sage passing, and then new regions are added greedily from
an enumerated list of clusters such as triplets (e.g., Sontag
et al., 2008; Komodakis and Paragios, 2008). This tech-
nique is often very effective if only a few regions can be
added, but the sheer number of regions considered often
creates a computational bottleneck and prevents adopting
large regions (e.g., Batra et al., 2011).

We propose a hybrid approach that is guided by the graph
structure and connects to the mini-bucket construction, but
takes advantage of the iterative optimization and scoring
techniques of cluster pursuit. In practice, we find that our
methods work significantly better than either the partition-
ing heuristics of Rollon and Dechter (2010), or a pure re-

gion pursuit approach. We also discuss the connections of
our work to RCR (Choi and Darwiche, 2010). We validate
our approach with experiments on a wide variety of prob-
lems drawn from recent UAI approximate inference com-
petitions (Elidan et al., 2012).

2 PRELIMINARIES

Graphical models capture the dependencies among large
numbers of random variables by explicitly representing the
independence structure of the joint probability distribution.
Consider a distribution

p(x) =
1

Z

∏
α∈I

fα(xα) Z =
∑
x

∏
α

fα(xα)

where xα indicates a subset of variables and Z is the nor-
malizing constant called the partition function. We asso-
ciate p(x) with a graph G = (V,E) where each variable
xi is associated with a node i ∈ V and is connected to xj
if both variables xi and xj are arguments of some function
fα. I is then a set of all cliques in G.

Common inference tasks include finding the most likely or
MAP configuration of p(x), a combinatorial optimization
problem, or computing the partition function Z, a combi-
natorial summation problem. Computing Z, which corre-
sponds to the probability of evidence in Bayesian networks,
or the marginal probabilities of p(x), are central problems
in many learning and inference tasks.

2.1 MINI-BUCKET ELIMINATION

Unfortunately, inference tasks such as computing the par-
tition function are often computationally intractable for
many real-world problems. Exact inference, such as vari-
able or “bucket” elimination (Dechter, 1999) is exponential
in the tree-width of the model, leading to a spectrum of ap-
proximations and bounds subject to computational limits.
In this section, we briefly describe bucket elimination and
mini-bucket approximations.

Bucket Elimination (Dechter, 1999) is an exact algorithm
that directly eliminates variables in sequence. Given an
elimination order, BE collects all factors that include vari-
able xi as their earliest-eliminated argument in a bucket Bi,
then takes their product and eliminates xi to produce a new
factor over later variables, which is placed in the bucket of
its “parent” πi, the earliest uneliminated variable:

λi→πi(xi→πi) =
∑
xi

∏
fα∈Bi

fα(xα)
∏

λj→i∈Bi

λj→i(xj→i)

The functions λj→i constructed during this process can be
interpreted as messages that are passed downward in a join-
tree representation of the model (Ihler et al., 2012); see Fig-
ure 1(a)-(b).

The space and time complexity of BE are exponential in
the induced width of the graph given the elimination or-
der. While good elimination orders can be identified using
various heuristics (see e.g., Kask et al., 2011), this expo-
nential dependence often makes direct application of BE
intractable for many problems of interest.

Minibucket Elimination. To avoid the complexity of
bucket elimination, Dechter and Rish (1997) proposed
an approximation in which the factors in bucket Bi are
grouped into partitions Qi = {q1i , ..., q

p
i }, where each par-

tition qji ∈ Qi, also called a mini-bucket, includes no more
than ibound+1 variables. The bounding parameter ibound
then serves as a way to control the complexity of elimina-
tion, as the elimination operator is applied to each mini-
bucket separately. Using the inequality∑
xi

∏
fα∈Bi

fα ≤
[∑
xi

∏
fα∈q1i

fα

]
·
[

max
xi

∏
fα∈q2i

fα

]
,

MBE gives an upper bound on the true partition function,
and its time and space complexity are exponential in the
user-controlled ibound. Smaller ibound values result in
lower computational cost, but are typically less accurate.
See Figure 1(c) for an illustration.

The resulting bound depends significantly on the partition-
ings {Qi}; we discuss strategies for partitioning in Sec-
tion 2.2.

Weighted Mini-bucket. A recent improvement to mini-
bucket (Liu and Ihler, 2011) generalizes the MBE bound
with a “weighted” elimination,

∑
xi

∏
fα∈Bi

fα ≤
[∑
xi

∏
fα∈q1i

f
1
w1
α

]w1

·
[∑
xi

∏
fα∈q2i

f
1
w2
α

]w2

,

where wi > 0 and w1 + w2 = 1.

Liu and Ihler (2011) also show that the resulting bound is
equivalent to a class of bounds based on tree reweighted
(TRW) belief propagation (Wainwright et al., 2005), or
more generally conditional entropy decompositions (CED)
(Globerson and Jaakkola, 2007), on a join-graph defined
by the mini-bucket procedure (see Figure 1(d)). This con-
nection is used to derive fixed point reparameterization up-
dates, which change the relative values of the factors fα
while keeping their product constant in order to tighten the
bound.

2.2 PARTITIONING METHODS

As discussed above, mini-bucket elimination and its
weighted variant compute a partitioning over each bucket
Bi to bound the complexity of inference and compute an
upper bound on the partition function Z. However, dif-
ferent partitioning strategies will result in different upper

G:	 	 	 (GEF)	
	
E:	 	 	 	 (EBF)	 	 	 	 	 (EF)	
	
F:	 	 	 	 (FCD)	 	 	 	 	 (BF)	
	
D:	 	 	 (DB)	 	 	 	 	 	 	 (CD)	
	
C:	 	 	 (CAB)	 	 	 	 	 (CB)	
	
B:	 	 	 (BA)	 	 	 	 	 (AB)	 	 	 	 (B)	
	
A:	 	 	 	 (A)	 	 	 	 	 	 (A)	 	 	 	 	 	 	 	 	

(a) (b) (c) (d)

Figure 1: (a) A belief network P (A,B,C,D,E, F,G) = P (A)·P (B|A)·P (C|A,B)·P (D|B)·P (F |C,D)·P (E|B,F)·
P (G|E,F); (b) a join-tree decomposition for exact inference; (c) a mini-bucket approximation (ibound = 2), with F
eliminated approximately; (d) the region or join-graph associated with (c).

bounds. Rollon and Dechter (2010) proposed a frame-
work to study different partitioning heuristics, and com-
pared them with the original scope based heuristic pro-
posed by Dechter and Rish (1997). Here we summarize
several approaches.

Scope-based Partitions. Proposed in Dechter and Rish
(1997), scope-based partitioning is a top-down approach
that tries to minimize the number of mini-buckets in Bi
by including as many functions as possible in each mini-
bucket qki . To this end, it first orders the factors in Bi by
decreasing number of arguments. Starting from the largest,
each factor fα is then merged with the first available mini-
bucket that satisfies the computational limits, i.e., where
|var(f) ∪ var(qji)| ≤ ibound + 1. If there are no mini-
buckets available that can include the factor, a new mini-
bucket is created and the scheme continues until all factors
are assigned to a mini-bucket.

Content-based Partitions. Rollon and Dechter (2010), on
the other hand, seeks to find a partitioning that is closest
to the true bucket function, gi =

∑
Xi

∏
α∈Bi fα. This

requires solving an optimization problem

Q∗ = arg min
Q

dist(gQi , gi)

where Q is a partitioning of Bi with bounding parameter
ibound and

gQi =

p∏
j=1

∑
Xi

∏
α∈qji

fα

is the function represented by the partitioning Q. The dis-
tance is minimized in a greedy fashion, and Rollon and
Dechter (2010) studied the effectiveness of several different
distance functions across multiple problem instances; how-
ever, no one distance was found to consistently outperform
scope-based partitioning.

Relax-Compensate-Recover. Choi and Darwiche (2010)
indirectly addresses the problem of partition selection
within their Relax, Compensate and Recover framework,

in which certain equality constraints in the graph are first
relaxed in order to reduce complexity of inference. New
auxiliary factors are then introduced to compensate for the
relaxation and enforce a weaker notion of equivalence. The
recovery process then aims to identify those equivalence
constraints whose relaxation were most damaging and re-
cover them. Choi and Darwiche (2010) proposed a number
of recovery heuristics, including mutual information and
residual recovery.

2.3 VARIATIONAL BOUNDS.

The variational viewpoint of inference corresponds to op-
timizing an objective function over a collection of beliefs
constrained to lie within the marginal polytope, or set of
marginal probabilities that can be achieved by some joint
distribution. Efficient approximations are developed by re-
laxing these constraints to enforce only a subset of the con-
straints – that the beliefs be consistent between overlapping
cliques. In the case of the log partition function, we also ap-
proximate the entropy term in the objective; for example,
the CED bound is:

logZ ≤ max
bα∈L

∑
α

Ebα [log fα] +
∑
i,α

wiαH(xi|xα\i ; bα)

where
∑
α wiα = 1 for all i.

Like mini-bucket bounds, the quality of variational bounds
depends significantly on the choice of regions, which de-
termine what constraints will be enforced by the local
polytope L as well as the form of the entropy approxi-
mation. Traditionally, variational approximations have fo-
cused more on the optimization of the bound through mes-
sage passing than the region selection aspect. Often regions
are chosen to match the original model factors, and then im-
proved using methods like cluster pursuit, described next.

Cluster Pursuit. Sontag et al. (2008) studied the prob-
lem of region selection for MAP inference in the context
of cluster-based dual decomposition relaxations. They de-
veloped a bottom-up approach in which regions (typically

cycles or triplets) are added incrementally: First, the dual
decomposition bound is optimized through message pass-
ing. Then, a pre-defined set of clusters, such as triplets or
faces of a grid, are scored by computing a lower bound on
their potential improvement of the bound; the scoring func-
tion used measures the difference between independently
maximizing each pairwise factor, versus jointly maximiz-
ing over the triplet. After adding the best-scoring clus-
ter, the procedure repeats. Similar cycle repair processes
were also proposed by Komodakis and Paragios (2008) and
Werner (2008), and related cluster pursuit methods have
also been applied to summation problems (Welling, 2004;
Hazan et al., 2012). However, scoring all possible clus-
ters often becomes a computational bottleneck; for exam-
ple, Batra et al. (2011) proposed pre-selection heuristics to
reduce the number of clusters considered. In practice, clus-
ter pursuit is usually applied to add only a few, small re-
gions; scoring sets of larger regions is typically considered
prohibitive.

3 A HYBRID APPROACH

Mini-bucket elimination avoids the space and time com-
plexity of exact inference by using a top-down partitioning
approach that mimics the construction of a junction tree.
In contrast, message passing algorithms often use “cluster
pursuit” methods to select regions, a bottom-up approach
in which a predefined set of clusters (such as triplets) is
scored and incrementally added.

To balance the effectiveness of both approaches, our hybrid
scheme, like mini-bucket, uses the graph structure to guide
region selection, while also taking advantage of the itera-
tive optimization and scoring techniques of cluster pursuit.

Cluster pursuit algorithms use the function values, and
more concretely the bound produced by them, in order
to select regions that tighten the upper bound more effec-
tively. However, there are often prohibitively many clus-
ters to consider: for example, in a fully connected pairwise
model, there are O(n3) triplets, O(n4) possible 4-cliques,
etc., to score at each step. For this reason, cluster pursuit
methods typically restrict their search to a predefined set of
clusters, such as triplets Sontag et al. (2008). Our proposed
approach uses the graph structure to guide the search for
regions, restricting the search to merges of existing clus-
ters, within one bucket at a time. This allows us to restrain
the complexity of the search and add larger regions more
effectively.

In contrast, the content-based heuristics for region selection
of Rollon and Dechter (2010) use the graph structure as a
guide, but their scoring scheme only takes into account the
messages from the earlier buckets in the elimination order.
Our proposed hybrid approach uses iterative optimization
on the junction tree in order to make more effective parti-
tioning decisions.

Algorithm 1 Incremental region selection for WMBE
Input: factor graph (G), bounding parameter ibound
and maximum number of iterations T
Initialize wmb to a join graph using e.g. a min-fill or-
dering o, uniform weights and uniform messages
for each bucket Bi following the elimination order do

repeat
(qmi , q

n
i)← SelectMerge(Qi)

R ← AddRegions(wmb, o, qmi , qni)
wmb←MergeRegions(wmb,R)
for iter = 1 to T do

// pass forward messages and reparameterize:
wmb← msgForward(wmb)
// pass backward messages:
wmb← msgBackward(wmb)

end for
until no more merges possible

end for

Algorithm 1 describes the overall scheme of our hybrid ap-
proach, which is explained in detail next.

3.1 INITIALIZING A JOIN TREE

Given a factor graph G and a bounding parameter ibound,
we start by initializing a join graph, using a min-fill elim-
ination ordering (Dechter, 2003) o = {x1, ..., xn} and
ibound = 1. For any given bucket Bi, this results in
each mini-bucket k ∈ Bi containing a single factor fα.
We denote the result of the elimination as λk→l which is
sent to the bucket Bj of its first-eliminated argument in o.
Here, l = pa(k) denotes the parent region of k which can
be one of the initial mini-buckets in Bj if var(λk→l) ⊆
var(l), or be a new mini-bucket with fl = 1. In our
implementation we choose l ∈ Bj to be the mini-bucket
with the largest number of arguments,|var(l)|, such that
var(λk→l) ⊆ var(l).

Using weighted mini-bucket for our elimination scheme,
we initialize the mini-bucket weights wr uniformly within
each bucket Bi, so that for r ∈ Qi, wr = 1

|Qi| , which
ensures

∑
r∈Qi wr = 1.

3.2 MESSAGE PASSING

We use iterative message passing on the join graph to guide
the region selection decision. Having built an initial join
graph, we use the weighted mini-bucket messages (Liu
and Ihler, 2011) to compute forward and backward mes-
sages, and perform reparameterization of the functions fα
to tighten the bound.

Let r be a region of the mini-bucket join graph, and s its
parent, s = pa(r), with weights wr and ws, and fr(xr the
product of factors assigned to region r. Then we compute

the forward messages as,

Forward Messages:

λr→s(xs) =
[∑
xr\xs

[
fr(xr)

∏
t:s=pa(t)

λt→s(xs)
] 1
ws

]ws
(1)

and compute the upper bound using the product of forward
messages computed at roots of the join graph,

Upper bound on Z:

Z ≤
∏

r:pa(r)=∅

λr→∅ (2)

In order to tighten the bound, we compute backward mes-
sages in the join graph,

Backward Messages:

λs→r(xr) =
[∑
xs\xr

[
fs(·)

∏
t

λt→s(·)
] 1
ws
[
λr→s(·)

]− 1
wr

]wr
where t indexes all neighbors (parent and children) of re-
gion s. We then use these incoming messages to compute a
weighted belief at region r, and reparameterize the factors
fr for each region r in a given bucket Bi (e.g., r ∈ Qi) to
enforce a weighted moment matching condition:

Reparameterization:

br(xi) =
∑
xr\xi

[
fr(xr)

∏
t

λt→r(xr)
] 1
wr

b̄(xi) =
[∏
r∈Qi

br(xi)
]1/∑r wr

fr(xr)← fr(xr)
[
b̄(xi)/br(xi)

]wr
In practice, we usually match on the variables present in
all mini-buckets r, e.g., ∩r∈Qixr, rather than just xi; this
gives a tighter bound for the same amount of computation.

3.3 ADDING NEW REGIONS

New regions are added to the initial join tree after one or
more rounds of iterative optimization. To contain the com-
plexity of the search over clusters, we restrict our attention
to pairs of mini-buckets to merge within each bucket. To do
so, we also use the elimination order o to guide our search,
processing each bucket Bi one at a time in order.

Given bucket Bi and current partitioning Qi =
{q1i , ..., qki }, we score the merge for each allowed pair
of mini-buckets (qmi , q

n
i), e.g., those with |var(qmi) ∪

var(qni)| ≤ ibound + 1, using an estimate of the benefit
to the bound that may arise from merging the pair:

S(qmi , q
n
i) =

max
x

log [λm→πm(xπm)× λn→πn(xπn)÷ λr→πr (xr)]

This score can be justified as a lower bound on the de-
crease in logZ, since it corresponds to adding region πr
with weight wπr = 0, while reparameterizing the parents
πm, πn to preserve their previous beliefs. This procedure
leaves the bound unchanged except for the contribution of
πr; eliminating with wπr = 0 is equivalent to the max op-
eration. For convenience, we set S(qmi , q

n
i) = 0 for pairs

which violate the ibound constraint. Then, having com-
puted the score between all pairs, we choose the pair with
maximum score to be merged into a new clique. In Algo-
rithm 1, the function SelectMerge(·) denotes this scoring
and selection process.

3.4 UPDATING GRAPH STRUCTURE

Having found which mini-buckets to merge, we update the
join graph to include the new clique r = qmi ∪qni . Our goal
is to add the new region such that it affects the scope of the
existing regions in the join tree as little as possible. Adding
the new clique is done in two steps:

First we initialize a new mini-bucket in Bi with its scope
matching var(r). Eliminating variable xi from this new
mini-bucket results in the message λr→πr . The earliest ar-
gument of λr→πr in the elimination order determines the
bucket Bj containing mini-buckets that can potentially be
the parent, πr, of the new region. To find πr in Bj we seek
a mini-bucket qkj that can contain r, i.e., var(λr→πr) ⊆
var(qkj). If such a mini-bucket exists, we set πr to qkj ; oth-

erwise, we create a new mini-bucket q|Qj |+1
j and add it to

Qj , with a scope that matches var(λr→πr). The same pro-
cedure is repeated after eliminating xj from q

|Qj |+1
j until

we either find a mini-bucket already in the join tree that can
serve as the parent, or var(λr→πr) = ∅ in which case the
newly added mini-bucket is a root. Algorithm 2 describes
these initial structural modifications.

Having added the new regions, we then try to remove any
unnecessary mini-buckets, and update both the join tree and
the function values of the newly added regions to ensure
that the bound is improved. To this end, we update every
new mini-bucket r that was added to the join tree in the
previous step as follows. For mini-bucket r ∈ Qi, we first
find any mini-buckets s ∈ Qi that can be subsumed by
r, i.e., var(s) ⊆ var(r). For each of these mini-buckets
s, we connect all of s’s children (mini-buckets t such that
pa(t) = s) to r, e.g., set pa(t) = r. We also merge the
factors associated with r and s, so that fr ← fr × fs.

Next, we reparameterize several other functions in the join
graph in order to preserve or improve the current bound

Algorithm 2 AddRegions: find regions to add for merge
Input: The join graph wmb, elimination order o, and
mini-buckets qmi and qni to be merged
Output: a list of newly added mini-bucketsR
Initialize new region qr with var(qr) = var(qmi ∪ qni)
and add it to Qi
repeat

UpdateR = R∪ qr
Set new clique C = var(qr)\xi
if C = ∅ then
done← True

else
Find Bj corresponding to the first un-eliminated
variable in C based on elimination order o
for each mini-bucket region qkj ∈ Qj do

if C ⊆ var(qkj) then
// forward message fits in existing mini-bucket:
done← True

end if
end for

end if
if not done then

// Create a new region to contain forward message:
Initialize new region qr with var(qr) = C and add
it to Qj

end if
until done

value. Specifically, removing s changes the incoming, for-
ward messages to its parent, πs = pa(s), which changes
the bound. By reparameterizing the factor at πs,

fπs ← fπs × λs→πs fπr ← fπr ÷ λs→πs

we keep the overall distribution unchanged, but ensure that
the bound is strictly decreased.

Finally we remove s from Qi, completing the merge of
mini-buckets s and r. This process is given in Algorithm 3
and depicted in Figure 2 for a small portion of join-graph.

Every merge decision is followed by one or more iterations
of message passing, followed by rescoring the mini-buckets
inBi. The process of message passing and merging contin-
ues until no more mini-buckets of Bi can be merged, while
satisfying the bounding parameter ibound.

Continuing along the elimination order, the same procedure
is repeated for the mini-buckets in each bucket Bi, and the
final upper bound to the partition function is computed us-
ing Eq. (2).

4 DISCUSSION

Our method is similar to context-based mini-buckets, with
the main difference being that message passing performed

Algorithm 3 MergeRegions: merge and parameterize
newly added regions to improve bound

Input: The join graph wmb and a list of newly added
mini-bucketsR
for all r ∈ R do

Initialize new region r in Bi with fr(xr) = 1
Find regions {s | s ∈ Qi & var(s) ⊆ var(s)}
// Remove / merge contained regions s:
for all found regions s do

Connect all children of s to r
fr = fr · fs // merge factors and
// preserve belief at parent πs:
fπs = fπs × λs→πs
fπr = fπr ÷ λs→πs
Remove s from Qi

end for
end for

↓ λ3,4 ↓ λ3,5

x2,3,4 x2,3,5

x3,4 x3,5,6

⇒
x2,3,4,5

x3,4,5 x3,5,6

↓ λ3,4,5
÷λ3,5 ×λ3,5

(a) (b)

Figure 2: Merge and post-merge reparameterization op-
erations. (a) A portion of a join-graph corresponding to
the elimination of x2 and x3, each with two mini-buckets.
(b) Merging cliques (2, 3, 4) and (2, 3, 5) produces a new
clique (3, 4, 5), which subsumes and removes clique (3, 4).
Having removed parent (2, 3, 5), we reparameterize the
new clique functions by the original message λ3,5 (red) to
preserve the original belief at (3, 5, 6) and ensure that the
bound is tightened. See text for more detail.

on the simpler graph is used to reparameterize the functions
before the merge scores are computed.

Our method can also be viewed as a cluster pursuit ap-
proach, in which we restrict the clusters considered, to
unions of the current minibuckets at the earliest bucket Bi,
and merge up to our computational limit before moving
on to later buckets. These restrictions serve to reduce the
number of clusters considered, but in addition, appear to
lead to better regions than a purely greedy region choice –
in the experiments (Section 5), we compare our approach
to a more “cluster pursuit-like” method, in which pairs of
regions in any bucket Bi are considered and scored. Per-
haps surprisingly, we find that this greedy approach actu-
ally gives significantly worse regions overall, suggesting

that processing the buckets in order can help by avoiding
creating unnecessary regions.

Finally, our method is also closely related to RCR (Choi
and Darwiche, 2010). From this perspective, we “relax”
to a low-ibound minibucket, “compensate” by variational
message passing, and “recover” by selecting regions that
will tighten the variational bound defined by the join graph.
Compared to RCR, we find a number of differences in our
approach: (1) RCR selects constraints to recover anywhere
in the graph, similar to a greedy cluster pursuit; as noted,
this appears to work significantly less well than an ordered
recovery process. (2) RCR makes its recovery updates to
the relaxed graph, then (re)builds a (new) join tree over
the relaxed graph; in contrast, we incrementally alter the
join graph directly, which avoids starting from scratch af-
ter each merge. (3) Our method is solidly grounded in the
theory of variational bounds and message passing, ensuring
that both the message passing and region merging steps are
explicitly tightening the same bound. From this perspec-
tive, for example, it becomes clear that RCR’s “residual re-
covery” heuristic is unlikely to be effective, since after mes-
sage passing, the reparameterization updates should ensure
that all mini-buckets containing a variable xi will match on
their marginal beliefs. In other words, residual recovery is
making its structure (region) choices using a criterion that
actually measures mismatches that can be resolved by mes-
sage passing.

5 EMPIRICAL EVALUATION

To show our method’s effectiveness compared to previous
region selection strategies for MBE, we tested our incre-
mental approach on a number of real world problems drawn
from past UAI approximate inference challenges, includ-
ing linkage analysis, protein side chain prediction, and seg-
mentation problems. We compare our hybrid region selec-
tion method against the scope-based heuristic of Dechter
and Rish (1997) and the content-based heuristic of Rollon
and Dechter (2010).

Experimental Setup. For each set of experiments,
we initialize a join tree using WMB elimination with
ibound = 1. We use an elimination ordering found using
the min-fill heuristic (Dechter, 2003) and set the weights
uniformly in each bucket. As a result, each mini-bucket qki
contains a single factor fα as described in section 3.1.

From this initial setup, we then use Algorithm 1 to merge
mini-buckets incrementally and compute the upper bound
as in Eq. (2).

Segmentation. To evaluate the different methods on pair-
wise binary problems we used a set of segmentation models
from the UAI08 approximate inference challenge. These
models have≈ 230 binary variables and≈ 850 factors. We

used varying ibounds for comaprison and report the results
on two values, ibound ∈ [5, 10] . Table 1 compares the up-
per bound on the log partition function for a representative
subset of instances in this category, for two different com-
putational limits, ibound = 5 and ibound = 10. Different
columns show the bound achieved using different partition-
ing heuristics:
(1) Scp represents naı̈ve scope-based partitioning;
(2) Cont represents the energy based heuristic of Rollon
and Dechter (2010); and
(3) Hyb represents our hybrid approach, interleaving itera-
tive optimization with partitioning.

The results show clear improvement in the upper bound us-
ing our hybrid approach, indicating the effectiveness of it-
erative message passing and optimization in guiding region
selection. To further study the effectiveness of the merged
regions in the context of message passing and optimiza-
tion, we then fully optimized the join-graphs generated by
the three region selection schemes using iterative message
passing until convergence. The upper bounds after such
optimization are denoted by inst-opt for each problem in-
stance, inst. As might be expected, this additional opti-
mization step improves the bounds of the scope-based and
content-based heuristics more dramatically than our hy-
brid method; however, even after full optimization of the
bounds, we find that the hybrid method’s bounds remain
better in all of the 6 instances except one, indicating that
our method has identified fundamentally better regions than
the previous approaches.

Linkage Analysis. To compare the various methods on
models with non-pairwise factors and higher cardinalities
of variables, we studied pedigree models. The pedigree
linkage analysis models from the UAI08 approximate in-
ference challenge have≈ 300−1000 variables, whose car-
dinalities vary in the range of [2, ..., 5]; the induced width
of the models are typically ≈ 20 − 30. We used varying
ibounds for comaprison and report the results on two val-
ues ibound ∈ [5, 10] .

Table 2 shows the upper bounds on a subset of pedigree
problems, again showing the effectiveness of the hybrid
method: we find that again, the hybrid method consistently
outperforms the other two region selection approaches, and
results in better fully optimized bounds in all of the 22
instances when ibound = 5 and all but two cases when
ibound = 10.

Effect of ibound. We further studied the results of the
three partitioning methods across a range of ibounds to
compare the effectiveness of our method when ibound is
set to a range of values. Figure 3 shows the results for an
instance of pedigree dataset. As shown here, our method is
more effective on smaller ibounds, where there are a large
number of possible merges and finding the best one results

Table 1: UAI Segmentation Instances. Different columns show the bound achived using each partitioning heuristic, where
“Scp”, “Cont” and “Hyb” represent the naı̈ve scope based partitioning for MBE (Dechter and Rish, 1997), the context (or
energy) based heuristic of Rollon and Dechter (2010) and our hybrid approach interleaving iterative optimization with
partitioning, respectively. In all but one case, our proposed construction provides tighter bounds.

ibound = 5 ibound = 10
Instance Scp Cont Hyb Scp Ctxt Hyb

2-17-s -31.3197 -33.4840 -49.5670 -38.9801 -42.1524 -52.507
2-17-s-opt -46.9314 -45.4286 -49.6432 -48.661 -48.4306 -52.5633

8-18-s -54.9884 -60.9899 -85.6518 -72.3045 -72.284 -87.2385
8-18-s-opt -80.6527 -81.1391 -85.6694 -83.0398 -79.0921 -87.2556

9-24-s -51.2897 -49.3903 -55.6046 -54.9325 -55.0151 -55.615
9-24-s-opt -56.0513 -53.7852 -55.6241 -54.9325 -55.0151 -55.615

17-4-s -58.7953 -59.0758 -81.5415 -80.267 -79.3323 -85.3712
17-4-s-opt -71.7959 -76.8213 -81.6079 -83.2573 -82.9646 -85.3865

7-11-s -59.8250 -57.2773 -72.7178 -71.1296 -70.1542 -75.2869
7-11-s-opt -70.7037 -68.8255 -72.9556 -74.6424 -73.9855 -75.2905

Table 2: UAI Pedigree Instances. Different columns show the bound achieved using each partitioning heuristic; again,
“Scp”, “Cont” and “Hyb” are scope based partitioning (Dechter and Rish, 1997), the context-based heuristic (Rollon and
Dechter, 2010) and our proposed, hybrid approach. In all cases, our proposed construction provides stronger bounds, both
before and after full optimization using message passing.

ibound = 5 ibound = 10
Instance Scp Cont Hyb Scp Ctxt Hyb

ped23 -67.8848 -69.9015 -71.9677 -75.6057 -78.4033 -79.4649
ped23-opt -71.6951 -71.6988 -72.0670 -76.0531 -78.7646 -79.4669

ped20 -35.6986 -40.1787 -44.7230 -51.2648 -54.4136 -57.6506
ped20-opt -42.3024 -42.8980 -44.7501 -52.6043 -56.2193 -57.7841

ped42 -41.6656 -43.5206 -51.0000 -55.0681 -57.5755 -61.3504
ped42-opt -49.0089 -50.0585 -51.1018 -57.3718 -59.2170 -61.3560

ped38 -79.4742 -89.6906 -92.7643 -98.6339 -101.1178 -113.6004
ped38-opt -83.0351 -91.8510 -93.0615 -101.0715 -104.1031 -113.8926

ped19 -58.9234 -63.2737 -80.6488 -90.7840 -93.9027 -100.3230
ped19-opt -72.3311 -77.7023 -80.7167 -92.8916 -96.2846 -100.3388

in a greater improvement to the upper bound. For larger
ibounds, the upper bounds produced by all three heuristics
are fairly close.

Protein Side-Chain Prediction. Finally, to examine
models over high-cardinality variables, we look at a sub-
set of the protein side chain prediction models, originally
from Yanover and Weiss (2003) and Yanover et al. (2006).
These models contain ≈ 300 − 1000 variables with car-
dinalities between 2 and 81, with pairwise potential func-
tions. For these problems, we only ran our experiments

using ibound = 2, due to the high number of states for
each variable. Table 3 shows the results of the three parti-
tioning methods, which again agrees with the previous ex-
periments: our hybrid method outperforms the other two in
all 44 instances in this problem set, both before and after
the bound is fully optimized.

Greedy vs. Elimination Order Based Merging. As
discussed before, we restrict the clusters considered for
merges to unions of the current minibuckets at the earli-
est bucket Bi, and merge up to our computational limit be-

ibound

4 6 8 10 12 14 16 18 20

L
o
g
Z

 u
p
p
e
r

b
o
u
n
d

-90

-85

-80

-75

-70

-65

-60

Scp

Cont

Hyb

Scp-opt

Cont-opt

Hyb-opt

Figure 3: The upper bound achieved by the three partition-
ing heuristics for pedigree23 instance over ibound range
between 4 to 20.

Table 3: Protein side-chain prediction. Here we show
results for only ibound = 2, due to the high number of
states in each variable. Our method often produces dra-
matically better partitionings than scope- or context-based
mini-bucket partitions.

Instance Scp Cont Hyb

1crz -242.2036 -284.865 -451.598
1crz -opt -528.5348 -495.514 -545.929
2cav 71.2802 -26.0052 -148.637
2cav -opt -156.5387 -240.289 -272.606
1kk1 89.5527 46.8216 -121.723
1kk1 -opt -115.4737 -105.894 -143.447
1e4f 40.6686 -6.1785 -190.943
1e4f -opt -212.4607 -202.547 -240.27
1ehg 71.3308 14.768 -149.158
1ehg -opt -169.8435 -147.333 -211.678

fore moving on to later buckets, which serves to reduce the
number of clusters considered. We compare our choice of
clusters with a purely greedy region choice in which pairs
of regions in any bucket Bi are considered and scored.

Interestingly the upper bounds achieved using the greedy
approach was not better than the top down merging based
on elimination order. The reason for this behavior is that
the top-down approach allows large regions generated by
mini-buckets early in the elimination ordering to be pro-
cessed by buckets later in the order; the greedy approach
disrupts this flow and results in extra regions that cannot be
merged with any other region while respecting the ibound.

6 CONCLUSION

We presented a new merging heuristic for (weighted) mini-
bucket elimination that uses message passing optimization
of the bound, and variational interpretations, in order to
construct a better heuristic for selecting moderate to large
regions in an intelligent, energy-based way. Our approach
inherits the advantages of both cluster pursuit in variational

Table 4: Top-down vs. Greedy Merging. We examine the
effect of using a “fully greedy” merging procedure closer
to standard cluster pursuit, in which we merge the best-
scoring cluster in any bucket at each step. We find that
following the top-down ordering actually results in signifi-
cantly better bounds. Results shown are for ibound = 5.

Instance Top-Down Greedy

ped23 -71.9677 -67.9094
ped23-opt -72.0670 -67.9094
ped20 -44.7230 -38.0717
ped20-opt -44.7501 -38.0718
ped42 -49.9955 -37.8576
ped42-opt -50.0469 -37.8582
ped38 -92.7643 -79.9144
ped38-opt -93.0615 -79.9144
ped19 -80.6488 -48.6900
ped19-opt -80.7167 -48.6904

inference, and (weighted) mini-bucket elimination perspec-
tives to produce a tight bound. We validated our approach
with experiments on a wide variety of problems drawn from
a recent UAI approximate inference competition. In prac-
tice, we find that our methods work significantly better than
either existing partitioning heuristics for mini-bucket (Rol-
lon and Dechter, 2010), or a pure region pursuit approach.
We expect this construction to improve our ability to search
and solve large problems. However, our method does in-
volve additional computational overhead compared to, say,
scope-based constructions, in order to to evaluate and make
merge decisions. We did not focus here on any-time per-
formance; a more nuanced balance of time, memory, and
bound quality is one direction of potential future study.

Acknowledgements

This work is supported in part by NSF grants IIS-1065618
and IIS-1254071, and by the United States Air Force un-
der Contract No. FA8750-14-C-0011 under the DARPA
PPAML program.

References

D. Batra, S. Nowozin, and P. Kohli. Tighter relaxations
for map-mrf inference: A local primal-dual gap based
separation algorithm. JMLR - Proceedings Track, 15:
146–154, 2011.

Arthur Choi and Adnan Darwiche. Relax, compensate and
then recover. In New Frontiers in Artificial Intelligence
- JSAI-isAI 2010 Workshops, LENLS, JURISIN, AMBN,

ISS, Tokyo, Japan, November 18-19, 2010, Revised Se-
lected Papers, pages 167–180, 2010.

R. Dechter and I. Rish. Mini-buckets: A general scheme of
approximating inference. Journal of ACM, 50(2):107–
153, 2003.

Rina Dechter. Bucket elimination: A unifying framework
for reasoning. Artificial Intelligence, 113(12):41 – 85,
1999.

Rina Dechter. Constraint Processing. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003. ISBN
1558608907.

Rina Dechter and Irina Rish. A scheme for approximating
probabilistic inference. In Proc. Uncertainty in Artificial
Intelligence (UAI), pages 132–141, 1997.

G. Elidan, A. Globerson, and U. Heinemann. PAS-
CAL 2011 probabilistic inference challenge.
http://www.cs.huji.ac.il/project/PASCAL/, 2012.

A. Globerson and T.S. Jaakkola. Approximate inference
using conditional entropy decompositions. In In Pro-
ceedings of the 11th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS-07), 2007.

T. Hazan, J. Peng, and A. Shashua. Tightening fractional
covering upper bounds on the partition function for high-
order region graphs. In Uncertainty in Artificial Intelli-
gence, 2012.

Alexander Ihler, Natalia Flerova, Rina Dechter, and Lars
Otten. Join-graph based cost-shifting schemes. In Un-
certainty in Artificial Intelligence (UAI). August 2012.

K. Kask and R. Dechter. A general scheme for automatic
generation of search heuristics from specification depen-
dencies. Artificial Intelligence, 129(1-2):91–131, 2001.

Kalev Kask, Andrew Gelfand, Lars Otten, and Rina
Dechter. Pushing the power of stochastic greedy or-
dering schemes for inference in graphical models. In
AAAI’11, pages –1–1, 2011.

N. Komodakis and N. Paragios. Beyond loose LP-
relaxations: Optimizing MRFs by repairing cycles.
pages 806–820, 2008.

Qiang Liu and Alexander Ihler. Bounding the partition
function using hölder’s inequality. In Lise Getoor and
Tobias Scheffer, editors, Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML-11),
ICML ’11, pages 849–856, New York, NY, USA, June
2011. ACM. ISBN 978-1-4503-0619-5.

R. Marinescu and R. Dechter. Best-first and/or search for
most probable explanations. In Uncertainty in Artificial
Intelligence (UAI), 2007.

R. Marinescu, R. Dechter, and A. Ihler. AND/OR search
for marginal MAP. In International Conference on Un-
certainty in Artificial Intelligence (UAI), pages 563–572,
2014.

Emma Rollon and Rina Dechter. Evaluating partition
strategies for mini-bucket elimination. In International
Symposium on Artificial Intelligence and Mathematics
(ISAIM 2010), Fort Lauderdale, Florida, USA, January
6-8, 2010, 2010.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening lp relaxations for map using mes-
sage passing. In Uncertainty in Artificial Intelligence,
pages 503–510, 2008.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new
class of upper bounds on the log partition function. 51
(7):2313–2335, July 2005.

M. Welling. On the choice of regions for generalized be-
lief propagation. In Uncertainty in Artificial Intelligence,
pages 585–592, 2004.

T. Werner. High-arity interactions, polyhedral relaxations,
and cutting plane algorithm for soft constraint optimiza-
tion (map-mrf). In Computer Vision and Pattern Recog-
nition, 2008.

Chen Yanover and Yair Weiss. Approximate inference and
protein-folding. In S. Thrun S. Becker and K. Ober-
mayer, editors, Advances in Neural Information Pro-
cessing Systems 15, pages 1457–1464. MIT Press, Cam-
bridge, MA, 2003.

Chen Yanover, Talya Meltzer, and Yair Weiss. Linear pro-
gramming relaxations and belief propagation - an empir-
ical study. Journal of Machine Learning Research, 7:
1887–1907, 2006.

	Introduction
	Preliminaries
	Mini-bucket Elimination
	Partitioning Methods
	Variational bounds.

	A Hybrid Approach
	Initializing a join tree
	Message Passing
	Adding new regions
	Updating graph structure

	Discussion
	Empirical Evaluation
	Conclusion

