Experience Report: Preemptive Final
Exams for Computer Science Theory
Classes”

Michael Shindler
Unwversity of California Irvine

mikes@uct.edu

Matt Ferland, Aaron Cote, Olivera Grujic
Unwversity of Southern California

{mferland, aaroncot, grujic}Ousc.edu

Abstract

We taught classes enacting a “preemptive final exam” grading mech-
anism. Students have multiple chances to display knowledge of topics,
each being worth a portion of the final grade. The grade earned in each
topic is some number of their best attempts out of a higher number of
chances.

1 Introduction and Previous Work

As class sizes grow, it is becoming imperative to find more scalable evaluation
methods. Recent concerns have included rubrics for large numbers of assign-
ments [3], automated ways to detect students who are at risk of failing [1, 5, 6],
support structures [7], and course management for instructors [4].

We introduce a grading mechanism we refer to as a “preemptive final exam,”
where students can display knowledge before the final exam date, allowing stu-
dents to skip certain topics on the final, and saving course staff from grading
those questions. This policy has precedence, such as some math teachers al-
lowing students with an ‘A’ on the quizzes to skip the final exam, or allowing
a comprehensive final exam to count for a larger percent of the grade if it

*Copyright (©)2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.



is a better score [8]. The latter method has improved the perception of fair-
ness without having a large impact on class averages [8]. A related popular
grading mechanism was in use at MIT’s 6.034 (Artificial Intelligence) course,
allowing students to use quiz scores in place of corresponding sections of their
final exam. This method [10] is the basis for our preemptive final exam model.
Mastery based classes offer something similar, but typically allow the students
more than two chances at each topic [2]. Because of this, they tend not to scale
as well to large classes that require proofs and algorithm creation rather than
numerical or multiple-choice answers.

Our system is as follows. Every core topic is assigned a portion of the total
class weight and can be fulfilled during one or more pre-final exams during the
term. The final exam then offers another chance to demonstrate this mastery.
Students who demonstrate their understanding early will have “preempted” the
topic from their final while students who did not can raise their grade, but only
by demonstrated improved understanding of the topic. We believe this achieves
a focus on feedback wherein students receive timely remarks about what they
did or did not understand about the material, with both a direction to go with
their study and a chance to improve that part of their grade.

Students in all of our implementations typically increased their final grade
after taking the final exam, often by a significant amount. In both implemen-
tations, over two thirds of the students improved their grade by at least 5%,
and over a tenth of the students improved their grade by at least 15%.

In this report, we discuss courses that enacted this grading mechanism. We
cover a year’s worth of teaching at the University of Southern California, using
one semester of an algorithms course and one semester of a Discrete Math
course.

2 Course Setup

2.1 Introduction to Algorithms

After reviewing fundamental prerequisite concepts, this course typically covers
some algorithm design paradigms: dynamic programming, greedy, and divide-
and-conquer, followed by a midterm covering those three topics. The midterm
has students solve one problem for each paradigm by designing an algorithm
using it. We then cover network flow and some computational complexity, and
conclude with a final exam.

For our offering, however, the course structure changed slightly. The lecture
structure remained intact, as did the placement and purpose of the fundamen-
tals quiz and midterm. We added a quiz in the last week of class, giving a
chance to try the post-midterm topics in an exam cnvironment and for credit
towards “best of two.” There was a final exam with five questions, one on each
of the five topics.

10



40% of the grade was from homework, a fundamentals quiz, and overall
midterm performance. The remaining 60% of the grade was separated into
5 sections, with one for each topic. Every topic had exactly two questions
used for grading: one question on the final, and one question on the midterm
or week 15 exam. The total grade for each topic would be the highest score
of the two attempts. Exams contained only one question from each of the
5 topics, and each section was clearly labeled. For more details, please see
the online appendix, available at https://www.ics.uci.edu/ " mikes/papers/
CCSC_2020_0Online_Appendix.pdf

3 Discrete Mathematics

This class typically has two mid-semester exams, some take-home problem sets,
and a final exam. We renamed the two mid-semester exams to be quizzes, and
added a third one. Like the algorithms course, this quiz came in the last week
of classes and covered material that would be on the final but had been lectured
on after the cut-off point of the previous quiz. Each quiz was worth little on its
own: the first and third were 5% each, and the second was 10%. The remaining
grade that came neither from a quiz sum nor a take-home assignment came
from breaking down the core topics to be learned in the course. There was a
final exam that provided one last opportunity to demonstrate mastery of each
topic.

Unlike algorithms, the topics weren’t “best of two.” Rather, we gave a
number of opportunities for each topic. For example, each quiz had a (non-
inductive) proof for the student to write, and the final exam had two. The
best three of the five counted for 15% of the students’ grade. This is partly
because we don’t believe that a single question in all of these topics covers
the full mastery of the material. By contrast, once one has demonstrated the
ability to design an algorithm using, say, dynamic programming, we believe
students will retain that mastery, at least at the undergraduate level, and for
at least the amount of time between the midterm and final exam.

The topics and breakdowns are presented in the online appendix.

4 QObserved Outcomes

4.1 Positive Outcomes

In the algorithms course, 28 students out of 203 had an A without taking the
final. Subjectively, the instructor for the course believes each of these students
would have also earned an ‘A’ had the class grading been more traditional.
We believe that the reported grade accurately reflects these students’ knowl-
edge and experience with the material. While it is conceivable that they, or
any student preempting a final exam question, could have done poorly un-
der a traditional model, we believe that the learning curve is such that the

11



students would be able to earn at least the same score with very high probabil-
ity. Furthermore, it meant that these students would not be occupying office
hours during finals period, freeing course staff for students who still have yet
to demounstrate the mastery that they were (hopefully) working on.

Of course, the benefits to students go beyond the fact that some may skip
the final exam, as the structure of the class creates a focus on feedback and
improvement. Students can see what understanding they lack in an exam and
have a chance to demonstrate it again, having learned from their mistakes. This
focus on improvement is the point: showing that they learned something they
had not previously demonstrated mastery of, and this is reflected explicitly
in their grade. Students cannot hide a lack of knowledge on onc topic by
repeatedly demonstrating mastery of another.

We found the topics most influenced by this policy to be those given earlier
in the term, as well as those where the class as a whole performed poorly in
initial attempts. This was observed in both classes.

4.2 Particulars of Improvement at the Final

For the algorithms course, 157 students took the final. Not every student
needed to attempt every question. For example, the vast majority of the class
was happy with their score on the divide and conquer paradigm on the midterm.
The breakdown by topic is reflected in the online appendix. The final itself
could have been offered in a traditional algorithms course at our university. As
such, students who had fewer questions to answer generally would leave carlier
and did not appear to have a time advantage over students who had more
to answer. This was true even of students with extra time accommodation,
where over 90% finished early in both courses. We view the improvement,
particularly in dynamic programming, as very encouraging. This is a key
concept in algorithm design, and seeing that students are able to incorporate
their feedback and learn from it is reassuring.

Just like with dynamic programming, we were encouraged by the improve-
ments we saw on abstract topics from early in the term. Proofs, in particular,
feel to many students to be some mysterious art form, yet with sufficient re-
sources and incentive, they are able to develop skills in this area. For the first
three topics, this should provide a cause for optimism for their future as com-
puter scientists. Proofs are structured not unlike a computer program [9] and
the connection between inductive proofs and recursive thinking should be ob-
vious. There is a similar positive view for students to grasp some fundamental
graph algorithms in what is for many of them their first year of university.

In both classes, most students who took the final saw some improvement
in their grade. Over two thirds of students that took the final received at least
a 5% improvement in their overall grade, and 10% received at least a 15%
improvement. A breakdown is available in the online appendix.

12



4.3 Cautions for the Approach

Each semester we made the usual promise that 90% or above of the points
would be sufficient for an ‘A’ in the class. For the algorithms class, nearly a
third of the students finished in excess of 90%. The instructor recognized most
of the names and, similar to the opinion of those who preempted the full final,
believes that if we were assigning letter grades based on impression of their
understanding, each would likely have had an ‘A’ as well. We believe this is the
correct evaluation of each such student. Other instructors may have different
views about what should constitute an A and should exercise caution in such
promises. At the other extreme, we did not notice any students “optimizing
for merely passing,” although it could happen. Our view is that a student so
optimizing is unlikely to have it secured by the final exam, and cannot rely
on the curve for this model in the same way as for a traditionally evaluated
course.

We believe our approach works under the assumption that a small number
of samples is sufficient to demonstrate mastery. We believe this holds for
undergraduate CS Theory, but it may not hold for other subject matters.

Instructors wishing to use this grading mechanism should be cautioned that
we observed more regrade requests during the year. It appears some students
now perceived the stakes to be higher on exams. Instructors should also be
cautioned that there will be a grading crunch at the end, as all pre-finals need
to be returned before exam week.

The lower rate of improvement for topics introduced late in the class in
both offerings is a cause for concern. It is not clear if students need more
time to integrate the difference or if they viewed late quizzes as a nearly free
shot at taking part of their final exam twice. It also isn’t clear which subset
of the students viewed their feedback for such artifacts and if other means of
returning the exams to students might be more effective.

Lastly, we caution instructors considering this method to carefully consider
the discrete nature of the topics they are teaching. For the algorithm design
course, this is less of an issue; in a discrete math class, however, we may want
to cross categories more often, such as asking how many Hamiltonian Paths a
graph has. Counting and discrete probability also have significant overlap.

5 Summary and Conclusions

We have introduced and piloted the use of a preemptive final exam model for
two different Computer Science Theory courses. We believe we have shown
that this has allowed students to better and more clearly demonstrate their
compctency in core topics of the course. The feedback loop created aids in
this goal, as does the incentive structure. The mechanism also allowed better
use of end-of-term class resources while providing a new incentive for students

13



to demonstrate mastery early in the term. This technique should be widely
applicable across the field of Computer Science.

References

[1]

2]

3]

[4]

|6]

7]

19]

[10]

14

Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. Ex-
ploring machine learning methods to automatically identify students in need of
assistance. In Proceedings of the eleventh annual International Conference on
International Computing Education Research, pages 121-130, 2015.

J B. Collins, Amanda Harsy, Jarod Hart, Katie Anne Haymaker, Alyssa Marie
Hoofnagle, Mike Kuyper Janssen, Jessica Stewart Kelly, Austin Tyler Mohr, and
Jessica OShaughnessy. Mastery-based testing in undergraduate mathematics
courses. PRIMUS, 29(5):441-460, 2019.

John Cigas, Adrienne Decker, Crystal Furman, and Timothy Gallagher. How
am i going to grade all these assignments? thinking about rubrics in the large.
In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, pages 543-544, 2018.

David G Kay. Large introductory computer science classes: strategies for effec-
tive course management. ACM SIGCSE Bulletin, 30(1):131-134, 1998.

Soohyun Nam Liao, Daniel Zingaro, Christine Alvarado, William G Griswold,
and Leo Porter. Exploring the value of different data sources for predicting
student performance in multiple cs courses. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, pages 112-118, 2019.

Soohyun Nam Liao, Daniel Zingaro, Kevin Thai, Christine Alvarado, William G
Griswold, and Leo Porter. A robust machine learning technique to predict low-
performing students. ACM Transactions on Computing Education (TOCE),
19(3):1-19, 2019.

Mia Minnes, Christine Alvarado, and Leo Porter. Lightweight techniques to
support students in large classes. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pages 122-127, 2018.

Ben Stephenson. The impacts of providing novice computer science students
with a second chance on their midterm exams. Journal of Computing Sciences
in Colleges, 27(4):122-130, 2012.

Daniel J Velleman. How to prove it: A structured approach. Cambridge Univer-
sity Press, 2019.

Patrick Henry Winston. Skills, big ideas, and getting grades out of the way.
http://web.mit.edu/fnl/volume/204/winston.html.



