
Fast and Accurate k-means For Large Datasets

Michael Shindler
School of EECS

Oregon State University
shindler@eecs.oregonstate.edu

Alex Wong
Department of Computer Science

UC Los Angeles
alexw@seas.ucla.edu

Adam Meyerson
Google, Inc.

Mountain View, CA
awmeyerson@google.com

Abstract
Clustering is a popular problem with many applications. We consider the k-means
problem in the situation where the data is too large to be stored in main memory
and must be accessed sequentially, such as from a disk, and where we must use
as little memory as possible. Our algorithm is based on recent theoretical results,
with significant improvements to make it practical. Our approach greatly simpli-
fies a recently developed algorithm, both in design and in analysis, and eliminates
large constant factors in the approximation guarantee, the memory requirements,
and the running time. We then incorporate approximate nearest neighbor search to
compute k-means in o(nk) (where n is the number of data points; note that com-
puting the cost, given a solution, takes Θ(nk) time). We show that our algorithm
compares favorably to existing algorithms - both theoretically and experimentally,
thus providing state-of-the-art performance in both theory and practice.

1 Introduction
We design improved algorithms for Euclidean k-means in the streaming model. In the k-means
problem, we are given a set of n points in space. Our goal is to select k points in this space to
designate as facilities (sometimes called centers or means); the overall cost of the solution is the sum
of the squared distances from each point to its nearest facility. The goal is to minimize this cost;
unfortunately the problem is NP-Hard to optimize, although both heuristic [21] and approximation
algorithm techniques [20, 25, 7] exist. In the streaming model, we require that the point set be read
sequentially, and that our algorithm stores very few points at any given time. Many problems which
are easy to solve in the standard batch-processing model require more complex techniques in the
streaming model (a survey of streaming results is available [3]); nonetheless there are a number
of existing streaming approximations for Euclidean k-means. We present a new algorithm for the
problem based on [9] with several significant improvements; we are able to prove a faster worst-case
running time and a better approximation factor. In addition, we compare our algorithm empirically
with the previous state-of-the-art results of [2] and [4] on publicly available large data sets. Our
algorithm outperforms them both.

The notion of clustering has widespread applicability, such as in data mining, pattern recognition,
compression, and machine learning. The k-means objective is one of the most popular formalisms,
and in particular Lloyd’s algorithm [21] has significant usage [5, 7, 19, 22, 23, 25, 27, 28]. Many of
the applications for k-means have experienced a large growth in data that has overtaken the amount
of memory typically available to a computer. This is expressed in the streaming model, where an
algorithm must make one (or very few) passes through the data, reflecting cases where random
access to the data is unavailable, such as a very large file on a hard disk. Note that the data size,
despite being large, is still finite.

1

Our algorithm is based on the recent work of [9]. They “guess” the cost of the optimum, then run the
online facility location algorithm of [24] until either the total cost of the solution exceeds a constant
times the guess or the total number of facilities exceeds some computed value κ. They then declare
the end of a phase, increase the guess, consolidate the facilities via matching, and continue with
the next point. When the stream has been exhausted, the algorithm has some κ facilities, which are
then consolidated down to k. They then run a ball k-means step (similar to [25]) by maintaining
samples of the points assigned to each facility and moving the facilities to the centers of mass of
these samples. The algorithm uses O(k log n) memory, runs in O(nk log n) time, and obtains an
O(1) worst-case approximation. Provided that the original data set was σ-separable (see section 1.2
for the definition), they use ball k-means to improve the approximation factor to 1 +O(σ2).

From a practical standpoint, the main issue with [9] is that the constants hidden in the asymptotic
notation are quite large. The approximation factor is in the hundreds, and the O(k log n) memory
requirement has sufficiently high constants that there are actually more than n facilities for many of
the data sets analyzed in previous papers. Further, these constants are encoded into the algorithm
itself, making it difficult to argue that the performance should improve for non-worst-case inputs.

1.1 Our Contributions
We substantially simplify the algorithm of [9]. We improve the manner by which the algorithm
determines better facility cost as the stream is processed, removing unnecessary checks and allowing
the user to parametrize what remains. We show that our changes result in a better approximation
guarantee than the previous work. We also develop a variant that computes a solution in o(nk) and
show experimentally that both algorithms outperform previous techniques.

We remove the end-of-phase condition based on the total cost, ending phases only when the number
of facilities exceeds κ. While we require κ ∈ Ω(k log n), we do not require any particular constants
in the expression (in fact we will use κ = k log n in our experiments). We also simplify the transition
between phases, observing that it’s quite simple to bound the number of phases by logOPT (where
OPT is the optimum k-means cost), and that in practice this number of phases is usually quite a bit
less than n.

We show that despite our modifications, the worst case approximation factor is still constant. Our
proof is based on a much tighter bound on the cost incurred per phase, along with a more flexible
definition of the “critical phase” by which the algorithm should terminate. Our proofs establish that
the algorithm converges for any κ > k; of course, there are inherent tradeoffs between κ and the
approximation bound. For appropriately chosen constants our approximation factor will be roughly
17, substantially less than the factor claimed in [9] prior to the ball k-means step.

In addition, we apply approximate nearest-neighbor algorithms to compute the facility assignment
of each point. The running time of our algorithm is dominated by repeated nearest-neighbor
calculations, and an appropriate technique can change our running time from Θ(nk log n) to
Θ(n(log k + log log n)), an improvement for most values of k. Of course, this hurts our accuracy
somewhat, but we are able to show that we take only a constant-factor loss in approximation. Note
that our final running time is actually faster than the Θ(nk) time needed to compute the k-means
cost of a given set of facilities!

In addition to our theoretical improvements, we perform a number of empirical tests using realistic
data. This allows us to compare our algorithm to previous [4, 2] streaming k-means results.

1.2 Previous Work
A simple local search heuristic for the k-means problem was proposed in 1957 by Lloyd [21].
The algorithm begins with k arbitrarily chosen points as facilities. At each stage, it allocates the
points into clusters (each point assigned to closest facility) and then computes the center of mass
for each cluster. These become the new facilities for the next phase, and the process repeats until
it is stable. Unfortunately, Lloyd’s algorithm has no provable approximation bound, and arbitrarily
bad examples exist. Furthermore, the worst-case running time is exponential [29]. Despite these
drawbacks, Lloyd’s algorithm (frequently known simply as k-means) remains common in practice.

The best polynomial-time approximation for k-means is by Kanungo, Mount, Netanyahu, Piatko,
Silverman, and Wu [20]. Their algorithm uses local search (similar to the k-median algorithm of
[8]), and is a 9 + ε approximation. However, Lloyd’s observed runtime is superior, and this is a high
priority for real applications.

2

Ostrovsky, Rabani, Schulman and Swamy [25] observed that the value of k is typically selected
such that the data is “well-clusterable” rather than being arbitrary. They defined the notion of σ-
separability, where the input to k-means is said to be σ-separable if reducing the number of facilities
from k to k − 1 would increase the cost of the optimum solution by a factor 1

σ2 . They designed an
algorithm with approximation ratio 1 + O(σ2). Subsequently, Arthur and Vassilvitskii [7] showed
that the same procedure produces an O(log k) approximation for arbitrary instances of k-means.

There are two basic approaches to the streaming version of the k-means problem. Our approach
is based on solving k-means as we go (thus at each point in the algorithm, our memory contains a
current set of facilities). This type of approach was pioneered in 2000 by Guha, Mishra, Motwani,
and O’Callaghan [17]. Their algorithm reads the data in blocks, clustering each using some non-
streaming approximation, and then gradually merges these blocks when enough of them arrive. An
improved result for k-median was given by Charikar, O’Callaghan, and Panigrahy in 2003 [11],
producing an O(1) approximation using O(k log2 n) space. Their work was based on guessing a
lower bound on the optimum k-median cost and running O(log n) parallel versions of the online
facility location algorithm of Meyerson [24] with facility cost based on the guessed lower bound.
When these parallel calls exceeded the approximation bounds, they would be terminated and the
guessed lower bound on the optimum k-median cost would increase. The recent paper of Braverman,
Meyerson, Ostrovsky, Roytman, Shindler, and Tagiku [9] extended the result of [11] to k-means and
improved the space bound to O(k log n) by proving high-probability bounds on the performance
of online facility location. This result also added a ball k-means step (as in [25]) to substantially
improve the approximation factor under the assumption that the original data was σ-separable.

Another recent result for streaming k-means, due to Ailon, Jaiswal, and Monteleoni [4], is based on
a divide and conquer approach, similar to the k-median algorithm of Guha, Meyerson Mishra, Mot-
wani, and O’Callaghan [16]. It uses the result of Arthur and Vassilvitskii [7] as a subroutine, finding
3k log k centers for each block. Their experiment showed that this algorithm is an improvement over
an online variant of Lloyd’s algorithm and was comparable to the batch version of Lloyd’s.

The other approach to streaming k-means is based on coresets: selecting a weighted subset of the
original input points such that any k-means solution on the subset has roughly the same cost as on
the original point set. At any point in the algorithm, the memory should contain a weighted represen-
tative sample of the points. This approach was first used in a non-streaming setting for a variety of
clustering problems by Bǎdoiu, Har-Peled, and Indyk [10], and in the streaming setting by Har-Peled
and Mazumdar [18]; the time and memory bounds were subsequently improved through a series of
papers [14, 13] with the current best theoretical bounds by Chen [12]. A practical implementation
of the coreset paradigm is due to Ackermann, Lammersen, Märtens, Raupach, Sohler, and Swierkot
[2]. Their approach was shown empirically to be fast and accurate on a variety of benchmarks.

2 Algorithm and Theory
Both our algorithm and that of [9] are based on the online facility location algorithm of [24]. For
the facility location problem, the number of clusters is not part of the input (as it is for k-means),
but rather a facility cost is given; an algorithm to solve this problem may have as many clusters as it
desires in its output, simply by denoting some point as a facility. The solution cost is then the sum
of the resulting k-means cost (“service cost”) and the total paid for facilities.

Our algorithm runs the online facility location algorithm of [24] with a small facility cost until we
have more than κ ∈ Θ(k log n) facilities. It then increases the facility cost, re-evaluates the current
facilities, and continues with the stream. This repeats until the entire stream is read. The details of
the algorithm are given as Algorithm 1.

The major differences between our algorithm and that of [9] are as follows. We ignore the overall
service cost in determining when to end a phase and raise our facility cost f . Further, the number of
facilities which must open to end a phase can be any κ ∈ Θ(k log n), the constants do not depend
directly on the competitive ratio of online facility location (as they did in [9]). Finally, we omit
the somewhat complicated end-of-phase analysis of [9], which used matching to guarantee that the
number of facilities decreased substantially with each phase and allowed bounding the number of
phases by n

k logn . We observe that our number of phases will be bounded by logβ OPT ; while this is
not technically bounded in terms of n, in practice this term should be smaller than the linear number
of phases implied in previous work.

3

Algorithm 1 Fast streaming k-means (data stream, k, κ, β)
1: Initialize f = 1/(k(1 + log n)) and an empty set K
2: while some portion of the stream remains unread do
3: while |K| ≤ κ = Θ(k log n) and some portion of the stream is unread do
4: Read the next point x from the stream
5: Measure δ = miny∈K d(x, y)2

6: if probability δ/f event occurs then
7: set K ← K

⋃
{x}

8: else
9: assign x to its closest facility in K

10: if stream not exhausted then
11: while |K| > κ do
12: Set f ← βf
13: Move each x ∈ K to the center-of-mass of its points
14: Let wx be the number of points assigned to x ∈ K
15: Initialize K̂ containing the first facility from K
16: for each x ∈ K do
17: Measure δ = miny∈K̂ d(x, y)2

18: if probability wxδ/f event occurs then
19: set K̂ ← K̂

⋃
{x}

20: else
21: assign x to its closest facility in K̂
22: Set K ← K̂
23: else
24: Run batch k-means algorithm on weighted points K
25: Perform ball k-means (as per [9]) on the resulting set of clusters

We will give a theoretical analysis of our modified algorithm to obtain a constant approximation
bound. Our constant is substantially smaller than those implicit in [9], with most of the loss occur-
ring in the final non-streaming k-means algorithm to consolidate κ means down to k. The analysis
will follow from the theorems stated below; proofs of these theorems are deferred to the appendix.

Theorem 1. Suppose that our algorithm completes the data stream when the facility cost is f . Then
the overall solution prior to the final re-clustering has expected service cost at most fκβ

β−1 , and the
probability of being within 1 + ε of the expected service cost is at least 1− 1

poly(n) .

Theorem 2. With probability at least 1 − 1
poly(n) , the algorithm will either halt with f ≤ Θ(C∗)β

κ ,
where C∗ is the optimum k-means cost, or it will halt within one phase of exceeding this value.
Furthermore, for large values of κ and β, the hidden constant in Θ(C∗) approaches 4.

Note that while the worst-case bound of roughly 4 proven here may not seem particularly strong,
unlike the previous work of [9], the worst-case performance is not directly encoded into the algo-
rithm. In practice, we would expect the performance of online facility location to be substantially
better than worst-case (in fact, if the ordering of points in the stream is non-adversarial there is a
proof to this effect in [24]); in addition the assumption was made that distances add (i.e. triangle
inequality is tight) which will not be true in practice (especially of points in low-dimensional space).
We also assumed that using more than k facilities does not substantially help the optimum service
cost (also unlikely to be true for real data). Combining these, it would be unsurprising if our service
cost was actually better than optimum at the end of the data stream (of course, we used many more
facilities than optimum, so it is not precisely a fair comparison). The following theorem summarizes
the worst-case performance of the algorithm; its proof is direct from Theorems 1 and 2.

Theorem 3. The cost of our algorithm’s final κ-mean solution is at most O(C∗), where C∗ is the
cost of the optimum k-means solution, with probability 1 − 1

poly(n) . If κ is a large constant times

k log n and β > 2 is fairly large, then the cost of our algorithm’s solution will approach C∗ 4β2

β−1 ;
the extra β factor is due to “overshooting” the best facility cost f .

4

We note that if we run the streaming part of the algorithm M times in parallel, we can take the
solution with the smallest final facility cost. This improves the approximation factor to roughly
4β1+(1/M)

β−1 , which approaches 4 in the limit. Of course, increasing κ can substantially increase the
memory requirement and increasing M can increase both memory and running time requirements.

When the algorithm terminates, we have a set of κ weighted means which we must reduce to k
means. A theoretically sound approach involves mapping these means back to randomly selected
points from the original set (these can be maintained in a streaming manner) and then approximating
k-means on κ points using a non-streaming algorithm. The overall approximation ratio will be twice
the ratio established by our algorithm (we lose a factor of two by mapping back to the original points)
plus the approximation ratio for the non-streaming algorithm. If we use the algorithm of [20] along
with a large κ, we will get an approximation factor of twice 4 plus 9+ε for roughly 17. Ball k-means
can then reduce the approximation factor to 1 +O(σ2) if the inputs were σ-separable (as in [25] and
[9]; the hidden constant will be reduced by our more accurate algorithm).

3 Approximate Nearest Neighbor
The most time-consuming step in our algorithm is measuring δ in lines 5 and 17. This requires
as many as κ distance computations; there are a number of results enabling fast computation of
approximate nearest neighbors and applying these results will improve our running time. If we can
assume that errors in nearest neighbor computation are independent from one point to the next (and
that the expected result is good), our analysis from the previous section applies. Unfortunately, many
of the algorithms construct a random data structure to store the facilities, then use this structure to
resolve all queries; this type of approach implies that errors are not independent from one query to
the next. Nonetheless we can obtain a constant approximation for sufficiently large choices of β.

For our empirical result, we will use a very simple approximate nearest-neighbor algorithm based
on random projection. This has reasonable performance in expectation, but is not independent from
one step to the next. While the theoretical results from this particular approach are not very strong,
it works very well in our experiments. For this implementation, a vector $ is created, with each of
the d dimensions space being chosen independently and uniformly at random from [0, 1). We store
our facilities sorted by their inner product with $. When a new point x arrives, instead of taking
O(κ) to determine its (exact) nearest neighbor, we instead use O(log κ) to find the two facilities that
x ·$ is between. We determine the (exact) closer of these two facilities; this determines the value
of δ in lines 5 and 17 and the “closest” facility in lines 9 and 21.
Theorem 4. If our approximate nearest neighbor computation finds a facility with distance at most
ν times the distance to the closest facility in expectation, then the approximation ratio increase by a
constant factor.

We defer explanation of how we form the stronger theoretical result to the appendix.

4 Empirical Evaluation
A comparison of algorithms on real data sets gives a great deal of insight as to their relative perfor-
mance. Real data is not worst-case, implying that neither the asymptotic performance or running-
time bounds claimed in theoretical results are necessarily tight. Of course, empirical evaluation
depends heavily on the data sets selected for the experiments.

We selected data sets which have been used previously to demonstrate streaming algorithms. A
number of the data sets analyzed in previous work were not particularly large, probably so that
batch-processing algorithms would terminate quickly on those inputs. The main motivation for
streaming is very large data sets, so we are more interested in sets that might be difficult to fit in a
main memory and focused on the largest examples. We looked to [2], and used the two biggest data
sets they considered. These were the BigCross dataset1 and the Census1990 dataset 2. All the other
data sets in [2, 4] were either subsets of these or were well under a half million points.

A necessary input for each of these algorithms is the desired number of clusters. Previous work
chose k seemingly arbitrarily; typical values were of the form {5, 10, 15, 20, 25}. While this input
provides a well-defined geometry problem, it fails to capture any information about how k-means is

1The BigCross dataset is 11,620,300 points in 57-dimensional space; it is available from [1]
2The Census1990 dataset is 2,458,285 points in 68 dimensions; it is available from [15]

5

used in practice and need not lead to separable data. Instead, we want to select k such that the best
k-means solution is much cheaper than the best (k−1)-means solution. Since k-means is NP-Hard,
we cannot solve large instances to optimality. For the Census dataset we ran several iterations of the
algorithm of [25] for each of many values of k. We took the best observed cost for each value of k,
and found the four values of k minimizing the ratio of k-means cost to (k − 1)-means cost.

This was not possible for the larger BigCross dataset. Instead, we ran a modified version of our
algorithm; at the end of a phase, it adjusts the facility cost and restarts the stream. This avoids the
problem of compounding the approximation factor at the end of a phase. As with Census, we ran
this for consecutive values of k and chose the best ratios of observed values; we chose two, rather
than four, so that we could finish our experiments in a reasonable amount of time. Our approach to
selecting k is closer to what’s done in practice, and is more likely to yield meaningful results.

We do not compare to the algorithm of [9]. First, the memory is not configurable, making it not
fit into the common baseline that we will define shortly. Second, the memory requirements and
runtime, while asymptotically nice, have large leading constants that cause it to be impractical. In
fact, it was an attempt to implement this algorithm that initially motivated the work on this paper.

4.1 Implementation Discussion
The divide and conquer (“D&C”) algorithm [4] can use its available memory in two possible ways.
First, it can use the entire amount to read from the stream, writing the results of computing their
3k log k means to disk; when the stream is exhausted, this file is treated as a stream, until an iteration
produces a file that fits entirely into main memory. Alternately, the available memory could be
partitioned into layers; the first layer would be filled by reading from the stream, and the weighted
facilities produced would be stored in the second. When any layer is full, it can be clustered and the
result placed in a higher layer, replacing the use of files and disk. Upon completion of the stream,
any remaining points are gathered and clustered to produce k final means. When larger amounts
of memory are available, the latter method is preferred. With smaller amounts, however, this isn’t
always possible, and when it is possible, it can produce worse actual running times than a disk-based
approach. As our goal is to judge streaming algorithms under low memory conditions, we used the
first approach, which is more fitting to such a constraint.

Each algorithm3 was programmed in C/C++, compiled with g++, and run under Ubuntu Linux
(10.04 LTS) on HP Pavilion p6520f Desktop PC, with an AMD Athlon II X4 635 Processor running
at 2.9 GhZ and with 6 GB main memory (although nowhere near the entirety of this was used by any
algorithm). For StreamKM++, the authors’ implementation [2], also in C, was used instead. With
all algorithms, the reported cost is determined by taking the resulting k facilities and computing the
k-means cost across the entire dataset. The time to compute this cost is not included in the reported
running times of the algorithms. Each test case was run 10 times and the average costs and running
times were reported.

4.2 Experimental Design
Our goal is to compare the algorithms at a common basepoint. Instead of just comparing for the
same dataset and cluster count, we further constrained each to use the same amount of memory (in
terms of number of points stored in random access). The memory constraints were chosen to reflect
the usage of small amounts of memory that are close to the algorithms’ designers’ specifications,
where possible. Ailon et al [4] suggest

√
nk memory for the batch process; this memory availability

is marked in the charts by an asterisk. The suggestion from [2] for a coreset of size 200k was not
run for all algorithms, as the amount of memory necessary for computing a coreset of this size is
much larger than the other cases, and our goal is to compare the algorithms at a small memory limit.
This does produce a drop in solution quality compared to running the algorithm at their suggested
parameters, although their approach remains competitive. Finally, our algorithm suggests memory
of κ = k log n or a small constant times the same.

In each case, the memory constraint dictates the parameters; for the divide and conquer algorithm,
this is simply the batch size. The coreset size is also dictated by the available memory. Our algorithm
is a little more parametrizable; whenM memory is available, we allowed κ = M/5 and each facility
to have four samples.

3Visit http://web.engr.oregonstate.edu/˜shindler/ to access code for our algorithms

6

Figure 1: Census Data, k=8, cost Figure 2: Census Data, k=8, time

Figure 3: Census Data, k=12, cost Figure 4: Census Data, k=12, time

Figure 5: BigCross Data, k=13, cost Figure 6: BigCross Data, k=13, time

Figure 7: BigCross Data, k=24, cost Figure 8: BigCross Data, k=24, time

7

4.3 Discussion of Results

We see that our algorithms are much faster than the D&C algorithm, while having a comparable (and
often better) solution quality. We find that we compare well to StreamKM++ in average results, with
a closer standard deviation and a better sketch of the data produced. Furthermore, our algorithm
stands to gain the most by improved solutions to batch k-means, due to the better representative
sample present after the stream is processed.

The prohibitively high running time of the divide-and-conquer algorithm [4] is due to the many re-
peated instances of running their k-means# algorithm on each batch of the given size. For sufficiently
large memory, this is not problematic, as very few batches will need this treatment. Unfortunately,
with very small locally available memory, there will be an immense amount of repeated calls, and
the overall running time will suffer greatly. In particular, the observed running time was much worse
than the other approaches. For the Census dataset, k = 12 case, for example, the slowest run of our
algorithm (20 minutes) and the fastest run of the D&C algorithm (125 minutes) occurred at the same
case. It is because of this discrepancy that we present the chart of algorithm running times as a
log-plot. Furthermore, due to the prohibitively high running time on the smaller data set, we omitted
the divide-and-conquer algorithm for the experiment with the larger set.

The decline in accuracy for StreamKM++ at very low memory can be partially explained by the
Θ(k2 log8 n) points’ worth of memory needed for a strong guarantee in previous theory work [12].
However, the fact that the algorithm is able to achieve a good approximation in practice while using
far less than that amount of memory suggests that improved provable bounds for coreset algorithms
may be on the horizon. We should note that the performance of the algorithm declines sharply as the
memory difference with the authors’ specification grows, but gains accuracy as the memory grows.

All three algorithms can be described as computing a weighted sketch of the data, and then solving
k-means on that sketch. The final approximation ratios can be described as α(1 + ε) where α is
the loss from the final batch algorithm. The coreset ε is a direct function of the memory allowed to
the algorithm, and can be made arbitrarily small. However, the memory needed to provably reduce
ε to a small constant is quite substantial, and while StreamKM++ does produce a good resulting
clustering, it is not immediately clear the the discovery of better batch k-means algorithms would
improve their solution quality. Our algorithm’s ε represents the ratio of the cost of our κ-mean
solution to the cost of the optimum k-means solution. The provable value is a large constant, but
since κ is much larger than k, we would expect better performance in practice, and we observe this
effect in our experiments.

For our algorithm, the observed value of 1+ε has been typically between 1 and 3, whereas the D&C
approach did not yield one better than 24, and was high (low thousands) for the very low memory
conditions. The coreset algorithm was the worst, with even the best values in the mid ten figures
(tens to hundreds of billions). The low ratio for our algorithm also suggests that our κ facilities are a
good sketch of the overall data, and thus our observed accuracy can be expected to improve as more
accurate batch k-means algorithms are discovered.

Acknowledgments

We are grateful to Christian Sohler’s research group for providing their code for the StreamKM++
algorithm. We also thank Jennifer Wortman Vaughan, Thomas G. Dietterich, Daniel Sheldon, An-
drea Vattani, and Christian Sohler for helpful feedback on drafts of this paper. This work was done
while all the authors were at UCLA; at that time, Adam Meyerson and Michael Shindler were par-
tially supported by NSF CIF Grant CCF-1016540.

References

[1] http://www.cs.uni-paderborn.de/en/fachgebiete/ag-bloemer/research/clustering/streamkmpp.

[2] Marcel R. Ackermann, Christian Lammersen, Marcus Märtens, Christoph Raupach, Christian
Sohler, and Kamil Swierkot. StreamKM++: A clustering algorithms for data streams. In
ALENEX, 2010.

[3] Charu C. Aggarwal, editor. Data Streams: Models and Algorithms. Springer, 2007.

8

[4] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approximation. In
NIPS, 2009.

[5] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. An efficient k-means clustering algorithm.
In HPDM, 1998.

[6] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Communications of the ACM, January 2008.

[7] David Arthur and Sergei Vassilvitskii. k-means++: The Advantages of Careful Seeding. In
SODA, 2007.

[8] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In STOC,
2001.

[9] Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman, Michael Shindler,
and Brian Tagiku. Streaming k-means on Well-Clusterable Data. In SODA, 2011.

[10] Mihai Bǎdoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
STOC, 2002.

[11] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for
clustering problems. In STOC, 2003.

[12] Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and
their applications. SIAM J. Comput., 2009.

[13] Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In SCG, 2007.

[14] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In STOC,
2005.

[15] A. Frank and A. Asuncion. UCI machine learning repository, 2010.
[16] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan.

Clustering data streams: Theory and practice. In TDKE, 2003.
[17] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering data

streams. In FOCS, 2000.
[18] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In

STOC, 2004.
[19] Anil Kumar Jain, M Narasimha Murty, and Patrick Joseph Flynn. Data clustering: a review.

ACM Computing Surveys, 31(3), September 1999.
[20] Tapas Kanungo, David Mount, Nathan Netanyahu, Christine Piatko, Ruth Silverman, and An-

gela Wu. A local search approximation algorithm for k-means clustering. In SCG, 2002.
[21] Stuart Lloyd. Least Squares Quantization in PCM. In Special issue on quantization, IEEE

Transactions on Information Theory, 1982.
[22] James MacQueen. Some methods for classification and analysis of multivariate observations.

In Berkeley Symposium on Mathematical Statistics and Probability, 1967.
[23] Joel Max. Quantizing for minimum distortion. IEEE Transactions on Information Theory,

1960.
[24] Adam Meyerson. Online facility location. In FOCS, 2001.
[25] Rafail Ostrovsky, Yuval Rabani, Leonard Schulman, and Chaitanya Swamy. The Effectiveness

of Lloyd-Type Methods for the k-Means Problem. In FOCS, 2006.
[26] Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In SODA, 2006.
[27] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with geometric rea-

soning. In KDD, 1999.
[28] Steven J. Phillips. Acceleration of k-means and related clustering problems. In ALENEX,

2002.
[29] Andrea Vattani. k-means requires exponentially many iterations even in the plane. Discrete

Computational Geometry, June 2011.

9

A Proof of Theorem 1

We will first give a high-probability bound on the service cost paid during the phase corresponding
to facility cost f .
Lemma 1. Suppose that we have a facility cost of f along with some initial facilities, and we
continue running online facility location on some set of weighted points until we open x additional
facilities. Let C be the total service cost paid. Then E[C] ≤ xf and

Pr[C > xf(1 + ε)] ≤ (
1 + ε

eε
)x

Proof. The statement about expectation is immediate from expected waiting time. Let py be the
maximum possible probability that we pay at least yf before opening a facility. If δf is the cost
of service for the first point to arrive for δ ≤ 1, then we have py = maxδ(1 − δ)(py−δ) Since
1− δ ≤ e−δ , we can show by induction that py = e−y .

Now consider the probability of exceeding cost yf for opening x facilities. We will prove by induc-
tion that this is at most ex ln γ−y(1−1/γ), for any γ > 1. The base case x = 1 is immediate. There
are two ways to exceed yf cost when opening x facilities. Either we pay more than yf already for
the first facility, which happens with probability e−y , or we pay some zf ≤ yf prior to the first
facility, then pay at least (y − z)f for the remaining facilities. The probability of paying zf for the
first facility is bounded by e−zdz, so we can write:

Pr[C > yf] ≤ e−y +
∫ y

0

e−ze(x−1) ln γ+(z−y)(1−1/γ)dz

Pr[C > yf] ≤ e−y + e(x−1) ln γ−y(1−1/γ)

∫ y

0

e−z/γdz

Pr[C > yf] ≤ e−y + γe(x−1) ln γ−y(1−1/γ)(1− e−y/γ)

Pr[C > yf] ≤ ex ln γ−y(1−1/γ) + e−y − ex ln γ−y

The last two terms sum to at most zero, which completes the induction. We now wish to bound the
probability of exceeding 1 + ε times expectation. We set y = x(1 + ε) and γ = 1 + ε to get the
expression claimed in the lemma.

We now bound the probability of exceeding the expectation for the overall algorithm of many phases.
Lemma 2. Suppose we have some initial facility cost f0 and initial facilities, and we run online
facility location until we open x additional facilities. We then increase the facility cost to βf0 and
continue until we open xmore facilities. This process continues until we open x facilities with facility
cost some f each. Let C be the total service cost induced by this process. Then E[C] ≤ xf β

β−1 and

Pr[C > xf(1 + ε) β
β−1] decreases exponentially with x.

Proof. The expectation follows simply from applying linearity of expectation to the result of lemma
1. Consider the time period when our facility cost was f

βi for some i. Did we pay more than
xf
βi + εxf(β−β1/2)

(βi/2)(β−1)
? If no time period involved paying more than this amount, we can sum the cost

over time periods to obtain a bound of

C ≤ xfβ

β − 1
+ εxf

β − β1/2

β − 1
β1/2

β1/2 − 1
≤ xfβ

β − 1
(1 + ε)

For the time period when the facility cost is f
βi , exceeding this bound would mean that we exceeded

the expected cost times 1 + ε (β−β1/2)(βi/2)
β−1 . Now we can bound the probability that there exists any

time period when we exceeded the bound by applying lemma 1 along with the union bound.

10

The result of lemma 2 implies that the probability of substantially exceeding the expected cost will
be exponentially small in the number of means. Since we will be selecting a number of means x =
Θ(k log n), this means the probability of “error” will be polynomial in 1/n, for a “high probability”
of success.

B Proof of Theorem 2

Here we will show that the algorithm is very likely to halt with f ≤ O(C∗)β
κ . Combining this result

with theorem 1 will give bounds on our approximation ratio (with high probability). We will first
show that when the algorithm raises the facility cost to f , there is very likely to be a solution with
bounded service cost.

Lemma 3. Consider the set of weighted means and additional points from the stream to be read
when the algorithm first increases the service cost to f . With high probability, there is a k-means
solution on these points of cost at most C∗ + fκ

β−1 .

Proof. Let Ĉi be the service cost of assigning all points read from the stream when the facility cost
was at most βi to their facilities at that time. Let Ki be the set of facilities of cost βi. Let Ci be
the service cost of the assignments made during the time when facilities cost βi. We observe that
C0 = Ĉ0 trivially. For later phases, we observe that the cost of assigning a set of points to some
mean y is at most the cost of assigning the same set of points to their center of mass, plus the distance
from that center of mass to y (weighted by the number of points). For points read prior to phase i, the
cost to assign them to their center of mass is at most Ĉi−1. The term Ci accounts for the (weighted)
cost of assigning these centers of mass to their new facilities, plus the cost of assigning newly read
points to their facilities. We conclude that Ĉi ≤ Ĉi−1 + Ci and thus by induction Ĉi ≤ Σj≤iCj .
We now apply lemma 2 to see that the total cost of assigning points read while the facility cost is at
most f/β to their facilities is at most fκ

β−1 . Reassigning these points to the centers of mass of their
clusters only reduces cost.

We now consider the cost of assigning these centers of mass, plus any unread points, to the optimum
k-means. This cost should not exceed the total cost of mapping the original points to their centers of
mass, plus the cost of clustering unread points. The former is at most fk logn

β−1 from before, and the
latter is at mostC∗ for obvious reasons. Combining these gives the bound claimed in the lemma.

We now want to show that the algorithm actually halts at a reasonable time. Consider the algorithm
running with facility cost f . We look at each optimum cluster and divide it into regions. The first
region has the 1 − (1/∆) points of the optimum cluster closest to the facility, the next region has
the next (1/∆)(1− 1/∆) points, and so forth. The total number of regions is thus at most k log∆ n.
We’d like to bound the number of facilities constructed here. The algorithm can construct at most
k log∆ n “first” facilities for each region. Let s∗x,i be the total optimum service cost for the i’th
closest region to optimum facility x. Once a facility has been opened in the i’th closest region to
facility x, the remaining points from that region can be dealt with for service cost at most twice the
sum of their optimum service cost and the maximum service cost in that region (by 2-approximate
triangle inequality on k-means distance-squared cost). It follows that the total service cost paid by
our algorithm for these points is sx,i ≤ 2∆s∗x,i+1 + 2s∗x,i. The expected number of means generated
from these points is just the total service cost divided by f . We conclude that the total expected
number of means is at most:

k log∆ n+ 2(∆ + 1)(
C∗

f
+

κ

β − 1
)

Setting f > zC∗/κ gives us an expected number of means which is at most:

κ(
k log n
κ log ∆

+
2∆ + 2
z

+
2∆ + 2
β − 1

)

11

We observe that as β and κ grow large, it becomes sufficient to have z > 4. For smaller values (i.e.
κ ≈ k log n, β > 2) we will need a larger (but still constant) value of z. In any case, we should
finish once f > O(C∗/κ) as required. Note that if the expected number of means is a constant
factor smaller than κ, it will follow from applying Chernoff bounds that the probability of exceeding
the expectation is at most 1− 1

poly(n) .

C Integration of Approximate Nearest-Neighbor

C.1 Algorithm for stronger result

We can use the result of [6], with the set of facilities are maintained through the data structure men-
tioned in [26]. We first select ζ hash functions, where ζ = log κ

log(1/g) (where g is a probability bound
on collisions, as specified in [26]). We use the locality sensitive hash family that were developed
based on the Leech Lattice hash functions mentioned in [6].

When a point x is added to K, we must compute H(x) = (h1(x), h2(x), . . . hζ(x)) and store
x at H(x) in a table (we store only non-empty locations). Since we will be performing many
nearest-neighbor computations (and errors will be independent), we will not need to enforce a high-
probability guarantee on each computation separately and can use a single table rather than the
polylog(κ) such tables implicit in [6].

When a point x is first seen, we must determine some nearby point (or determine that none are within
f of it). If we knew δ∗x (the optimal distance from x to its nearest neighbor), we would pick Õ(κ%)
points v from B(x, δ∗x) and search buckets H(v), where % = ξ

log(1/g) , where ξ is the entropy of

the hash values based on the query point. This takes Õ(κ%) time. Alternately, we can use Õ(κ
1

1−%)
space for query time Õ(d).

However, because we don’t know δ∗x, we must guess it. To solve this, we add the constraint that if
δx <

f
n , we will always service the point (this can add only one f in total to the service cost). We

then know we only need to find δ ∈ [f/n, f]. This can be accomplished with a binary search in log n
time; this replaces the k log n in the runtime with (log n)(log k + log log n). For k > log log n, this
does improve the running-time result.

C.2 Proof of Theorem 4

Suppose that at some point in the algorithm we have f > zC∗/κ. Then our expected number of
means (as in the proof of theorem 2) is at most:

κ(
k log n
κ log ∆

+
(2∆ + 2)ν2

z
+

(2∆ + 2)ν2

β − 1
)

With appropriately large constant settings of z, κ, and β, we can conclude that the expected number
of means is a constant times smaller than κ. However, we can no longer apply Chernoff bounds
because the errors in distance measurements are not independent. Instead we conclude that there is
a constant probability to halt at this phase. Now consider a phase where f > βizC∗/κ; applying
Markov’s inequality, our probability of halting at this phase (if we have not halted prior to the
phase) will be at least 1 − 1

2βi . Combining these terms, we conclude that we should halt at the
phase where f > βizC∗/κ with probability (1 − 1

2βi)(1
(2β)i−1). In this case our expected cost is

βizC∗ β
β−1 , so we can combine terms and solve the geometric sum to bound our cost by O(β). This

is a potentially large constant, but our performance in practice should be better since we assumed
worst-case correlations in the distance measurement errors.

12

D Further Modifications

D.1 Parallelism

We considered re-introducing parallel invocations of online facility location. Unlike [11], who did
this for probability guarantees, we do this to minimize the chance of overshooting the best facility
cost. Furthermore, we allow each to run independently, and with a different starting facility cost. We
run these until the stream is exhausted, and keep the sketch belonging to the instance with smaller
final facility cost. This should help us avoid the situation that hurt our approximation guarantee in
Theorem 3. We tested this by having two invocations, one with the normal starting facility cost, and
the other with

√
β times that amount. The differences in cost due to this approach were minimal,

suggesting that it doesn’t help significantly in practice. The results of some experiments of this type
are shown in Figures 13 and 14 (next section).

D.2 Value of β

To some extent, the value of the β parameter in our algorithm is the last remnant of [9]’s encoding
of worst-case behavior. We ran some cases again with β = 4 (instead of their β ≈ 77.3); this
caused a larger amount of time to be used, although for small memory availability, it was also more
accurate. The time increase is hardly surprising, as a smaller β leads to a smaller facility cost in
each phase, and thus more facilities and more phase transitions. The improved accuracy implies that
[9]’s value of β causes an overshoot of the best facility cost in small memory cases. The results of
some experiments of this type are shown in Figures 13 and 14 (next section).

13

E Additional Experimental Results

Figure 9: Census Data, k=19, cost Figure 10: Census Data, k=19, time

Figure 11: Census Data, k=24, cost Figure 12: Census Data, k=24, time

Figure 13: Census Data, k=12, cost; additional
trials

Figure 14: Census Data, k=12, time; additional
trials

14

