Student Misconceptions of Dynamic Programming: A Replication
Study

Michael Shindler®* and Natalia Pinpin® and Mia Markovic* and Frederick Reiber®
and Jee Hoon Kim? and Giles Pierre Nunez Carlos® and Mine Dogucu® and Mark
Hong® and Michael Luu® and Brian Anderson® and Aaron Cote® and Matthew
Ferland® and Palak Jain® and Tyler LaBonte® and Leena Mathur® and Ryan
Moreno® and Ryan Sakuma?

aUniversity of California, Irvine; PUniversity of Southern California; ®University of
Wisconsin-Madison

ARTICLE HISTORY
Compiled May 11, 2022

ABSTRACT

Background and Context: In this study, we replicated and expanded the work
of Zehra et al. (2018), which studied how well students learn dynamic programming,
a notoriously difficult topic for students in a core algorithms class (Enstrom and
Kann, 2017). Their study interviewed a number of students at one university in
a single term. We expanded on these results by recruiting a larger sample size of
students, over several terms, in both large public and private universities as well as
liberal arts colleges.

Objective: Our aim was to investigate whether the results of Zehra et al. (2018)
generalized to other universities and also to larger groups of students.

Method: Our methodology was similar to theirs: we interviewed students who
completed the Divide-and-Conquer and Dynamic Programming portions of their
undergraduate algorithms class, asking them to solve problems that required one of
those techniques without telling them which they needed. We observed the students’
problem solving process to glean insight into how students tackle these problems.

Findings: We found that students generally struggle in three main ways, those
being “technique selection,” “recurrence building,” and “inefficient implementa-
tions.” We then explored these themes and specific misconceptions qualitatively.
We observed that the misconceptions found by Zehra et al. (2018) generalized to
the larger sample of students.

Implications Our findings demonstrate areas in which students struggle, paving
way for better algorithms education by means of identifying areas of common weak-
ness to draw the focus of instructors.

KEYWORDS
Replication study; dynamic programming; algorithms education

1. Introduction

In this study, we replicated the work of (Zehra et al., 2018), as there has not been
extensive research in algorithms education, such as student attainment in complexity
analysis, divide-and-conquer, and, most notably for this paper, dynamic programming

CONTACT Michael Shindler Email: mikesQuci.edu

(DP). In Zehra et al., they investigated student misconceptions about dynamic pro-
gramming (Zehra et al., 2018). We performed this replication study because DP is
particularly difficult for students to learn (Enstrom and Kann, 2017), and while many
works have studied students’ thought processes in solving algorithms problems, few
have examined DP misconceptions specifically. We believe Zehra et al.’s unique fo-
cus on DP misconceptions is a valuable research direction which merits large-scale
replication. We believe DP is important because it is one of the few algorithm design
techniques that can take problems with an exponentially large problem space and pro-
duce polynomial time algorithms (Goodrich and Tamassia, 2014). The technique, and
the algorithms produced by it, is used in a variety of fields outside of computer science
(Erickson, 2019). For these reasons, it is a core topic in undergraduate algorithms
courses.

In this paper, we present our findings in replicating and extending Zehra et al.
(2018). In the original study, a small research team conducted 14 think-aloud inter-
views at a North American research university with students who had recently learned
DP. Each interview was administered by two researchers, with one researcher guiding
the interview and the other taking notes. Participants were asked to solve a series of
algorithm design problems, including both DP and non-DP questions. Each interview
was then individually analyzed for DP misconceptions by the two researchers. Fol-
lowing this analysis, both researchers discussed the found misconceptions to reach a
consensus. The researchers grouped these misconceptions into broader themes.

The original study had a low sample size of 14 students from only one university.
We have expanded the study to include 65 students from 15 universities with vary-
ing demographics. Due to the COVID-19 pandemic, we conducted the interviews via
remote conferencing.

We hypothesized that our findings would validate the previously identified student
misconceptions in DP. Additionally, by interviewing more students across a variety
of universities, we expected to discover new misconceptions and come to a better
understanding of how widespread each misconception is. By expanding our sample,
we sought to not only provide a more representative study, but also find out how
accurately students identify DP problems, investigate what mistakes students make
when implementing DP, and detect patterns between these misconceptions.

Our results can be summarized as follows. First, students struggled with properly
identifying when DP is an appropriate technique, and often chose to use a greedy
heuristic instead. Second, when students did select to use DP, they most often strug-
gled with building the recurrence relationship. Finally, we explored if there was any
connection between misconceptions and basic demographic information, like the uni-
versity attended or the number of years the student had taken university-level com-
puter science courses.

In Section 2, we give a review of the relevant literature pertaining to DP and concept
inventories. Section 3 contains the full interview process as well as slight differences
between our process and that of Zehra et al. (2018). Section 4 explains how our study
was preregistered with the journal and describes any changes between the preregis-
tration approved and final methods. Section 5 details the results of the paper and
provides qualitative analysis of the data. Section 6 groups the found misconceptions
into themes and provides examples of student mistakes. In Section 7, we compare our
results with the original study, and in Section 8 we discuss improvements for future
studies.

2. Literature Review

One of the primary motivations of this study was to provide a rigorous foundation for
the study of algorithms education. Prior to the publication of Zehra et al. (2018), few
studies had investigated students’ misconceptions about dynamic programming.

In Danielsiek et al. (2012), researchers utilized both multiple choice assessments
and think-aloud interviews to identify misconceptions about algorithms and data
structures. Part of these interviews required students to complete partial pseudocode
for two DP problems. The researchers found that almost all students struggled with
the problems presented, and they exhibited a wide variety of DP misconceptions,
such as conflating DP with divide-and-conquer and misinterpreting memoization. The
following academic year, a subset of the same authors performed a similar study,
Paul and Vahrenhold (2013), to validate the results of Danielsiek et al. (2012) by
re-administering the same two DP problems on a larger sample of students. They ex-
amined if the conceptual difficulty of the DP problems influenced the identified DP
misconceptions, namely if students were able to guess correct answers based on deduc-
tion even if they did not have an actual understanding of DP. The results confirmed
that the problems are in fact sufficient for detecting DP misconceptions and can cross-
validate the misconceptions found in each. They also constructed a multiple choice
test and a fill-in-the-blank test to detect when students are likely to conflate divide-
and-conquer and DP. By assessing the tests, they discovered that the multiple choice
test is useful for gauging passive knowledge on the topic while the fill-in-the-blank test
evaluates students’ active knowledge and can be used to verify the results of the first
test.

Additional papers have investigated the difficulty of DP, but not in the lens of stu-
dent misconceptions. Enstrom (2013) examined the effectiveness of methods for teach-
ing DP in algorithms courses, including clicker questions, labs, and visualization tools.
Through self-efficacy reports and course surveys, students expressed that the most
challenging aspects of DP were finding an “evaluation order” for a recurrence relation
and designing a complete DP algorithm on their own. In a similar method of redesign-
ing teaching activities, approaches, and objectives, Enstrom and Kann (2017) looked
at the difficulties of teaching DP and NP-completeness through a multi-year study in
an advanced CS theory course, finding successful results from adding programming
assignments, clicker questions, and pattern-oriented instruction among other things.

Other works have developed the notion of a concept inventory, a course-level bank
of meticulously crafted content questions, from which student answers can identify
common misconceptions. A key part of creating concept inventories is data collection.
By leveraging misconceptions of students taking the same course, we can formulate
questions that properly target these issues in student learning (Taylor et al., 2020).
There has been preliminary work in building concept inventories for topics related to
DP such as algorithm analysis (Farghally et al., 2017) and recursion (Hamouda et al.,
2017).

The development of concept inventories for basic data structures has received sig-
nificantly more research than concept inventories for algorithms. Taylor et al. (2020)
provides an outline on how to develop a concept inventory, citing the previous work of
Porter et al. (2018) about basic data structures as a practical example. One motivation
for identifying DP misconceptions is building a necessary foundation for an algorithms
concept inventory. Other studies have found misconceptions in and developed concept
inventory questions for specific data structures and elementary algorithms, such as
binary search trees and hash tables (Karpierz and Wolfman, 2014). However, aside

from Danielsiek et al. (2012), little work has been done to develop concept inventory
questions related to DP and other related algorithms topics.

3. Method

In this section, we detail our process for conducting the study. This includes the
process of gathering volunteers, conducting the interview, and handling the data. Most
importantly, we also discuss how our version of the study differs from the original Zehra
et al. (2018) paper.

3.1. Participants

The process of gathering participants spanned from March through August of 2021.
Our target demographic for participants was students currently enrolled in an un-
dergraduate algorithms course that covered DP and had completed the DP unit. We
began our recruitment process by researching which US universities teach undergrad-
uate algorithms courses. By searching through course catalogs, course descriptions,
and syllabuses, we determined which algorithms courses cover DP. We contacted pro-
fessors of those courses via email to introduce our study and ask them to forward an
announcement to their students to recruit participants.

This announcement described the basic logistics of the interview, informed students
that they would be compensated with a $20 Amazon gift card, and provided a link to
a Qualtrics form where they could sign up to participate. In this pre-interview survey,
students provided information about their current algorithms course to ensure they fit
into our target demographic, their availability in order to schedule an interview, and
additional course-related data to be used in our study analysis. We then corresponded
with students via email to confirm a date and time for their interview. Neither the
announcement nor the pre-interview survey mentioned that our study was focusing on
DP, only mentioning the interview was for an algorithms study.

3.2. Conducting the Interview

All interviews took place virtually on Zoom, with two interviewers from our research
group and one interviewee. For each interview, the interviewers were unaffiliated with
the university the interviewee was from to preserve anonymity and avoid bias. Each
interview lasted at most 1 hour and 15 minutes.

We began each interview with an icebreaker phase where interviewers spent approx-
imately five minutes introducing themselves to the student and chatting with them
about anything unrelated to the study. We wanted students to feel comfortable talk-
ing with us, in the hopes that they would be more comfortable sharing their solutions
aloud in the think-aloud interview. Next, we began the introductory phase in which
we addressed anonymity in the study, explaining that the student’s professor would
not be informed of their participation in the study, and established the logistics of the
interview.

With few exceptions, each student was given a sequence of three questions to work
through, out of a set of five possible questions. These five questions were taken from
Zehra et al. (2018), with slight modifications (as detailed in Section 3.5) for clarity.
Questions 1-3 are DP problems; questions 4 and 5 do not require DP in the solution.

Question 1

DP is not attempted
Question 2 Question 4
Correct or decent progress made

DP is jattempted Solution|is incorrect

Question 3 Question 5

Figure 1. Flowchart for which 3 questions were asked during the interview

Refer to Appendix A for the full questions.

As illustrated in Figure 1, the sequence of questions was determined based on the
student’s progress on each question. Every student started with Q1. If the student
correctly identified DP as the programming paradigm and produced a somewhat cor-
rect solution, they moved on to the next DP problem (i.e. from Q1 to Q2 or from
Q2 to Q3). If not, they moved on to Q4. They continued to Q2 if they made decent
progress on or solved Q4, or Q5 otherwise. Q4 and Q5 were meant to be used as morale
boosters, with Q5 being easier than Q4. This way, students would walk away from the
interview feeling confident that they solved at least one problem correctly. There were
occasional variations on this sequence due to timing constraints or rare interviewer
errors that did not affect the integrity of the study.

The students were given the choice to work through the questions on a collaborative
text document from codeshare.io or to connect a tablet to the Zoom meeting and work
on their choice of whiteboard application. In both scenarios, the student shared their
screen so that the interviewers could view their work. As the student worked through
each problem, interviewers turned off their Zoom video and audio to avoid influencing
the student. Interviewers only intervened to answer clarifying questions about the
problem or ask the student to elaborate on their thought process if they fell silent for
a long period of time. Interviewers would not, however, provide hints if the student
got stuck.

Each interview ended with a reflection phase in which the interviewers asked open-
ended questions to clarify the student’s thought process or glean additional information
about their understanding of DP. Students were emailed their compensation at the
conclusion of the interview.

3.3. Tagging Data

To preserve anonymity, each interview was transcribed by a researcher who was not af-
filiated with the university of the interviewee. The transcriber, while viewing a record-
ing of the interview, created a verbatim transcript from the auto-generated Zoom

transcript with identifying details anonymized, which includes names of the intervie-
wee, interviewers, and other individuals, course numbers, pronouns, school names and
other information. The transcript also included images of the interviewee’s work for
each problem, as well as additional notes and images to provide context to visual
events or unclear language and references made during the interview.

Once transcripts were anonymized, they were assigned to groups of three researchers.
We ensured that no group tagged more than two transcripts together, and we balanced
the number of times each researcher worked together to the greatest extent possible.
In most cases, the tagging group included one researcher who had conducted the
interview. For a particular transcript, one of the three taggers was assigned the role of
verifier, checking that no identifying details were left in the transcript before passing
it on to the other group members for tagging. Any transcripts found to have errors
were fixed and then reassigned to a new group.

Initially, all taggers tagged the interview transcript individually. As the taggers
read through the transcripts, they noted any misconceptions they found, including
where in the transcript this misconception occurred, for which question number, and
whether the student overcame the misconception. Taggers were not given a list of
misconceptions or guidance on what to look for to determine if something was a
misconception or not; they were expected to analyze the transcript independently in
order to determine errors and misconceptions. This was done in order to determine if
we could get similar results to Zehra et al. (2018) independently. To this end, we also
ensured that the majority of researchers doing the tagging had not read the original
study. Generally, taggers tagged misconceptions only if they felt that the student spent
a significant amount of time towards using that misconception in a solution, which
would vary from transcript to transcript. Taggers were advised not to tag multiple
transcripts in one sitting and to take breaks in between tagging in order to discourage
rater drift.

3.4. Determining Misconceptions

After individual tagging was completed, the taggers for that transcript held a meeting
to discuss the misconceptions they found for each question and where. If there were any
differences between taggers, a discussion was held to determine if the misconception
was valid and not a misunderstanding on the part of the tagger, or if it was significant
enough to be noted. In addition, for each question, the taggers jointly graded the
student’s progress on a scale of 0 to 1 using an itemized grading rubric. This meeting
was also held with a referee, a researcher who did not transcribe the interview. The
referee provided their outside opinion if there were any major discrepancies for which
the taggers could not come to a consensus on their own.

Once all the transcripts were tagged, the entire research group came together to
review the misconceptions, pruning a few that were not DP misconceptions. Miscon-
ception codes were created by clustering similar misconceptions and defining distinct
clusters. After all the codes were created, they were grouped into themes.

3.5. Differences From Original Study

While we tried to stay true to the original study, we made some changes to the original
methodology. Due to the COVID-19 pandemic, we were unable to conduct in-person
interviews, so the interviews were conducted over Zoom. This allowed us to interview

a more diverse group of students, as we were able to interview students from a variety
of schools without worrying about location and travel. Another difference is that once
the interview started, we used a screen recording to capture the student’s work, and
we gave them the choice of writing on a tablet or using codeshare.io, since we could
not ensure that each student had a tablet to use. This is in contrast to the original
study in which each student used a smart pen.

There were also several changes made to the interview process. For the DP problems,
Zehra et al. (2018) asked each student 3 questions: what the appropriate algorithmic
design technique was, the subproblems and the recurrence that relates to this problem,
and the pseudocode of a bottom-up DP solution, as these questions mirrored the “DP
recipe” that was taught in their sample university’s algorithms course. This was easier
for the original study to standardize since it was hosted at one university. However,
not every university follows the same “DP recipe,” so we decided to forgo asking these
specific questions. Instead, we avoided any explicit mention of DP, only informing
students that this was an algorithmic study and asking them to provide their solutions.
We also changed the order of the original questions, swapping Q2 (Consecutive 1’s)
with Q3 (Maximum Pixel Sum), which we also renamed to Minimum Pixel Sum due
to a typo in the original paper. We swapped the order because we felt that students
would be able to make more progress on Minimum Pixel Sum than Consecutive 1’s
and wanted to present that question earlier. Furthermore, we made the Minimum Pixel
Sum prompt more specific so that each step could only move right or down. We did so
as there is a natural greedy algorithm. Finally, we also included example inputs and
outputs with each question for additional clarity.

Finally, a major difference between our study and the original is that the interviewers
in the original study directed struggling students to a DP solution if they were unable
to identify DP after a significant portion of time, but we decided against doing this.
Because we had significantly more interviewers than the original study, we felt it
would not be possible to standardize any hint giving. Therefore, we opted to give
clarifications, but no hints. When we talked to the original authors, they also suggested
that we give no hints, as this would influence student decisions and bias our data.
Finally, we did not guarantee that students were given at least two DP problems, as
they were in the original study. We did this to guarantee that every student walked
away from the interview having completed at least one problem successfully.

We also made several changes to the original study’s data analysis step. One such
change was our decision to exclude the confidence scores altogether. We came to this
decision because papers such as Enstrom and Kann (2017) call into question the confi-
dence score and related self-efficacy scores as a valid metric for student understanding.
When tagging the transcripts, since the original study only had two interviewers, both
interviewers tagged all of their own interviews. In contrast, we had a subset of three
researchers tag each interview, and we anonymized the interviews to reduce bias. We
followed a similar technique for grading progress on a 0 to 1 scale. However, we chose
a 0 to mean that the student did not attempt a DP solution on Q1-3, and a lack of
understanding of the question for Q4 and Q5, whereas the original study had 0 mean
a lack of understanding of the question for Q1-5.

4. Preregistration

For this special issue journal, our study was preregistered, meaning that it was accepted
into the journal prior to when the study was conducted. To be selected for the journal,

we submitted a stage 1 manuscript that outlined our plan for the method and analysis.
A panel of reviewers provided feedback on our proposal, allowing us to make necessary
changes to the method before the collection of any data for the study.

Since preregistration with the journal, we have made some minor edits to our
method. Our preregistered interview procedure did not have any major changes, with
the only minor adjustment of moving the icebreaker section before asking for consent
to record instead of after the recording began. Thus, this allowed the interviewees to
feel more at ease to talk without the worry of being immediately recorded. In the orig-
inal method, we did not know how we would provide compensation for interviewees,
as we did not have enough funding to compensate each participant at the time of pre-
registration. We thought of offering extra credit for participation or creating a raffle
for gift cards using the funds we did have. However, we were able to procure funding
so we could provide each participant with a $20 Amazon gift card for participation.

We had a few more inconsistencies between our preregistration and the actual tag-
ging and analysis procedures. Originally, we wanted a group of taggers who were
unassociated with the interview to perform the tagging and transcription, after which
all data would be anonymized and coded by a unique ID. However, we felt like this
would be a poor use of time to have each interview transcribed multiple times. We also
wanted to make sure there would be no implicit bias from the taggers if they could
hear and see the interviewee while tagging. We instead chose a designated transcriber
per interview, who was not an original interviewer and could provide an anonymized
transcript with all the relevant work from the interviewee. This means that we could
use the original interviewers as taggers, and as such we attempted to get at least one
of the interviewers from a certain interview to tag it. We also originally stated that
taggers would cluster the misconception codes into themes before meeting up with
other taggers, yet we decided to form codes and themes after most of the interviews
were finished tagging. Reviewers of the original proposal suggested that we should not
use the misconception codes from Zehra et al. (2018), as that would interfere with
the replication and may lead to confirmation bias in attempting to achieve similar
results. To this extent, we also encouraged new researchers to not read the results of
the original paper so that they could develop an unbiased set of misconceptions. This
let us get a better idea of how many unique misconceptions there were without feeling
forced into a pre-created set of misconceptions, which resulted in waiting to form the
themes until we knew which codes we would use and how they may fit together.

When gathering student participants, we collected information on how many years
participants have taken computer science courses at the university level. This was
not stated in our original proposal and was an exploratory analysis, but we felt the
information gathered through our analysis was worth reporting. Lastly, our proposal
stated that we would provide an inter-rater reliability coefficient to examine the con-
sistency between taggers. We ended up not including this data as we felt there were
a lot of variables to take into account that could have yielded different results. For
example, when tagging, taggers may have chosen different starting or ending segments
for the same misconception, or they may have correctly identified the same segment
but came to slightly different conclusions about what the participant was trying to
suggest. Therefore, it was difficult to create an inter-rater reliability coefficient that
encapsulated all of these small disparities, and we decided to forgo it, as it was also
not relevant to the work of replicating Zehra et al. (2018).

T# | M# | Misconception # of Students
M1 | Student used a Brute Force Method. 14
M2 | Student used a Greedy Algorithm. 31
TL [M3 | Student used Divide-and-Conquer. 2
Student incorrectly used DP for a problem with-
M4 . 6
out overlapping subproblems.
M5 | Student failed to define correct base case(s). 17
Student failed to identify the overlapping sub-
M6 13
T2 problems.
Student failed to combine overlapping subprob-
M7 . . 5
lems to generate optimal solution.
Student did not use memoization or had repeated
M8 . 11
function calls.
T3 Student stored information that is not used later
M9 . . 13
during the algorithm.
M10 | Student did an extra unnecessary process. 1
Mi1 Student did not use a standard undergraduate 5
T4 programming paradigm.
M12 | Student used the Even-Odd approach on Q1. 3
Student had an incomplete understanding of the
T5 | MI3 definition of DP. 2

Table 1. Student Misconceptions organized into Themes

5. Results

For this section, we will detail the main quantitative results of our study. Each section
answers one of the following research questions:

(1) Do students select the correct algorithm technique when presented with a DP
problem?

(2) After properly identifying a problem as DP, what misconceptions about dynamic
programming do students have and how common are they?

(3) Are certain DP misconceptions correlated with university, years in computer
science, and expected grade in algorithms course?

We will also provide exact numerical results of the misconceptions encountered during
our 65 interviews. It is important to note that our analysis is based on the total
number of misconception occurrences, not misconceptions by a particular student.
In other words, if a student demonstrated the same misconception in two different
questions, both misconceptions were counted. However, because the original work uses
the number of students for generating statistics, we will also provide that data, which
can be seen in Table 1 along with how the misconceptions were divided into themes.

5.1. Choosing the Correct Programming Paradigm

The first challenge in solving a DP problem is properly identifying it as such. Out of the
196 questions asked, 140 of the questions were Q1-3, which are optimally solved with

a DP approach. Out of these 140 questions, students attempted a non-DP solution 71
times. These students used a greedy technique (M2) most frequently, with 35 (56%)
instances of this misconception. The second most frequent was a brute force (M1) ap-
proach, with 17 (27%) occurrences. Five (8%) times, students attempted to solve the
problem in a manner that did not use a standard technique taught in an undergrad-
uate algorithms course (M11). We also had three (5%) instances of the “Even-Odd”
approach for Q1 (M12). In this answer, students simply created two possible solutions,
one with all the even index coins and one with all the odd index coins. They then re-
turned the set with the highest sum. Divide-and-conquer (M3) appeared for two (3%)
occurrences. It is also important to note that, although not a misconception, students
used a feasible non-DP approach (MO0) 9 times, such as a graph algorithm for Q2.
These numbers are not factored into the percentages as they present a valid approach
to solving the problem. Refer to Table 2 for the complete results.

From this data, we can conclude that students most often conflate DP with prob-
lems that can be solved using a greedy heuristic. Intuitively, this makes sense as it
is often difficult to tell when a greedy approach will not find the optimal solution.
Intuition also backs a brute force method as the second most common non-DP ap-
proach since a brute force method is always guaranteed to find a correct solution. Use
of both of these approaches imply that students struggled at identifying when a given
problem has overlapping subproblems. It is also interesting to look at which questions
students made certain misconceptions on. For example, in Q1, 64% of students who
implemented the wrong paradigm used a greedy approach, while this number is 71%
for Q2, and 0% for Q3. This may imply that students are more likely to conflate a
greedy heuristic with problems of path nature versus a more standard constrained
subset optimization problem. As for Q3, the 0% greedy percentage makes sense, as
there is no natural way to define a greedy heuristic. This also explains why Q3 has a
much higher percentage of brute force (80%), as students were unable to find a more
efficient approach.

We also tracked which of these misconceptions were overcome during the inter-
view process. Of these 62 instances of using an incorrect, non-DP approach, students
overcame their misconception 13 (21%) times, ultimately choosing to use DP instead
of the incorrect programming paradigm. Most commonly, students who used a brute
force method overcame their misconception five out of 17 (29%) times. One out of five
(20%) decided to use DP after initially not using a standard undergraduate program-
ming paradigm. Six out of 35 (17%) times students overcame their attempt at using a
greedy solution. For students who implemented a greedy solution, used a divide-and-
conquer approach, or used the Even-Odd approach to Q1, this implies that students
are not properly identifying counterexamples where their algorithm may fail. Finally,
the higher percentage of students who changed away from a brute force technique sug-
gests that students are more successful at finding more efficient solutions than finding
counterexamples to incorrect solutions. For the full results, see Table 2.

5.2. Implementation of DP

Out of the 140 DP questions asked, students decided on a DP solution but had mis-
conceptions about its implementation 66 times. Students most commonly did not use
the correct base case(s) (M5) or did not determine the proper overlapping subprob-
lem (M6), each of which occurred 17 (26%) times. At a close second, there were 15
(22%) instances of students memoizing values that were not useful in future calcu-

10

Q# Misconceptions | MO | M1 | M2 | M3 | M11 | M12
Q1 # Occurrences 0 5 25 | 2 4 3

Overcame 0 0 5 1 0
Q2 # Occurrences 8 4 10 | - - -

Overcame 1 3 1 - - -
Q3 # Occurrences 1 8 - - 1 -

Overcame 1 2 - - 1 -
Total # Occurrences 9 17 |35 |2 5 3

Overcame 2 5 6 1 1 0

Table 2. Misconceptions about selecting the incorrect programming paradigm for each DP question

Q# Misconceptions | M5 | M6 | M7 | M8 | M9 | M10
Q1 # Occurrences 9 9 2 9 7 1

Overcame 2 5 1 2 1 1
Q2 # Occurrences 7 4 3 2 1 -

Overcame 0 0 0 0 1 -
Q3 # Occurrences 1 4 - - 7 -

Overcame 0 1 - - 2 -
Total # Occurrences 17 |17 |5 11 15 1

Overcame 2 6 1 2 4 1

Table 3. Misconceptions about the implementation of DP for each DP question

lations (M9). In 11 (17%) occurrences, students did not use memoization properly,
unnecessarily repeating function calls (M8). There were five (8%) instances of stu-
dents struggling to combine their subproblems to create the optimal solution at each
step (M7). Full results can be seen in Table 3.

Students overcame 16 of the above instances of misconceptions. They most often
overcame misconceptions about their incorrect subproblem, with six out of 17 (35%)
eventually determining the proper subproblem. Four out of 15 (27%) times, students
overcame their memoization of unnecessary values, and two out of 11 (18%) times,
students overcame their misconception of not utilizing memoization. One out of five
(20%) occurrences of incorrectly combining subproblems was overcome. Only two of
the 17 (12%) of the instances of base case misconceptions were overcome.

Considering that the two most common misconceptions were problems with the
base case and issues with overlapping subproblems, we see that students’ biggest hur-
dle to fully solving a DP question is developing the recurrence relation. This seems
to corroborate our earlier conclusion that students have trouble identifying overlap-
ping subproblems. Beyond this, students also had significant issues properly applying
memoization, with some students storing too much data and others not enough. This
implies that students may not fully understand the structure of the recursive calls of
their algorithm, as they fail to properly identify which function calls will be repeated.
Finally, we see that students generally did quite well when it came to determining
the optimal solution at a given step. Thus, the hardest part for students is identifying
the overlapping subproblems. Once the subproblems have been correctly identified,
students are generally able to combine them to find the optimal solution.

11

5.3. Correlation With Other Data

In the pre-interview survey, we gathered additional data about the students including
the university they were attending and the number of years they had been taking
university-level computer science courses. Here, we examine the correlation between
these statistics and the misconceptions students exhibited.

5.8.1. University

Our sample consists of students from 15 different universities across the US. See Table
4 for the breakdown of universities. A comparison of misconceptions exhibited by
students of each university can be seen in Figure 2.

5.8.2. Years Taking University-Level Computer Science Courses

We opted to ask how many years students have been taking computer science courses
at the university level instead of their year at university because some students may
not have been taking computer science courses for their entire time there (e.g., if they
transferred into a computer science major) or took university level courses elsewhere
(e.g., at a community college or AP courses). We had six students with one year of
computer science courses, 43 with two years, 13 with three years, two with four years,
and one with five or more years in our sample. See Figure 3 for the analysis.

Students who had been taking CS courses for only one year struggled the most with
choosing the correct programming paradigm for DP questions as well as defining the
correct base cases. They also struggled with incorrect use of a greedy approach, which
all students had difficulty with, particularly those with three years of CS courses.
Students with two years of CS courses represented the majority of the sample and had
the most trouble with identifying the overlapping subproblems and determining what
information to store in memoization. In addition to using a greedy approach in place
of DP, students with three years of CS courses had the highest proportion of students
who did not utilize memoization and who attempted the Even-Odd method for Q1. We
cannot draw any meaningful conclusions about students who have taken CS courses
for four or more years because only three students represented this category and thus
have left this data out of the figure.

5.4. Student Progress on Questions

Based on a grading rubric per question, taggers scored the students’ progress on each
question they were given on a scale of 0 to 1. With these scores, we can look at the
students’ progress on, or correct conceptions about, these questions.

Zehra et al. (2018) examined the progress students made in Q1 (Coin Row) versus
Q3 (Consecutive 1’s). They speculated that, although the questions have “similar re-
cursive decompositions,” the “abstractness” of Consecutive 1’s makes it more difficult
to solve than Coin Row, which is a more “concrete” question. Our results support that
hypothesis. Of the 26 students who received both questions, the average score on Coin
Row was 0.78 while the average score on Consecutive 1’s was 0.58. Furthermore, all of
the students who received Consecutive 1’s also received Minimum Pixel Sum, which
is another “concrete” DP question, and their average score was 0.78.

We also considered whether the order that the questions were presented affected
the students’ performances on the DP questions. Everyone received Q1 first, and the
only students who saw Q3 were those who received questions in the order Q1, Q2, Q3.

12

University | # of Students
A 1
B 6
C 1
D 3
E 1
F 7
G 1
H 3
I 21
J 3
K 4
L 2
M 1
N 5
@) 6

Table 4. Codes for universities along with the number of students interviewed from the institution

School ID

- I @@ m m O O @

oz rr X <

OO
Ko
OOO0K

students per misconception / # students per school

1 2 3 4 5 6 7 8 9 10 11 12 13
Misconception code

Figure 2. Normalized number of students for each misconception per University

13

1.01

Years taking university-level CS courses

. 1 year
|:| 2 years

|:|3years
05 .
IH] TI.

1 2 3 4 5 6 7 8 9 10 11 12 13
Misconception code

students per misconception / # students per year

Figure 3. Normalized number of students for each misconception per year of CS courses

Earlier Performance | Average performance on Q4/Q5
Did well on Q1 0.87
Struggled on Q1 0.62
Did well on Q2 0.91
Struggled on Q2 0.71

Table 5. Average score on Q4/Q5 correlated with performance on DP questions

Thus, we can only consider the effect of the order of the questions as it pertains to
student progress on Q2.

In both Zehra et al. (2018) and our study, students who struggled on Q1 were then
given Q4. If they produced a sufficient answer for Q4, they received a DP question
next: Consecutive 1’s for the original and Minimum Pixel Sum for ours. Zehra et al.
(2018) observed that these students typically did well on the Consecutive 1’s, despite
struggling on the first DP question. In our results, the 34 students who got Q2 imme-
diately after Q1 scored a 0.66 on average for Q2; by comparison, the 11 students who
had the sequence Q1, Q4, Q2 scored a 0.36 on average for Q2. In contrast to Zehra
et al. (2018), our data suggests that working on a non-DP question (Q4) before a sec-
ond DP question (Q2) did not assist the student in performing better on the second
DP question. However, since we presented the questions in a different order than the
original study, we cannot examine the effects of solving Q4 before Consecutive 1’s,
the exact scenario considered in Zehra et al. (2018), and further research would be
necessary to draw conclusions.

We also compared the grades students received on the DP questions (Q1 and Q2)
versus the non-DP questions (Q4 and Q5) (Table 5). Based on our grading rubric, we

14

defined a student who “did well” on a DP question as having received a grade greater
than 0.5 and a student who “struggled” on a DP question as having received a grade
less than or equal to 0.5. The five students who did well on Q1 and received Q4 or Q5
had an average of 0.87 on Q4 and Q5 combined. The 31 students who struggled on Q1
and received Q4 or Q5 had an average of 0.62 on Q4 and Q5 combined. For the six
students who did well on Q2 and received Q4 or Q5, the average grade was 0.91 for Q4
and Q5 combined. For the 14 students who struggled with Q2 and received Q4 or Q5,
the average grade was 0.71 for Q4 and Q5 combined. Q3 is not included in this analysis
because none of the students presented with Q3 were presented Q4 or Q5. We can see
that the students who struggled with the DP questions scored significantly higher on
the non-DP questions, even if they scored lower overall than the students who did well
on the DP questions. This indicates that the students who struggled with DP tend to
struggle less with designing and implementing algorithms for programming paradigms
other than DP. It also indicates that students who perform well on DP questions are
more likely to perform better on non-DP questions.

6. Discussion of Themes

We will now discuss the five major themes we found during our analysis of student
misconceptions. We grouped our misconceptions into themes for two reasons. The first
was to validate the results of Zehra et al. (2018). The second was to help provide a
general area in which students tend to fail, as many of our observed misconceptions fall
under broader misconceptions about DP. We also provided quotes from interviews to
help demonstrate students’ misconceptions. For a breakdown on how misconceptions
were grouped, see Table 1.

6.1. Theme 1: Student did not identify when a DP solution is
appropriate.

Some students struggled with determining if a problem required a DP solution, result-
ing in an attempted solution with the incorrect programming paradigm. For the DP
problems Q1-3, students attempted brute force (M1), greedy (M2), and divide-and-
conquer (M3) solutions. A greedy approach was predominant in Q1 and Q2 where the
solution finds a maximum or minimum value, whereas a brute force approach often
occurred in Q3 where the solution requires a count of all valid strings. Divide-and-
conquer was an uncommon choice but appeared in solutions for Q1.

In the majority of these cases, students thought an incorrect programming paradigm
was the optimal method, sometimes even mentioning DP before discarding it. For
example, one student immediately decided on a greedy approach for Q1:

“...the goal is to pick up the maximum value coins, so I think about greedy algorithms
right away, such that you never pick up two adjacent coins. Yeah, this totally seems like
intuitively like a greedy algorithm.”

In some other cases, students attempted DP but struggled with the implementa-
tion, causing their solution to fall under a different programming paradigm. In these
interviews, students’ intentions were to create a DP solution, but they inadvertently
implemented a different paradigm. These students often recognized that their solution
was incorrect but could not figure out how to fix it. One student tried to write an
iterative DP algorithm for Q1 and, after struggling, tried to formulate the recurrence

15

relation by writing a recursive algorithm:

“Well, [the recursive call] just returns the largest element in the new array. So... So... A
perceived greedy approach...[laughs]...for this problem. Just because I don’t know how
to do it any other way.”

Another misconception students exhibited was attempting to use DP for a problem
without overlapping subproblems (M4). For Q4, an optimal solution uses either a linear
traversal of the days or divide-and-conquer. A brute force algorithm also produces a
feasible O(n?) solution. However, DP does not further optimize the solution because
the subproblems (the pairs of minimum and maximum days) do not overlap. One
student thought about utilizing memoization to avoid recalculating subproblems, but
failed to determine how the stored subproblems could be reused:

“I think there is a fact in here somewhere that I did not acknowledge that would have
allowed to like cut down which combinations I could have tried by half or more...I was
thinking, maybe dynamic will be good, because I want to try every combination and
probably store it in a backtrack array...”

Another student defaulted to DP when they observed that the solution of Q4 finds
a maximum value:

“...[Q4] kind of reminded me of [Q1] a little bit, when I first read it. Um, and it just
seemed like the maximize earnings again so that’s why I'd kind of gone with, uh, a
recurrence relation.”

6.2. Theme 2: Student did not recognize the correct recurrence.

The second theme we identified was that students commonly struggled with the re-
currence relation. We split this up into three misconceptions, the first of which was
students failing to identify the overlapping subproblems (M6). In this case, students
were unable to determine which subproblem to use for the recurrence relation. For
example, in Q1, students knew that they could only pick every other coin, but strug-
gled to recognize that they would need to pick the max of the current coin and the
subproblem of the rest of the row starting from two coins away, versus the subproblem
of the row starting from the next coin. One student was able to recognize the need for
subproblems to solve coin row, but fell into this pitfall:

“I’'m not able to see the repeating subproblems. I'm not sure why I’'m not able to see the
repeating subproblems in this case, and that’s not good.”

Another misconception was that students failed to define the correct base case(s)
(M5). This misconception came in a variety of forms. Some students did not define
any base cases or forgot to include some of the base cases (e.g., only including the
base case of taking one coin for Q1, but not including the base case with two coins for
which they should take the larger coin). Another common base case error occurred in
Q2, where some students would assume we would always start in a specific location,
such as starting in the top left of the array.

Lastly, some students failed to properly combine the overlapping subproblems to
generate the optimal solution (M7). The predominant example of this was in Q2,
where students would incorrectly assume the solution would always return from the
bottom corner of the array, or they would make a mistake in taking the minimum
while generating their solution.

16

6.3. Theme 3: Student did not use the most efficient implementation of
DP.

The third theme covered students’ inability to produce the most efficient DP solution
for a problem. This theme describes students who were able to recognize the correct
subproblems and recurrence but created an inefficient solution due to improper use of
memoization or unnecessary additional actions.

The most prominent misconception within this theme arose when students did not
properly use memoization in their solutions (M8). For instance, many students pro-
duced a correct recursive solution for a problem but failed to recognize the need for
memoization. Many students who showcased this misconception did not mention DP
or memoization, suggesting that they may not have considered whether to use memo-
ization. However, there were some occurrences when students explicitly opted to not
perform any memoization, thinking it would not improve their recursive solution. One
student, who correctly implemented a DP solution for Q2, showcased this misconcep-
tion in Q1:

“So [Q2 has] two ways, one that goes right first and goes down and another one to
which is pointless to go down and then go right. So in both ways, we would just do
the calculation for this point two times, so it’s just like redundant. We don’t need to
recalculate if you arrive here, its different...uh...its different ways. But for, uh, the coin
row problem, I think even now we don’t need to recover any point.”

This misconception was also displayed in students who used memoization to store
values from solved subproblems and yet did not refer back to those stored values in
subsequent function calls, leading to a solution that recomputed the memoized values.

A number of students who made use of memoization in their DP solution displayed
another misconception (M9), in which their memoization itself was not efficient and
stored data that was not useful for the problem. This was often seen in the use of
arrays that had an unnecessary dimension, such as a 2D array for Q1 or a 3D array
for Q2, with the additional dimension to the array storing repeated values. We also
had two students mention 2D arrays being frequently used in their class in reference
to their incorporation of a 2D array in their solution for Q1.

Another misconception that caused inefficiency was performing unnecessary actions
they thought would be necessary for DP (M10). This occurred only once, when a
student sought to make use of a combination of a hash table and a priority queue to
memoize their function calls (before eventually opting for a 1D array).

6.4. Theme 4: Student did not use a standardized programming paradigm.

Theme 4 was reserved for students using irregular programming paradigms to solve
the problems. In M11, students did not use any standard undergraduate programming
paradigm. This misconception was almost exclusively related to Q1, for which students
would try to find a pattern of what coins they should and should not take. The most
common pattern for Q1 was an Even-Odd approach (M12), where students would
return the maximum value of either all of the even or all of the odd-index coins. The
other instance we had of this theme was in Q3, where a student briefly considered a
non-deterministic finite automaton based solution.

17

6.5. Theme 5: Student had an incomplete understanding of the definition
of DP.

Theme five describes students who only showed a partial understanding of DP. This
theme has one misconception code (M13) with the same name as the theme. Only two
participants displayed theme five. The first student stated that recursion and dynamic
programming were two explicitly different concepts. The second student stated that
dynamic programming is exclusively used to solve optimization problems.

7. Comparison to Original Study

Zehra et al. (2018) found seven misconceptions which they grouped into three themes.
Below, we discuss our findings in relation to the original study. All of the included
percentages were calculated with the entire sample of students, not per theme. Note
that we did not refer to the misconceptions from the original study when generating
our own misconceptions to ensure our process was independent of the original. In this
section, we will refer to the original study’s misconceptions (M1, M2, M3, M4, M5,
M6, M7) as O1, 02, 03, 04, O5, 06, O7 respectively, for clarity.

7.1. Theme 1: Subproblem Identification

The first theme of Zehra et al. (2018) is Subproblem Identification, which consisted
of two misconceptions. We encompassed this theme in our T2 and T3. The first mis-
conception in the original study is “Student struggles to write iterative code to solve
the problem”! (O1). This misconception is captured in M8 and M9, related to the
absence or misuse of memoization. Zehra et al. (2018) reports that six students were
“unable to justify their array’s dimensions,” especially students who chose a 2D array
because of previous DP examples they had seen. We observed this same behavior in
M9. O1 is also evident in our sample when students wrote a recursive solution but did
not apply memoization to it correctly or at all, resulting in the inability to move from
recursive to iterative code or recognize that a recursive solution would require some
kind of memoization. 50% of students displayed this misconception in Zehra et al.
(2018), whereas 34% of our sample had M8 or M9.

The second misconception in their first theme is “Student struggles to compose
subproblems or define what is meant by ‘subproblems’ ” (02). This misconception is
analogous to our M6, the failure to identify overlapping subproblems. In the original
study, O2 was tied for the most common misconception, appearing with 57% of the
students. By contrast, M6 only appeared in 20% of students in our study.

We observed discrepancies in the rate of students displaying misconceptions M6,
M8, and M9 versus the corresponding misconceptions in Zehra et al. (2018). While the
exact reason for this cannot be determined, it should be noted that we did not redirect
students who used a different programming paradigm to DP for Q1-3. Thus, intuitively,
one would expect to encounter less misconceptions about the implementation of a DP
solution. In fact, 15 out of 65 (23%) of our sample received only one DP question
because their sequence of questions was Q1, Q4, Q5. These students struggled with
both Q1 and Q4 and would very likely have contributed to the frequency of M6, MS,
and M9 if directed to use DP for any of Q1-3.

1Based on the wording in Zehra et al. (2018), we assumed all final dynamic programming solutions were to
be written iteratively.

18

7.2. Theme 2: Solution Technique

Zehra et al. (2018) defined their next theme as Solution Technique, containing three
misconceptions. This theme is equivalent to our T1 and T4, which occurred when
students failed to recognize that DP is the optimal programming paradigm. In both
the original and our studies, a greedy approach (05, M2) was the prevailing miscon-
ception, with 57% of the students in Zehra et al. (2018) and 48% of the students
in our study falling under this category. Both studies also shared a misconception
representing the incorrect use of divide-and-conquer (O4, M3). However, our rate of
this misconception is not in line with the rate in the original study, with 29% of the
original study’s students, but only 3% of ours corresponding to this category. Zehra
et al. (2018) found one other misconception: “Student uses sets for the DP problem”
(O3). They elaborated on this misconception, explaining that it is “characterized by
use of set terminology in expressing [the student’s| solution.” As an example, they
mentioned that a couple of students “attempted to use finite state machines,” which
occurred only once in our sample. We classified this misconception as not using a
standard undergraduate programming paradigm (M11). Similarly, we observed mul-
tiple students using an “Even-Odd” approach on Q1 (M12), which could potentially
fall under O3 due to students generating two sets: even-index coins and odd-index
coins. Finally, we discovered two completely novel misconceptions that the original
study did not identify: students attempting a brute force approach (M1) and students
attempting to use DP on Q4 (M4). It is surprising that these were not identified in
the original study, especially in the case of M1 which occurred for 22% of students in
our sample.

7.3. Theme 3: Defining a Recurrence

The final theme from Zehra et al. (2018) is Defining a Recurrence, with two mis-
conceptions under this theme. This is comparable to our T2, when students could not
recognize the correct recurrence. The original study’s first misconception was “Student
struggles to write a recurrence” (O6). In our results, this misconception is represented
jointly by M6, the failure to identify the subproblems, and M7, the failure to properly
combine the subproblems into the optimal solution. M6 or M7 occurred for 28% of
the students in our study while O6 occurred in 29% of the students in the original
study. We also incorporated incorrect base case(s) (Mb5) into T2 because of its rele-
vance to the recurrence relation. This was very common for us, with 26% of students
demonstrating this misconception, but not mentioned in the original study. The final
misconception in the original study is “Student fails to use previous experience with
a recurrence to solve an analogous problem” (O7). Due to the diverse sample of stu-
dents from several universities, we did not have a standardized way to assess students’
previous experience and thus could not detect this misconception.

7.4. Discussion of comparison

Overall, we have validated the themes and most of the misconceptions from Zehra
et al. (2018). Because of the qualitative nature of this study, slight variations in the
interpretations of themes and misconceptions occurred and were expected; regardless,
the misconceptions at their core reveal similar patterns of student mistakes in DP.
Some discrepancies existed in the rate at which students exhibited certain misconcep-
tions. We observed lower percentages of students exhibiting M2, M3, M6, M7, M8, and

19

M9 compared to the analogous misconceptions in the original study (01, 02, O4, O6).
These differences may be due to the fact that our methods were slightly different, but
the original study likely also didn’t have a large enough and diverse enough sample size
to accurately represent the population. The most significant addition to the original
study was the novel occurrence of M1, M4, M5, and M13. M1 and M5 are particularly
notable because of their frequency. The expanded demographic may have shed light on
these additional misconceptions, as the variability in which professors present concepts
may make their students more or less likely to have a given misconception.

8. Improvements for Future Similar Studies

Throughout the study, we gained insight into the process of running studies involving
interviews and misconception identification. We included this section of suggestions
for improvement in the hope that other groups aiming to discover misconceptions in
computer science will avoid these issues.

First, it would have been better to determine which schools we wanted to reach
out to and determine appropriate times to reach out to them at the beginning of the
study. We incrementally asked schools for their involvement, gathering a list of schools,
algorithm courses, and professors throughout the study. This incremental approach led
to slow responses, taking much more time than if we had already prepared a list of
schools and courses to reach out to. We also would get responses at varying points
during their academic term, leading to some students having just learned DP, while
others were already further along in their term, or already at finals. Furthermore, we
were overly reliant on public information (catalogs and course descriptions) in order
to determine which algorithms courses were considered part of our demographic. This
caused us to unknowingly have students who had learned DP in a previous term
sign up for interviews, causing these interviews to get thrown out. This reliance on
public information also meant that we couldn’t accurately determine how much detail
each course went into for DP, which may have influenced the misconceptions students
demonstrated. These are the reasons why we were unable to reach our original goal of
recruiting 100 participants and instead got 71, after having thrown out 10 interviews.

Second, our interview process’s reflection phase did not have a standard set of
questions to ask interviewees. It was our belief that interviewers would come up with
their own questions that would delve into why an interviewee reached their particular
solutions. In practice, interviewers asked a wide range of questions that were not always
aimed at why a DP misconception was made; therefore, we could not always accurately
pinpoint the reason behind these misconceptions. In future studies, there should be
a standardized set of questions that interviewers ask as it will more uniformly give
insight into the students’ thought processes.

Third, we could have had a better pipeline of interviews to transcripts. Rewatching
the interviews to create anonymized transcripts took significant time. In retrospect,
starting the transcribing process earlier could have saved us from spending several
weeks solely transcribing interviews. This would also have allowed us to spend more
time on the tagging portion of the study and prevented us from throwing out six more
interviews we did not have time to transcribe.

20

9. Future Work

We believe we have validated the major themes from Zehra et al. (2018). As such,
the future directions suggested by those authors would also build on our study. They
identified three next steps to further understanding student misconceptions of DP.
The first is to make an exclusively DP study; this would follow the same procedure
but replace Q4 and Q5 with successively easier DP questions rather than questions
from other programming paradigms. A second avenue of future work is to investigate
how prior knowledge influences DP skill and to determine if misconceptions can be
attributed to a misunderstanding of other algorithmic concepts. The third suggested
step is a replication of these two studies with different DP problems. This would help
determine if the specific problems chosen in Zehra et al. (2018) (and reused here) led
to some of the difficulties observed.

Additional future work would expand on the foundation built by these two studies
and lead towards a strong concept inventory for DP by following the pathways de-
scribed by Taylor et al. (2020). In the case of DP, current research on misconceptions
largely relies on the open-ended questions phase. Even with a large sample of students
across a variety of universities and a large research team like ours, the open-ended
questions phase gains information slowly. One improvement could be converting the
prompts to multiple choice questions. In order to do this, future work could hold study
sessions for groups of students who are taking algorithms courses. As outlined in Tay-
lor et al. (2020), the students would be asked to answer both open-ended questions
and multiple choice questions, with the latter asking them to explain their answers.
The study sessions would serve as a source of data for the researchers, and the stu-
dents would also be rewarded for their participation by having their misconceptions
addressed in real time.

Lastly, these methods could be used to study and create concept inventories for other
paradigms within algorithm design and analysis. Typical undergraduate algorithms
courses focusing on algorithm design cover the divide-and-conquer paradigm as well
as greedy. Similar work can also be done on more advanced topics like network flow or
computational complexity, as to our knowledge, none of these topics have significant
work on concept inventories.

10. Conclusion

In this paper, we have replicated and expanded on the work of Zehra et al. (2018).
To do so, we conducted similar think aloud interviews on a larger population across
multiple institutions. Analysis of these interviews has led to five themes of difficul-
ties in solving DP problems, encompassing 13 specific misconceptions. The two most
common themes found are that students have difficulty identifying DP problems as
such (T1) and students do not recognize the correct recurrence relation (T2). For
overall misconceptions, we found that the most common misconception students had
was the use of a greedy heuristic in place of DP. We then compared these misconcep-
tions to the misconceptions found in the original study. In doing so, we validated the
misconceptions found in Zehra et al. (2018) while also finding new areas of difficulty
for undergraduates solving DP problems, the two most common being that students
attempted to use a brute force solution (M1) and students failed to properly define a
base case (M5). These new misconceptions, when combined with the previously iden-
tified misconceptions, provide a fuller picture of the areas student struggle with when

21

solving DP problems.

To support these findings, a more comprehensive body of work detailing the several
misconceptions found in students’ lines of thinking using DP can be further developed,
which would aid algorithms educators in resolving common misconceptions their stu-
dents hold. We hope this spurs more research in DP education as well as in education
of other programming paradigms, culminating in the creation of a concept inventory
for algorithms.

11. Acknowledgements

We would like to thank Leo Porter, who first introduced Michael to the notions of con-
cept inventories and to research about them in computer science. Professor Porter also
helped our initial understanding of the area by providing references and introductions
to other researchers doing work in the field. When we decided to build on the work of
Zehra et al. (2018), we were introduced to Shamama Zehra, Aishwarya Ramanathan,
Larry Yueli Zhang, and Daniel Zingaro, who we would also like to thank; their help in
understanding the methodology behind their paper was extremely valuable. We also
thank Jan Vahrenhold for helpful discussions. We thank the students who participated
in this study and their professors who helped us with recruitment.

We also thank UCI’s Academic Senate Council on Research, Computing and Li-
braries (CORCL) for the research fund that enabled us to provide gift cards as incen-
tives for participants.

References

Danielsiek, H., Paul, W., and Vahrenhold, J. (2012). Detecting and understanding students’
misconceptions related to algorithms and data structures. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education, SIGCSE 12, page 21-26, New York,
NY, USA. Association for Computing Machinery.

Enstrom, E. (2013). Dynamic programming - structure, difficulties and teaching. In 2013
IEEE Frontiers in Education Conference (FIE), pages 1857-1863.

Enstrom, E. and Kann, V. (2017). Iteratively intervening with the “most difficult” topics of
an algorithms and complexity course. ACM Trans. Comput. Educ., 17(1).

Erickson, J. (2019). Algorithms. Independently published.

Farghally, M. F., Koh, K. H., Ernst, J. V., and Shaffer, C. A. (2017). Towards a concept
inventory for algorithm analysis topics. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, SIGCSE 17, page 207-212, New York, NY,
USA. Association for Computing Machinery.

Goodrich, M. T. and Tamassia, R. (2014). Algorithm Design and Applications. Wiley Pub-
lishing.

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V., and Shaffer, C. A. (2017). A
basic recursion concept inventory. Computer Science Education, 27(2):121-148.

Karpierz, K. and Wolfman, S. A. (2014). Misconceptions and concept inventory questions for
binary search trees and hash tables. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, SIGCSE ’14, page 109-114, New York, NY, USA. Association
for Computing Machinery.

Paul, W. and Vahrenhold, J. (2013). Hunting high and low: Instruments to detect misconcep-
tions related to algorithms and data structures. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, SIGCSE ’13, page 29-34, New York, NY, USA.
Association for Computing Machinery.

22

Porter, L., Zingaro, D., Lee, C., Taylor, C., Webb, K. C., and Clancy, M. (2018). Developing
course-level learning goals for basic data structures in cs2. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, SIGCSE ’18, page 858-863, New
York, NY, USA. Association for Computing Machinery.

Taylor, C., Clancy, M., Webb, K. C., Zingaro, D., Lee, C., and Porter, L. (2020). The prac-
tical details of building a cs concept inventory. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, SIGCSE 20, page 372-378, New York, NY,
USA. Association for Computing Machinery.

Zehra, S., Ramanathan, A., Zhang, L. Y., and Zingaro, D. (2018). Student misconceptions
of dynamic programming. In Proceedings of the 49th ACM Technical Symposium on Com-
puter Science Education, SIGCSE ’18, page 556-561, New York, NY, USA. Association for
Computing Machinery.

23

Appendix A. Interview Questions

In this section, we provide the interview questions exactly as used in the interviews.

Question 1, Coin Row:

There is a row of n coins whose values are positive integers cl, ¢2, . . . , cn . The
goal is to pick up the maximum-value coins such that you never pick up two adjacent
coins. Your solution should be feasible for input of size n = 1000.

Example:

Input: [7, 15, 12]
Solution: 7 and 12 = 19

Input: [10, 4, 4, 10, 4, 4, 10]
Solution: 10 and 10 and 10 = 30

Question 2, Minimum Pizel Sum:

Given an n by m 2D image where each pixel can be represented by a value that is 0 or
1, (where n is the number of rows and m is the number of columns) find the minimum
sum of pixel values of a connected path of pixels. The path must begin somewhere in
the first row of the image and end somewhere in the last row of the image, and each
move can only go down or to the right.

[1 <=n <= 1000][1 <= m <= 1000]

Your solution should be feasible for input of size n times m = 100000.

Example

Input:

[[0, 1],

[1,0],

[1,0]]

Solution: Sum = 1. (0,0) -> (0,1) -> (1,1) -> (2,1)

Input 2:

[[1,0,1,0],
0,0,0,0]
[0,1,0,1]
Solution: Sum = 0. (0,1) -> (1,1) -> (1,2) -> (2,2)

|
i

24

Question 3, Consecutive 1°s:

Design an algorithm to find the number of binary strings of length N that do not
contain two consecutive 1’s. Your solution should be feasible for input of size N = 1000.

Example

Input: N =3

Solution: 5

Explanation of Solution: [000] [001] [010] [100] [101] all work, but [110] [011] [111] do
not

Question 4, Stock Market:

Given a sequence of historical daily prices for a stock on n consecutive days, find the
days on which someone should have bought the stock and then sold the stock so as to
maximize earnings. On each day, you can do nothing, or buy the stock if you don’t
own it, or sell the stock if you do own it.

Note: (Can only buy and sell once, and the “buy” day must be before the
“sell” day)

Your solution should be feasible for input of size n = 1000.

Example

Input: [2, 5, 7, 1]
Solution: Buy on day 1, sell on day 3

Input: [5, 2, 4, 8, 5, 6, 7]
Solution: Buy on day 2, sell on day 4

Question 5, Peak-Finding:

Given an array of n numbers that we know ascends up to some maximum value and
then descends until the end of the array, find the maximum element of the array.
Your solution should be feasible for input of size n = 1000.

Example

Input: [1, 3, 15, 17, 2]
Solution: 17

25

