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ABSTRACT

Dynamic projection mapping (DPM) enables viewers to visualize
information on dynamic, deformable objects. Such systems often
comprise of a RGB-D camera and projector pair that must be cal-
ibrated apriori. Most calibration techniques require specific static
calibration objects of known geometry. In this paper, we propose the
first projector-camera calibration technique for DPM that uses the
dynamic, deformable surface itself to calibrate the devices, without
needing to bring in a static, rigid calibration object. Our method is
hardware agnostic, fast, and accurate and allows quick recalibration.

Index Terms: Computing Methodologies—Artificial Intelligence—
Computer Vision—Image and Video Acquisition

1 INTRODUCTION

Dynamic Projection Mapping (DPM) is challenging due to high-
speed reconstruction of the moving surface and low-latency adaptive
projection. Therefore, most prior works use custom hardware (e.g.
high-speed, coaxial projector camera systems) [7, 12, 13] or markers
for DPM [9, 10]. More recently, there have been systems that use
a projector in conjunction with an RGB-D camera (e.g. Kinect)
to achieve DPM without any custom hardware or printing [5, 6].
However, before the projector-camera system is deployed for DPM,
it needs to be calibrated i.e. the intrinsic and extrinsic parameters
of the devices need to be estimated accurately. This calibration
is usually done using a static rigid object. Therefore, anytime the
system is moved, this static rigid object has to be brought back in
for recalibration.

In this paper, we propose the first work that achieves this projector-
camera calibration using the dynamic deformable surface itself. We
project a set of ArUco markers on the moving surface which is
captured by the RGB-D camera. This is followed by a standard
reprojection optimization that starts with the initial estimate of the
intrinsics of the projector and converges to accurate intrinsic and
extrinsic for both the projector and camera over a number of frames.
Our method does not require any specific calibration objects of
known geometry, therefore, anytime the projector-camera pair is
moved, it can recalibrated quickly using the same dynamic and
deformable surface that is being used for projection. Our work
provides a new tool to calibrate projector-RGB-D camera pairs
using moving and deformable surfaces.

2 RELATED WORK

There has been enormous work done in the domain of projector-
camera calibration. Most methods use structured light scanning
of a known calibration object to establish pixel correspondences
between the projector and camera followed by calibration [1, 8, 11].
While [1,8] require a planar object with printed patterns, [11] use an
arbitrary object with known shape for calibration.

Moreno et al. [8] require a planar surface printed with a checker-
board pattern for calibration. The checkerboard is used to calibrate

*e-mail: muhammti@uci.edu

Figure 1: Our setup, comprising a RGB-D camera and a projector
positioned towards a dynamic, deformable surface.

the camera using Zhang’s method [14]. The projector is treated
like an inverse camera and is calibrated like a camera but using the
projector-camera pixel correspondences generated from the struc-
tured light scan. Resch et.al [11] use structured light scanning and
a precise 3D mesh of an arbitrary object (that can be obtained by
a laser scan) to iteratively refine the calibration parameters of the
projector-camera system.

3 METHOD

Our setup is a rig consisting of a projector and a RGB-D camera po-
sitioned to project on and capture a dynamic and deformable surface
respectively. We assume that the RGB camera and depth camera
are registered as is common in consumer RGB-D cameras. We start
with a rough estimate of the projector focal length estimated using
methods such as [2, 4, 8]. This can be done once for a projector of
the same brand and make. If the camera API provides the intrinsics,
we use those as an initial estimate, though we do not require it.

Projector and Camera Models: We model both the projector
and camera with a pinhole camera model extended by a lens dis-
tortion model that include three radial and two tangential distortion
coefficients. We assume that the RGB-D camera is at the origin,
looking down the positive Z-axis. This makes the camera extrinsic
matrix to be identity and we need to determine the camera intrinsic
matrix and distortion coefficients only. However, we do need to
determine both the intrinsic and extrinsic parameters of the projector
with respect to the camera to calibrate the system.

Image Acquisition: In order to successfully calibrate a projector-
camera unit, for the 3D surface coordinate di, we need the 2D camera
pixel ci that images it and the corresponding 2D projector pixel pi
that illuminates it. Since we address moving and deformable sur-
faces, we require a way to determine the camera-projector pixel
correspondence using only one frame. Therefore, we choose to
project a grid of ArUCo markers [3]. The location and the IDs of
the ArUCo markers are estimated from the RGB-D camera captured
images of the projected sequence. Using the IDs of the detected
markers, we establish pixel correspondences between the RGB cam-
era pixels and the projector pixels of that marker. Since the RGB
camera and depth camera are registered, we can assign a 3D point
to each pixel correspondence as well (see Figure-2).

Camera-Projector Calibration: Once we have correspondences
between projector pixel, camera pixel and 3D point, we use a non-
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Figure 2: (Left) The depth map (in mm), (Middle) the projected image and (Right) the camera image. The corresponding pixels at the corners
of the ArUCo markers between the projector, depth map and camera image are shown by the red and green lines respectively. Markers that
were not detected in the camera image are highlighted in red.

Figure 3: Projector-camera reprojection error against surface speed.

linear optimization that minimizes the reprojection error and com-
pute the parameters for the camera and projector separately. We
achieve this using the correspondence between the 2D pixel and
3D points. Let {pt

i ,c
t
i ,d

t
i} denote the i-th correspondence at time

t. Let {Kt
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t
c} denote the camera intrinsic matrix and distortion

coefficients at time t, and {Kt
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t
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p,T

t
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matrix, distortion coefficients, rotation and translation respectively,
at time t. We optimize for the calibration parameters by minimizing
the camera and projector reprojection errors Et
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4 RESULTS

We implemented the proposed system with an Azure Kinect RGB-
D camera and an Optoma EH200ST (short throw) projector on a
dynamic, deformable surface. We placed two fans on either side of
the surface to generate random waves and ripples across the surface
and tested our calibration for various speeds of the fans (see Figure-
1). This helped us to study the impact of the movement of the surface
on the accuracy of our calibration technique. To estimate the surface
velocity quantatively, we took the average of difference between
same pixels of two successive depth maps. We quantified calibration
accuracy using reprojection error onto camera and projector images
(Figure 3). The camera reprojection error of less than 0.5 pixel does
not get impacted by the movement of the surface. Even at the highest
speed, our projector reprojection error is less than 4 pixels – less
than 0.4% when considering the size of the projection image.
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