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Figure 1: (a) Our setup, comprising 3 PDCs with overlapping projection covering a 18’ × 4’ (5.5m×1.2m) deformable surface.
(b) The uncalibrated display without any warp and blend. (c) A single PDC unit. (d) The final seamless display.

ABSTRACT

Prior works on multi-projector displays have focused primarily on
static rigid objects, some focusing on dynamic rigid objects. How-
ever, works on projection based displays on deformable dynamic
objects have focused only on small scale single projector displays.
Tracking a deformable dynamic surface and updating projections
precisely in real time on it is a significantly challenging task, even
for a single projector system.

In this paper, we present the first end-to-end solution for achieving
a real-time, seamless display on deformable surfaces using mutliple
unsychronized projectors without requiring any prior knowledge of
the surface or device parameters. The system first accurately cali-
brates multiple RGB-D cameras and projectors using the deformable
display surface itself, and then using those calibrated devices, tracks
the continuous changes in the surface shape. Based on the defor-
mation and projector calibration, the system warps and blends the
image content in real-time to create a seamless display on a surface
that continuously changes shape. Using multiple projectors and
RGB-D cameras, we provide the much desired aspect of scale to the
displays on deformable surfaces.

Most prior dynamic multi-projector systems assume rigid ob-
jects and depend critically on the constancy of surface normals
and non-existence of local shape deformations. These assumptions
break in deformable surfaces making prior techniques inapplicable.
Point-based correspondences become inadequate for calibration, ex-
acerbated with no synchronization between the projectors.A few
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works address non-rigid objects with several restrictions like target-
ing semi-deformable surfaces (e.g. human face), or using single
coaxial (optically aligned) projector-camera pairs, or temporally
synchronized cameras.

We break loose from such restrictions and handle multiple pro-
jector systems for dynamic deformable fabric-like objects using
temporally unsynchronized devices. We devise novel methods us-
ing ray and plane-based constraints imposed by the pinhole camera
model to address these issues and design new blending methods
dependent on 3D distances suitable for deformable surfaces. Finally,
unlike all prior work with rigid dynamic surfaces that use a single
RGB-D camera, we devise a method that involve all RGB-D cam-
eras for tracking since the surface is not seen completely by a single
camera. These methods enable a seamless display at scale in the
presence of continuous movements and deformations.

This work has tremendous applications on mobile and expedi-
tionary systems where environmentals (e.g. wind, vibrations, suc-
tion) cannot be avoided. One can create large displays on tent walls
in remote, austere military or emergency operations in minutes to
support large scale command and control, mission rehearsal or train-
ing operations. It can be used to create displays on mobile and
inflatable objects for tradeshows/events and touring edutainment
applications.

Index Terms: Computing Methodologies—Artificial Intelligence—
Computer Vision—Image and Video Acquisition

1 INTRODUCTION

Multi-projector displays are an easy way to create seamless displays
at scale without undertaking massive engineering feats of tiling
LCD/LED panels together. Though multi-projector displays on rigid
objects (static or dynamic) have been explored extensively, expedi-
tionary or mobile systems often demand such displays on surfaces
that continuously move and deform. Examples include emergency
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management or military tents in austere locations where large data
demand large visualizations for command and control, decision mak-
ing, mission rehearsal and even training during long idle periods.
The easiest way to setup such displays is to use projectors on the
tent walls. However, such fabric based surfaces suffer continuous
movement and deformations from environmentals like wind and
vibrations. Similar situation is faced in commercial domain when
mobile and inflatable displays need to be setup on tradeshow floors in
the presence of ventilation systems blowing air or vibrations nearby
from other demonstrations. Mobile educational systems (e.g. mo-
bile planetariums) that travel to serve geographically under-served
population can also benefit from displays on moving deforming
surfaces.

Except for [1, 55], all multi-projector systems explored so far
focus on rigid objects, either static [57] or dynamic [35, 54]. Any
rigid object offers constant surface normals and no local deformation
of the surface. Assuming prior knowledge of the 3D surface along
with these invariants, [53] performed precise device calibration on
a static rigid object for a dynamic projection mapping setup. Note
that the precision required is rather exacting – if the physical set
up and its estimation do not match, misregistrations result. To
achieve the precision in the presence of movement, the rigid object
is usually tracked by a single RGB-D camera. Note again, high
accuracy tracking is essential to create a seamless display in which
the projected image ”sticks” to the rigid object as it moves. Finally,
the blending between two overlapping projectors on the rigid object
is achieved in real-time leveraging the fact that surface normals do
not change with movement. [55] uses multiple projectors to project
on a human face by fitting a parametric face model to the depth
camera output. The changing surface normals of the tracked face are
used to select the projector rays with the highest illumination quality
only. This effectively narrows the blend width in the overlapping
region to reduce the visibility of misregistration artifacts.

Ahmed et al. [1] is the only multi-projector system that handles
deformable surfaces like fabrics. They use two projectors and two
temporally synchronized IR cameras, each pro-cam pair being indi-
vidually coaxial to achieve a super-imposed display. They calibrate
each coaxial pair separately, establishing pixel-to-pixel correspon-
dences between the camera and its corresponding coaxial projector.
During projection, each IR camera separately tracks fiducials on
an IR grid painted on the deformable surface and using calibration
parameters of its corresponding projector, warps the display content
for projection, resulting in a superimposed display that does not
require realtime blending.

However, when the projection surface is deformable (like a mov-
ing fabric), the devices are not temporally synchronized or optically
aligned, all the previously mentioned conditions that are leveraged
to deliver a seamless display break. The surface normals change con-
tinuously and local deformations of the surface are significant. This
renders most of the techniques involved (e.g. calibration, blending)
inapplicable. In order to scale, single RGB-D camera based tracking
is inadequate since the entire deformable surface is not seen by a
single RGB-D camera.

1.1 Main Contributions

In this work, we present a novel calibration, blending and tracking
methods that enable seamless multi-projector displays at scale on
deformable dynamic surfaces. Following are our main contributions.
1. Calibration: In the absence of point based correspondences in a
moving deformable surface, we use ray or plane based constraints
imposed by the pinhole camera model on the moving surface to
achieve highly precise device calibration.
2. Multi-camera Surface Tracking: Our method takes partial in-
formation from each RGB-D camera to generate highly accurate
tracking of every location of the deformable projection surface.
3. Multi-projector Blending: In the absence of constant surface

normals, we present a new distance based blending method that can
work with deformable dynamic surface.
4. Complete System Pipeline: Using the above information we
warp and blend the content from mutliple projectors that adapts
in real time to the changing deformations and movements in the
projection surface creating a stable seamless display. To the best
of our knowledge, this is the first end-to-end pipeline that allows
multiple, temporally unsynchronized projectors and cameras to adapt
to the changes in a moving deformable projection surface to create a
registered, stable and seamless display.

Our work is closest to [1], but is significantly different from their
work in the following respects. (i) We calibrate all our devices
and align them in world space instead of using coaxial pro-cam
pairs that are not calibrated with respect to each other. This allows
us to (ii) place our cameras and projectors so each device need
not view/illuminate the entire surface, enabling large-scale displays
unlike [1]. Additionally, (iii) unlike [1], we reconstruct the entire 3D
surface geometry, (iv) without requiring temporal synchronization
of the cameras. Finally, (v) our display requires real-time blending
based on the reconstructed surface shape, unlike [1] who implement
a two-projector superimposed setup and hence, do not require it.

2 RELATED WORK

Although there has been a significant amount of work in single
projector systems, the primary focus of this section is on multi-
projector systems that are most relevant to us. We consider the prior
work in three categories here, Rigid Static Surfaces, Rigid Dynamic
Surfaces and Deformable (Dynamic) Surfaces.

2.1 Rigid Static Surfaces
When multi-projector displays are used on planar surfaces, the de-
vice calibration is avoided by using homography based methods
for registration [5, 6, 9, 45]. [46–49] shows that registration can be
achieved without precise device calibration if a prior on the category
of shape (e.g. vertically extruded, swept or spherical surfaces) and
measurements (e.g. aspect ratio of a cylindrical surface, radius of a
spherical surface) of the display surface is known.

When an arbitrary geometry is used, some works use projec-
tors and cameras separately. [39–41, 59] use a single camera to
calibrate different devices separately and combine the results in
a tree-like fashion. However, errors across device pairs make it
nearly impossible to achieve sub-pixel accuracy in registration. Oth-
ers calibrate a pro-cam unit (i.e. a unit made of a projector and
a RGB camera) together and use these pro-cam units as building
blocks for creating a display that has the same number of projectors
and cameras. Single pro-cam systems typically employ structured
light scanning of a known calibration object to establish pixel cor-
respondences between the projector and camera followed by cali-
bration [3, 10, 13, 14, 20, 32, 44, 51, 63, 64]. The calibration object
can be a checkerboard pattern [10, 13, 14, 20, 32] or fiducials (e.g.
QR codes) printed on a planar board [3, 51, 64], or even objects of
arbitrary geometry to perform calibration, the latter of which allows
projection mapping on non-planar surfaces. Such methods capture
the static calibration object in several different poses, model the
projector like an inverse camera [50] and use the camera calibration
method by Zhang [66] to achieve full calibration. [57, 62] are the
only works that achieve automated calibration (without the use of
specific 2D or 3D props) of multiple projectors and RGB cameras
projecting on a complex rigid 3D shape.

In terms of blending, systems with rigid static surface need to
compute a blend mask only once. As noted by [52], the simplest
approach to intensity blending in multi-projector displays is to illu-
minate each surface point from only one projector. However, this
approach can make misregistrations due to calibration errors as well
as color and intensity differences between projectors clearly visi-
ble. [39, 42, 65] implement blending across multiple projectors by
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feathering the blend mask in the overlapping regions. However, the
blend weights are computed in 2D projector-image space and does
not consider the 3D geometry of the surface. Therefore, these meth-
ods are restricted to surfaces with simpler geometry (e.g. planes).
There exist more advanced methods that approach blending as a part
of the overall color non-uniformity of the multi-projector display.
They compute blend maps that make color variations imperceptible
while maximizing display quality, for planar [28] or arbitrary surface
geometry [58].

2.2 Rigid Dynamic Surfaces
More recently, with the advent of RGB-D cameras, a few works
explore the advantage of having an additional depth camera, albeit
noisy and low-latency, in handling dynamic rigid objects. Use of
PDC units (i.e. a unit made of a Projector, a Depth camera and a
RGB Camera) became common in such systems. A large body of
work focus on a single PDC unit and completely avoid calibration or
shape recovery using a coaxial setup with highly specialized high-
speed RGB-D devices [21, 29, 56, 60] that can additionally alleviate
both the noise and latency issues. [2, 12, 43, 44, 67] calibrate a single
PDC unit with prior knowledge of a precise 3D mesh of an object that
serves as the calibration object. [23, 25, 26, 35, 53, 54] use multiple
projectors to illuminate a moving rigid object. [23,25,26,53,54] use
a single depth camera to tie all the projectors together via an object
with known 3D shape. [35] uses several motion capture cameras to
track markers on the target object. These works focus on illuminating
small 3D objects (e.g. a bust) that can be contained within the field
of view of a single RGB-D camera.

Kurth et al. [24] then advance to systems with multiple RGB-D
cameras to allow 360 degree surround illumination of rigid moving
objects. Multiple RGB-D cameras are required for covering the sur-
round field of view created by all the projectors. This work proposes
a calibration method that supports multiple RGB-D cameras and
projectors, however still uses a single RGB-D camera for tracking.
Since the rigid object does not change shape, as it moves the part
visible to the RGB-D camera can be matched to the known rigid
geometry via iterative closest points (ICP) based techniques to find
the pose and orientation.

In a dynamic system, the overlapping regions of the projected
imagery from multiple projectors change continuously due to the
movement of the projection surface. Therefore, blend masks for
each projector need to be recomputed in real-time. [27] proposes a
method to compute blend masks for dynamic rigid objects using the
dot product between the surface normal at a point on the object and
the unit-rays from each projector. However, they do not take the 3D
distance into account. [35] introduces a blending method that consid-
ers the surface geometry, distance to the surface as well as the pixel
size on the surface to compute blend weights across projectors. By
constructing a light transport matrix, [54,55] solve a global optimiza-
tion problem using a GPU-based solver to achieve real-time content
dependent projector blending on a dynamic, rigid object. However,
this solution does not scale as the light transport matrix becomes
too large with more projectors. [24] proposes a high-performance
distributed solver to achieve real-time performance in small systems.
Although blending techniques that respect surface discontinuities
have been proposed [4], they are not real-time and used for a dif-
ferent purpose of illuminating an animatronic head with limited
local motions to render different expressions and manipulating the
projection images on it to enhance its expressiveness.

2.3 Deformable Dynamic Surfaces
The rigid 3D object of known shape provides the critical anchor
for all the devices in a system that illuminates rigid dynamic ob-
jects. The biggest challenge when moving to deformable objects is
the constantly changing shape of the object that removes any way
to anchor the system. The changing shape of the surface has to be

tracked continuously and the projection has to adapt to these changes
in real-time. This challenge becomes multi-fold when considering
geometrically stitching images projected from multiple PDCs to
achieve a seamless display, especially when the PDCs are not syn-
chronized. Therefore, most prior work skirts around the problem of
device calibration and surface recovery by using coaxial pro-cam
units [7,8,22,38]. Some works embed retroreflective markers [11,31]
or markers painted with IR ink [36, 37] on the deformable surface to
track it and recover its shape. [33, 34] annotate the display surface
with a precisely printed dot cluster marker grid using IR ink.

Some highly specialized systems like the MIDAS system [30]
use a specialized, high-speed projector, three high speed cameras
and three near-IR light sources of different bands, all setup in a
co-axial arrangement using mirrors so that they have the same center
of projection. Each of them is equipped with color filters to sense
each of the three NIR light sources. This setup enables them to use
photometric stereo to compute the object normals at every camera
pixel. With this information, they render their projection image to
change the appearance of the object to a different material. Due to
the use of coaxial high-speed setup, this system can achieve dynamic
projection mapping without much perceptible lag.

Ahmed et al. [1] implement a two-projector superimposed display
on a deformable surface. Each projector is coaxially aligned with an
IR camera. Although they calibrate each coaxial pair separately, they
do not calibrate all the devices together and hence, do not reconstruct
the 3D surface geometry. Instead, each camera tracks an IR grid
painted on the surface and the display content is warped separately
for each projector.

Ibrahim et al. [15, 16] is the only method that calibrates a
consumer-grade non-coaxial single PDC unit on a dynamic, de-
formable surface without using any embedded markers. They project
a grid of ArUCo markers to establish projector-camera pixel corre-
spondences on a moving surface before calibrating the PDC unit.
However, their method cannot be used to calibrate multiple PDCs.

2.4 Comparison
Multi-PDC systems have not been explored in the context of de-
formable dynamic objects. Therefore, blending techniques are
non-existent for this scenario. The normal-based blending applied
for rigid dynamic system are not applicable since surface normals
change continuously in a deformable dynamic object. Instead, we
propose a novel blending technique dependent on distances between
the devices, their view frusta and the changing projection surface.
Finally, since no single RGB-D camera sees the entire projection
surface, we devise a new tracking method that combines the infor-
mation from multiple unsynchronized RGB-D cameras to provide
acceptable tracking updates. However, for calibration, our method
starts from the solutions proposed for single PDC units by [15, 16]
and design more comprehensive methods based on ray or plane-
based constraints imposed by the pin-hole camera model to achieve
accurate device calibration for multiple PDC units.

3 OUR SYSTEM

The system setup consists of N PDCs projecting on a large, continu-
ous and smooth deformable surface in a tiled manner such that the
projections overlap (see Figure 1 (a)-(b)). The boundary of the dis-
play region is marked on the surface by black dots placed equidistant
along each edge, resulting in a final display. Each projector has a
corresponding RGB-D camera that observes part of the surface, such
that the camera fields of view also overlap. We assume that the color
camera and the depth camera in each RGB-D camera are temporally
synchronized and geometrically registered, which is common for
almost all consumer RGB-D cameras. Further, we do not require
any knowledge of the projector or camera intrinsics or extrinsics.

Our method begins by each projector projecting ArUCo patterns
on the moving deformable surface while all RGB-D cameras capture
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Figure 2: The flowchart of the proposed system.

those patterns and decode them to generate pixel correspondences.
Then, we proceed to camera calibration, followed by projector cali-
bration. Using the calibration parameters, we track the surface shape
and perform intensity blending in real-time to adapt to the changing
surface shape and create a stable seamless multi-projector display
on a dynamic, deformable surface.

The goal of a single-projector projection mapping system is to
determine a texture-mapping function Ω(·) that warps the source
image Isrc to a target image Itgt such that Itgt conforms to the surface
shape when it gets projected out [17]. The texture mapping function
is defined as: Ω(p) = s, which maps a projector pixel p ∈ R2 in
Itgt to a texture coordinate s ∈ R2 in Isrc, i.e. Itgt(p) = Isrc(Ω(p)).
In our multi-projector system, each projector j has its own texture
mapping function, denoted by Ω j(p) = s which must be computed
based on the current surface shape. Therefore, in order to compute
the correct Ω j(p) and render a registered multi-projector display, we
need the following information: the texture coordinate s = (u,v), the
3D point d on the surface that it maps to and the projector pixel p j in
projector j that will illuminate the surface at that point. Since there
are multiple cameras, each observing a part of the surface, we require
accurate camera calibration in order to merge their depth in a unified
world space. In order to map the 3D point d to its correct projector
pixel p j in projector j, we require accurate projector calibration.

Finally, to render a seamless display, we must blend the projectors
in their overlapping regions. This is achieved by computing a per-
projector intensity mask, denoted by α j(p),0 ≤ α j(·)≤ 1. There-
fore, for the i-th point on the surface illuminated by projector j, we
require the following tuple of correspondences: f j

i = (si,di, p j
i ,α

j
i ),

where si = Ω(pi
j), and di is the 3D point on which pixel p j

i gets
projected on. The final image that is rendered by projector j in a
multi-projector setup is I j

tgt(p) = α j(p)Isrc(Ω
j(p)). Note that for

systems handling deformable dynamic surfaces that continuously
change in shape, α j(·) and Ω j(·) are additionally functions of time.
However, we omit that for the sake of brevity.

Figure 2 gives an overview of the complete pipeline of our system.
First, we perform calibration, which recovers accurate projector and
camera calibration parameters. Next, we use the cameras to capture
and track the surface shape. With the camera calibration parameters,
we align the surface depth from each camera to the world space and
reconstruct the surface. Using the projector parameters, we compute
the blend weights α j(·) for each sampled point on the surface and
reproject it to the projector to determine its corresponding projector
pixel. This enables us to compute the texture mapping functions
Ω j(·). Finally, we render the display by passing all this information
to a shader. In subsequent sections, we describe in detail our cali-
bration, surface tracking and intensity blending methods that come
together in the above pipeline to create a seamless, real-time display
on a dynamic, deformable surface.

4 CALIBRATION

The first step in achieving a registered multi-projector display on
a dynamic, deformable surface is to calibrate every projector and
camera in the system. As in [15, 16], we model the projectors and
cameras with a pinhole camera model extended with radial and
tangential distortion, where a 2d point p (of a projector or camera)
corresponds to a 3D point d on the surface. The calibration process
needs to determine the intrinsics that include the intrinsic matrix
K ∈ R3×3 and distortion coefficients D ∈ R5×1, and the extrinsics
that include the rotation R ∈ R3×3 and translation T ∈ R3×1. Thus,
for each device, we have nine intrinsic parameters (two for focal
length, two for principal point and five distortion coefficients) and six
extrinsic parameters (three each for rotation and translation) resulting
in a total of fifteen parameters per device. We denote the projection
function Mi that takes a 3D point d and maps it to a pixel p using
the calibration parameters of device i as p = Mi(d;{Ki,Di,Ri,T i}).

In order to calibrate a multi-PDC system, we require correspon-
dences between the cameras and projectors. In static projection map-
ping systems, this is achieved by structured light scanning, where
each projector projects known patterns, while all the cameras capture
them. The patterns are decoded to establish pixel correspondences
between the projectors and cameras, and are triangulated using
multi-view geometry.

However, in a moving deformable surface that changes shape con-
tinuously, this approach is inapplicable, especially when the devices
are not synchronized. There is no guarantee that the surface shape
remained the same when computing camera pixels corresponding
to the same projector pixel across multiple cameras. In fact, in
all likelihood, the correspondences belong to two different surface
shapes. This lack of synchronization implies that the surface cannot
be triangulated even if they are correctly decoded. Therefore, the
system cannot be accurately calibrated to match the physical setup,
a critical requirement for creating a registered display.

In the absence of inter-camera correspondences, we devise a
method that leverages the depth from each camera via ray and plane
based constraints offered by the pinhole model to achieve accurate
calibration despite the surface motion. For this we need to acquire
images of some projected patterns. We project a grid of ArUCo
patterns, as proposed by [15, 16]. Note that the movement of the
deformable surface is important for this step. Each projector projects
several sequences of ArUCo grids one at a time for a few camera
frames, while all cameras capture it. The captured images are then
decoded to determine the camera pixels of the ArUCo pattern cor-
ners, while the corresponding 3D point is obtained from the depth
map. Thus, for the k-th ArUCo pattern mi

k detected in camera i, we
have a 3D point di

k, the camera pixel ci
k and the projector pixel pi

k.

4.1 Camera Intrinsic Calibration

The first step in achieving full calibration is to estimate the camera
intrinsics. For each camera, we fix the extrinsics to be at the origin,
with the camera looking down the positive Z-axis. Thus, for each
camera i, we optimize its intrinsic parameters denoted by {Ki

c,D
i
c}

using the correspondences (ci
k,d

i
k) from all markers mi

k detected in
that camera. We minimize the reprojection error E i

c, as:

arg min
Ki

c,Di
c

E i
c =

1
2 ∑

k
(|ci

k −Mi
c(d

i
k;{Ki

c,D
i
c,0,0}))2. (1)

We initialize the optimization assuming the distortion coefficients
to be zero, and compute the intrinsic matrix Ki

c directly from the
2D-3D correspondences. Each camera’s intrinsics are optimized
separately. If the camera API provides the camera intrinsics, we use
them to initialize the optimization instead. We continue optimizing
the parameters until convergence.
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(a) Camera Local Space (b) World Space

Figure 3: Illustration of camera extrinsic calibration. Cameras C1
and C2 both capture the world from their local origin and view the
same projector at different locations (P1 and P1’). (a) They capture
3D points corresponding to the same projector pixel in their local
spaces, giving points along ray L (red) and L’ (green). However, in
world space, points along ray L’ must align with points along ray
L. (b) Our camera extrinsic calibration finds a rigid transform that
aligns points on ray L’ along the ray L to determine the camera pose.

4.2 Camera Extrinsic Calibration
The largest impact of the absence of inter camera correspondences
in an unsynchronized system is estimating the camera extrinsic
parameters. Traditional multi-view geometry methods that assume
a static surface become inapplicable. We present a new method to
estimate the camera extrinsics that uses 3D depth captured by each
camera instead of the 2D pixel correspondences.

Consider only the set of pattern corners that lie on the same
row of pixels in the projector image when it is displaying a grid
of ArUCo patterns on the moving deformable surface. This row of
2D pixels forms a plane in 3D. Each camera captures this ArUCo
grid and records the 3D points corresponding to the pixel row of
pattern corners. If we fit a plane through each set of 3D points
acquired by each camera, we will get two different plane parameters,
even though they are the same 3D plane in world space. Similarly,
consider only 3D points captured by two cameras that correspond to
the same projector pixel i.e. ArUCo marker corner. If we fit a line
through each of these sets of 3D points, we will get two different
line parameters, even though they correspond to the same 3D ray in
world space.

Therefore, we need to transform the point clouds such that 3D
points from different cameras corresponding to the same projector
row/column pixels lie on the same 3D plane, and 3D points from
different cameras corresponding to the same projector pixel lie on
the same 3D ray. This transform implicitly gives us the camera
extrinsics. Figure 3 illustrates this concept using points along a ray.

Thus, we perform an optimization that computes a rigid trans-
form by minimizing the error between corresponding 3D lines and
3D planes in the point clouds captured by multiple cameras. We
minimize the error, E i

ray,E
i
row,E

i
col , between corresponding lines,

row planes and column planes respectively in the 3D point cloud
captured by the reference camera and the point cloud captured by
the i-th camera transformed by the camera pose Ri

c,T
i

c given by:

arg min
Ri

c,T i
c

E i
t = E i

ray(d
i,dre f ;{Ri

c,T
i

c})

+E i
row(d

i,dre f ;{Ri
c,T

i
c})+E i

col(d
i,dre f ;{Ri

c,T
i

c})
(2)

The error is computed as the distance between the points in the
transformed point cloud and their projection on the corresponding
ray/plane in the reference point cloud. Once we have each camera’s

Figure 4: The calibration results from our method. The cameras are
shown in black, while the three projectors and their corresponding
depth data are colored in red, green and blue.

extrinsics, we transform the point cloud from each camera to the
world space.

Note that standard 3D point cloud alignment algorithms like ICP
(Iterative Closest Point) cannot be used here. Due to the dynamic
nature of the surface, the 3D points corresponding to the same pattern
corner lie on a straight line. One camera may have captured more
3D points of that pattern than another. Since ICP computes point
matches every iteration, it may converge to the incorrect solution
because of incorrect matches. Therefore, while ICP serves as a
good initialization to the optimization, it does not result in a precise
alignment of the point clouds.

4.3 Coarse Projector Calibration

At this point, the cameras in the system are fully calibrated. Next,
we perform projector calibration. We use the method by [15] that
uses the point cloud to perform a coarse projector calibration. This is
used as an initialization to an optimization that refines the projector
parameters.

To calibrate a particular projector, we use all the 3D points corre-
sponding to it that have been captured by all cameras and transform
them to world space using the camera extrinsics. Next, we again use
the plane based constraint imposed by the pinhole camera model to
fit a plane through each set of 3D points that correspond to a row
of pixels in the projector image. This gives us a set of row planes.
As dictated by the pin hole camera model, we intersect all the row
planes to form a 3D line that contains the projector location in world
space and find the direction of this 3D line to estimate the projector’s
X-axis in world space. We repeat this procedure for the set of 3D
points that correspond to the same column pixels in the projector
image, fitting planes and intersecting them to get the projector’s Y-
axis direction. Taking a cross product of the X and Y-axes gives the
projector’s Z-axis. Finally, we intersect the 3D lines corresponding
to the X- and Y-axes to get an estimate of the projector’s center of
projection (aka location).

We also estimate the intrinsic matrix of the projector using the
pose estimate and the 2D-3D correspondences of that projector.
This coarse projector calibration serves as an initialization to the
optimization that refines each projector’s parameters.

4.4 Fine Projector Calibration

Let (p j
k, d̃k

j
) denote the k-th correspondence between a 2D projector

coordinate p j
k and its transformed 3D point d̃k

j for the j-th projector.
Let {K j

p,D
j
p,R

j
p,T

j
p } denote projector parameters. We optimize
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these parameters and minimize the reprojection error E j
p:

arg min
K j

p,D
j
p,R

j
p,T

j
p

E j
p =

1
2 ∑

k
(|p j

k −M j
p(d̃k

j;{K j
p,D

j
p,R

j
p,T

j
p }))2 (3)

We initialize the projector parameters from the coarse projector
calibration in the previous step, assuming distortion coefficients
are zero. The optimization is then performed until convergence.
Figure 4 shows the final, fully calibrated system.

5 MULTI-CAMERA SURFACE TRACKING

Surface tracking is achieved by a realtime 3D reconstruction of
the continuously changing surface shape. The goal of the surface
reconstruction step is to determine 3D points on the surface that cor-
respond to the uniformly sampled texture grid, where each texture
coordinate is denoted by sk = (uk,vk). Each black marker on the sur-
face corresponds to a known texture coordinate. However, because
they are all identical (to keep the system simple for deployment
for lay users), we must first determine the (u,v) coordinate of each
marker in every camera frame. We employ the method proposed
by [17, 18] to track the surface, but adapt it to handle multiple depth
cameras, each observing only part of the surface.

We start by detecting the border markers in the IR frame of
each camera and determine the corresponding 3D point from the
depth map. Since each 3D point is in the local space of the camera
that detected it, we use the corresponding extrinsics to transform
each 3D point to world space. However, because the camera FOVs
overlap, some markers are detected by multiple cameras. In order to
reconstruct the surface accurately, we must identify these duplicate
detections and merge them.

Note that while all the 3D points are in world space, they are
randomly ordered. To remove this random ordering, we compute
the average 3D point of all the points in world space and then
sort them all in a clockwise fashion around the average 3D point.
This arranges each 3D point with its adjacent neighbor around the
display boundary. Next, we proceed to merging markers detected
by multiple cameras. For each 3D point, we compare the distances
with its left and right neighbors. If the distance between a pair of
points is less than a threshold (≤ 50mm), we mark those points as
duplicates. Each set of duplicate detections is assigned a unique ID
and after all duplicates have been detected, the 3D points in each set
are merged by averaging them.

Now that we have one 3D point for each marker in world space,
we identify the four corners of the display region by computing the
angle each marker makes with its two adjacent neighbors. Four
markers with angles close to 90◦ are determined as the display cor-
ners. From these four corners, we determine the top-left corner and
assign its texture coordinate (u,v) = (0,0). Since all the markers
are sorted in a clockwise fashion, we can assign each marker its cor-
responding (u,v) starting from the top-left corner, going clockwise
around the display boundary.

Next, we compute correspondences inside the display region.
Instead of interpolating normals like [17, 18], we use bilinear inter-
polation to estimate the internal correspondences. These interpolated
3D points are not guaranteed to be on the surface and using them
for rendering will result in visible misregistrations. Assuming a
calibrated multi-PDC rig, we reproject the internal 3D points back
into every camera and re-sample the depth at that pixel location if
it is valid (see Figure 5). We transform these re-sampled 3D points
back into world space and average any points that were seen by
multiple cameras.

Thus, by tracking the markers from each camera, resampling the
surface shape and combining all 3D points in world space, we are
able to achieve multi-camera surface tracking. At this point, the
entire texture grid has a corresponding 3D point. Finally, we use the
projector calibration parameters to determine the corresponding 2D
pixels in every projector and compute the function Ω j(·).

Figure 5: Surface sampling by the multi-camera rig. The filled
black markers represent the surface border. Points are estimated
by linear interpolation between the markers (empty black circles).
These points are reprojected into the cameras, which measure the
3D surface at that pixel (colored circles). Points seen by multiple
cameras are averaged (striped circles).

Figure 6: The projector blend masks in (u,v) space. Note that each
mask represents the entire display region.

Note that calibration errors could introduce misregistration arti-
facts when we transform the points back into world space. However,
misregistrations will only be visible in the projector overlapping
regions. Since the overlapping regions are seen by multiple cameras
and we average the 3D points seen by each camera, this mitigates
the misregistration artifacts caused by imperfect calibration.

6 PROJECTOR INTENSITY BLENDING

To blend the contributions from different projectors in the overlap-
ping region, we need to determine the contribution by each projector
to all 3D points. The challenge in a system with dynamic deformable
projection surface stems from the fact that these regions are con-
tinuously changing. Therefore, the projector blend masks need to
be computed every frame efficiently to maintain a real-time FPS
(frames per second) of the display.

Prior works on multi-projector dynamic systems only handle rigid
objects where the projector light completely floods the target object.
In such a rigid object, the surface normals at each 3D point are
known apriori. This allows such methods to use the angle of the
surface normal with respect to the projector locations (by computing
the dot product) to determine the blend weights for each projector.
Thus, if the surface normal is at a grazing angle with respect to
a projector, the blend weight is close to zero. During runtime,
the normals are transformed based on the current object pose to
determine the blend weights for each projector contributing to a 3D
point. The 3D distance of contributing projectors is also included in
the blend weights to account for distance attenuation. Such methods
are well suited to handle sharp edges and occlusions of rigid object
with respect to projectors.

On the other hand, projector intensity blending on deformable
surfaces cannot assume static surface normals and hence, have to
be recomputed every frame. However, surface normals are not well
suited for blending in our case. Aside from the added latency to
compute them every frame, surface normal based blending weights
do not feather off the masks to zero at the edges of a projector
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Figure 7: The final multi-projector display on a moving, deformable
surface.

since the projector rays do not hit the surface at grazing angles,
resulting in visible brightness seams. Additionally, noise in the
depth camera can impact surface normal computation, resulting
in artifacts in the blend masks. The mandate is for the projection
intensity mask to fall off gradually to zero the closer it gets to the
projection edge in the overlapping region. At the same time, we want
to account for the distance of a 3D point to the projectors as well,
with the closer projector having a higher contribution. Therefore, we
compute distance-based blending weights using the correspondences
generated in Section 5.

First, for each projector, we pre-compute the 3D planes forming
its view frustum using its calibration parameters. Next, for each
3D point dk on the surface, we check whether its reprojection in
projector j is valid. If not, its blend weight is automatically set
to zero. Otherwise, we compute (a) the 3D distance between the
3D point and its closest view frustum planes for that projector, and
(b) the 3D distance of the corresponding 3D point to that projector.
Finally, the blend weight at the k-th 3D point in projector j, denoted
by α

j
k , is computed as:

α
j

k =
w j

kL(dk)

∑
N
q wq

kL(dk)
, L(d) =

G(d)2

H(d)2 , (4)

where dk is a 3D point on the reconstructed surface, N is the num-
ber of projectors, G(d) computes the 3D distance between the 3D
point dk and its closest view frustum plane in projector j, and H(d)
computes its 3D distance to the projector location. w j

k is 1 if the
reprojected 3D point is valid in projector j, and 0 otherwise. In other
words, if a 3D point in the overlapping region is closer to a projector,
that projector has a higher contribution to that point. At the same
time, if that 3D point is close to the projection edge, its contribution
is reduced.

The result is a blend mask for each projector where the pixel
intensities in the non-overlapping regions are one, but gradually fall
off to zero in the overlapping regions as they approach the projector
edges, resulting in a smooth display. Figure 6 shows the blend
masks for the three projectors in (u,v) space. Note that each mask
represents the entire display region. Therefore, while the falloffs
look small in the image, they span 2’ (0.7m) on the 3D surface.

7 RESULTS

Figure 1 and Figure 7 show the full seamless multi-projector display
on a deformable fabric achieved by our method. We used three PDCs

Table 1: Reprojection error (in pixels) for the 3-PDC system

Camera Reproj. Error Projector Reproj. Error
0.113 1.156
0.126 1.234
0.124 1.249

that illuminated a display surface of size 18’×4’ (5.5m×1.2m). The
display surface comprises a loosely hanging white fabric. Ten bound-
ary markers annotate the top and bottom edges across, while four
markers annotate the left and right edges down the fabric. The PDCs
are placed approximately 4’ (1.2m) away from the display surface
and 6.5’ (2m) apart from each other to have a reasonable overlap
while still covering the entire display area. Two powerful fans placed
on either side of the surface are used to simulate surface motion of
varying intensities. Figure 8 shows the seamless registration and
blending of overlapping projectors.

We used three Azure Kinect RGB-D cameras. The Azure Kinect
is a time-of-flight IR/depth camera that provides registered RGB
and depth images. It provides multiple operating resolutions. In our
work, we used the Azure Kinect in the wide field-of-view setting,
capturing 1280×720 RGB-D images at 30fps. This enables us to
cover a large display. At this setting, the depth camera resolution
is 512×512, significantly smaller than the RGB camera resolution.
However, the camera API provides methods that transform and in-
terpolate the depth map to the RGB camera space, similar to other
consumer-grade depth cameras like the Intel RealSense Depth Cam-
eras [19]. In our work, we use 3D points from this interpolated
depth map. For the projectors, we used three Optoma ZH406STx
short-throw projectors, operating at 1920×1080 resolution. At a
time, only one projector projects an ArUCo marker grid while all
cameras capture in parallel. We capture approximately 25 frames
per projector. Although the Kinect API provides camera intrinsic
and distortion parameters, we have found them to be inaccurate for
our application. Therefore, we always refine camera intrinsic and
distortion parameters. Note that the cameras are not temporally syn-
chronized, either during calibration or during real-time display. We
tested the robustness of our system by placing the PDCs in different
positions and orientations with respect to the surface, such as tilted
upwards or sideways. So long as each border marker is visible to at
least one camera and the display area is completely illuminated by
the combined projections, our system operates smoothly.

The proposed system was implemented in MATLAB and C++.
Our machine had an Intel Core i7 CPU, with 32GB RAM with
a nVidia Quadro P4000 GPU. We used OpenCV APIs for detect-
ing ArUCo markers with sub-pixel accuracy. We used Levenberg-
Marquadt optimization to implement our calibration routines. All
calibration routines were implemented in C++, except the camera
extrinsics calibration, which was in MATLAB. Calibration routines
run until convergence, which happens when any one of the follow-
ing two conditions are met: (1) the number of iterations exceeds a
user-defined limit (typically 1000), or (2) the absolute difference
between the errors in two successive iterations is less than a thresh-
old ∆ = 10−4. It takes approximately 20 minutes to fully calibrate a
3-PDC system, of which ArUCo acquisition takes 40 secions, cam-
era extrinsics calibration takes 11 minutes and projector calibration
takes 7 minutes. Note that our code is not optimized and calibration
is done only once for the system. The calibration parameters are then
used to achieve the real-time seamless projection on the deformable
surface. We used OpenGL for rendering.

7.1 Evaluation

We evaluated four main aspects of our system: (i) calibration ac-
curacy, (ii) run-time efficiency, (iii) accuracy of the 3D surface
reconstruction and (iv) display registration quality.
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Figure 8: Results of our calibration, rendering and display method. Left column: No calibration. Middle column: Calibrated result without
blending. Note the accuracy of our registration. Right column: Our final blended result.

Figure 9: Plot of the misregistered surface area (%) vs. surface
speed (cm/s), showing the effect of surface motion on the 3D surface
reconstruction.

Table 2: Display run-time breakdown for the 3-PDC system to render
a single frame.

Step Time (ms)
Border detection 3.78
Surface Reconstruction 3.37
Blending 3.56
Warping 10.65
Total 21.36

Calibration Accuracy: Table 1 shows the reprojection error
achieved using our calibration method for each camera and pro-
jector in our system. The reprojection error for all cameras is less
than 0.2 pixels, whereas for projectors, it averages around 1.5 pix-
els. The reason for the relatively higher reprojection error for the

projectors is due to noise in the depth capture by the Kinects.
With the exception of [15], existing calibration methods require

the surface to be static, rigid and/or of known shape, none of which
apply to our case. The calibration parameters provided by such
methods are accurate only for a specific surface geometry. If the
surface then moves, we will see misregistrations immediately. In
contrast, our method can exploit the surface movement to provide a
more accurate calibration.

Runtime Efficiency: Table 2 shows the runtime breakdown of our
system to render a single frame for the display with 3 PDCs after
each RGB-D camera has provided a frame for processing. Note that
the total time taken by our system to render a single frame for the
deformable surface is 22ms, which is less than the camera frame rate
(33ms/frame). Therefore, our system is limited by the camera frame
rate and theoretically, we can support cameras where each frame is
rendered in 22ms or higher (i.e. maximum of 45 fps).

Surface Reconstruction Accuracy: To evaluate the surface recon-
struction accuracy, we computed the surface area of the reconstructed
surface that where the depth differed from the surface reconstructed
from the dense depth maps by more than 1cm. We captured data at
various surface speeds, ranging from stationary to motion mimicking
strong gusts of wind. Figure 9 shows these areas of the reconstructed
surface as a percentage of the total surface area. Notice that with
increasing surface speed, the error increases only slightly, reaching a
maximum of 4.25%. This amounts to an area of 3 sq. ft. distributed
across the total 72 sq. ft. display (0.25m2 of 7m2) and is impercepti-
ble. Notice also that there is still some error even when the surface is
stationary. This is not due to calibration errors (which would result
in visible misregistrations of the display) but the small wrinkles in
the fabric which our reconstruction method interpolates over.

Display Registration Quality: We captured a video of the over-
lapping regions of the final display when projecting text at various
surface speeds and compared it to the original image using the Struc-

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3372097

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 01,2024 at 15:52:33 UTC from IEEE Xplore.  Restrictions apply. 



(a) Registration Accuracy versus Surface Motion (b) Momentary misregistrations

Figure 10: Effect of surface motion on registration accuracy. (a) The graph shows the SSIM score of a video of the overlapping projection
compared to the original text image. The images underneath show the projected frames with the lowest SSIM scores at the corresponding
surface speeds. (b) shows momentary misregistrations for other types of display content.

tural Similarity Index Measure (SSIM) [61]. The SSIM score ranges
from 0 to 1, with lower values corresponding to poorer quality, while
a score of 1 indicates an exact match. Figure 10 shows the varia-
tion in the SSIM score over 300 video frames. For smaller surface
movements, the SSIM score remains generally high, greater than
0.94. However, as expected, with increasing surface speed, the SSIM
score decreases, going below 0.9 for a few frames which is when
misregistrations become obvious. This is confirmed by a visual anal-
ysis of the overlapping projections as well. The images of the text
in Figure 10a show the display registration in the video frame with
lowest SSIM score for each surface speed across the 300 frames. It
is important to note that these misregistrations are only momentary
as the display continues to adapt to the changing surface geometry.

7.2 Discussion and Limitations

Latency: Although our calibration and surface reconstruction is quite
accurate even in strong winds, we still see misregistrations in the
final display at high surface speeds (Figure 10). This is mainly
due to the lag caused by our system. It takes 22ms to render a
single frame for a 3-PDC system and this lag is enough to see minor
misregistrations in the overlapping regions for a brief moment. One
possible hardware solution is to use higher speed RGB-D cameras
e.g. 45fps to mitigate these misregistrations. A possible algorithmic
solution is to use motion prediction. While prior work has used
motion prediction for rigid bodies in a multi-projector DPM setup
[54], these techniques are not applicable in our case where the
surface is deformable and the movements are random and complex.

Depth Camera Noise: A problem with using commercial depth
cameras such as the Azure Kinect is noise in the captured depth map.
Using noisy depth for calibrating the system can result in calibration
errors. However, our novel calibration method uses ray and plane
-based constraints to mitigate those effects. During display runtime
however, noise in the depth map manifests as a jittery display. [15]
is the first work that addresses this jitter in the context of DPM by
using the Kalman filter to smooth the points. However, the Kalman
filter introduces some lag which can manifest as misregistrations in
the overlapping regions. Therefore, in the future, we would like to
explore other more accurate noise removal methods.

Border Markers: We place border markers on the surface to serve
as features demarcating the display boundary. This is necessary for
deformable surfaces as the projection areas change based on the
surface movement. While [17] explain a marker-less method of per-
forming DPM, they rely on a clear depth discontinuity between the
surface and the background. This is not guaranteed in our case and
we would like to explore methods that do not require any boundary
features to perform DPM on deformable surfaces in the future.

Display Readability at High Surface Speeds: Our goal was to
create a projection display that conforms to the surface shape as it is
perceptibly pleasing for viewers. However, with high surface speeds,
the display readability may be compromised due to the rapid surface
motion. In the future, we would like to study this effect of rapid
surface motion on display readability by conducting user studies and
exploring algorithms that can stabilize the projection at high surface
speeds.

Display Color Quality: As shown in Figure 1(d), Figure 7 and Fig-
ure 8, our distance-based blending method is able to blend the over-
lapping regions to create a seamless display in real-time. Though
normal based blending does not work in this scenario, we would like
to explore adapting other color calibration methods such as [24, 58]
for deformable dynamic surfaces in the future.

8 SUMMARY

In summary, we present the first work to achieve large seamless
displays on dynamic and deformable surfaces using multiple projec-
tors and RGB-D cameras. We present new methods that accurately
calibrate the devices, track the surface and blend the projectors in
realtime. In the future, we plan to improve our system by addressing
existing limitations.
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