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Because it takes time and trust to establish agreement, traditional consensus-

based architectural styles cannot safely accommodate resources that change faster

than it takes to transmit notification of that change, nor resources that must be

shared across independent agencies. There are physical and logical limits that make

simultaneous agreement (a strong form of consensus for read/write variables)

expensive and ultimately, impossible. In practice, software architects resolve this

contradiction by assuming that network latency is negligible and that computers

operated by independent agencies are reliable — two increasingly shaky

assumptions about integrating services across the Internet.

Our approach to this challenge is architectural: proposing constraints on the

configuration of components and connectors that induce desired properties of the

whole application. Specifically, we present, implement, and evaluate variations of

the World Wide Web’s REpresentational State Transfer (REST) architectural style that

are optimized for centralized, distributed, estimated, and decentralized systems.
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For centralized resources, we enforce simultaneous agreement by extending

REST into an event-based architectural style by adding Asynchronous event

notification and Routing through active proxies (ARREST). For distributed control of

shared resources, we enforce ACID transactions by further extending REST with

end-to-end Decision functions that enable each component to serialize all updates

(ARREST+D).

The alternative to simultaneous agreement is decentralization: permitting

independent agents to make their own decisions. This requires accommodating four

intrinsic sources of uncertainty that arise when communicating with remote

agencies: loss, congestion, delay, and disagreement. Their corresponding

constraints are Best-effort data transfer, Efficient summarization of data to be sent,

Approximate estimates of current values from data already received, and Self-

centered trust management.

These so-called ‘BASE’ properties can be enforced by replacing references to

shared resources with end-to-end Estimator functions. Such extensions to REST can

increase precision of measurements of a single remote resource (ARREST+E); as

well as increase accuracy by assessing the opinions of several different agencies

(ARRESTED).

The contributions of this dissertation include: a formal definition of

decentralization; an analysis of the limitations of consensus-based software

architectural styles; derivation of new architectural styles that can enforce the

required properties; and implementations that demonstrate the feasibility of those

styles and sample applications.
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Chapter 1:   INTRODUCTION

We are interested in designing decentralized software for a decentralized

society — systems that will permit independent citizens, communities, and

corporations to maintain their own models of the world. Portions of such

applications must operate under the control of multiple, independent administrative

authorities (agencies); and may be physically separated to the extent that

communication latency between those parts becomes a significant factor in their

design.

The state of the art in software engineering has long focused on designing

solutions for distributed systems, which presume consensus is always possible.

Physics abandoned simultaneity with relativity in 1905; formal models of

computing disproved consensus over faulty, asynchronous networks in 1985 [71].

Regardless of how dominant centralized client/server architectures may appear to

be today, the physical limits of latency and the social limits of free agency will

make decentralization inevitable for software as well.

Our approach to coping with uncertainty and disagreement is based on the

study of software architecture: constraints on configurations of components and

connectors that induce desired properties of an overall system. This dissertation

introduces several new architectural styles that are expressly designed to

accommodate decentralization. First, we developed a formal model of the problem

that allows us to analyze the limitations of consensus-based architectural styles;

and to precisely define the properties of centralized, distributed, estimated, and,
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ultimately, decentralized resources. Second, we addressed those limitations by

proposing new architectural elements and constraints that could be added to an

existing network-based architectural style to induce each of those properties. Third,

we validate the feasibility of those newly derived styles by implementing the

infrastructure for, and applications of, each.

1.1  SCENARIO

Electric utilities are an example of an industry that is embracing

decentralization, and could well motivate development of novel architectural

styles. Unlike physical goods, electricity cannot be stockpiled effectively; therefore,

power generation and consumption have to be maintained in continuous

equilibrium.

The origin of the hardware/software system for controlling electricity distribution

today is essentially centralized [47]. Local, regional, and international grids are

interconnected through single-agency control centers, typically with a public

mandate to preserve equilibrium supplies at all costs (i.e. they are independent of

any private generator or consumer).

Thus, there is a closed decision loop today between firing up an air conditioner

and firing up an additional gas turbine in a faraway power plant. Each increase in

demand or drop in supply voltage, respectively, trickles up the “chain of command”

to those control centers.

However, the widely acknowledged vision of the future of power generation,

distribution, and storage is to support a vast array of much smaller-scale devices,
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potentially owned and operated directly by consumers and businesses [29]. To be

sure, relatively few customers today can operate their own closed-cycle

cogeneration plants, or sell solar power back into the grid — in part, because both

joining and leaving the public grid can be quite complex, legally and financially

[40].

According to this vision, there won’t be a convenient readout on the big board

stating exactly how many watts are being consumed moment-by-moment; indeed,

due to network latency and privacy regulations, it may not be able to speak of such

a number anymore. Especially once the decision to bring capacity on-line to

service that air-conditioner is made locally, say, by the fuel-cell-cum-water-heater in

your neighbor's garage.

A traditional client/server solution for developing a control system for

distributed energy resources (DER, [108, 173]) would be to place sensors at each

producing or consuming node. Those meters would be assumed to be trusted,

because they are property of the utility. Similarly, telemetry streams would be

trusted insofar as the readouts could be faulty, but not maliciously manipulated.

Also, the telemetry data would be presumed to arrive at the control center in

real–time.1 In this setting, solving for equilibrium is a simple matter of toting up all

                                               
1 Since the most time-sensitive operation in a control center is throwing open an
interconnect (requiring phase alignment of 60Hz loads), the minimum observable
unit of time is ~10msec. That is greater than the speed-of-light delay for any
regional grid, so as long as the network latency from sensors to controllers is
minimized (as circuit-switched telephone networks indeed do). Thus, the entire grid
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the rows in a database table and thence deciding whether to activate additional

generating capacity, or to initiate rolling blackouts.

By contrast, a truly decentralized future for power generation must permit new

generation, storage, and distribution elements to be independently owned, perhaps

by consumers themselves. No longer would an architect presume that trustworthy

sensor data could be collected and analyzed at one location in real-time. Instead,

the software that controls every single energy–producing or –consuming device

would be operated on behalf of a separate agency. Thus, devices could not

automatically trust any information coming in from other agencies without an

elaborate trust-management mechanism (such as a public key infrastructure). That

could even include forged bids and trades, usage levels, fuel supply levels, or even

falsified weather forecasts in order to take advantage of a system without central

controls. Furthermore, this would no longer be a fully-interconnected grid, in order

to support new use cases such as ad-hoc battlefield power supplies, self-contained

campus plants, or mobile sources like cars & trucks. All of this increases latency,

not only through use of slower, public Internets, but also by adding polling delays,

such as for remote devices that might only dial-in once per day.

These concerns about latency and agency pose unique risks in this context:

PRICE VOLATILITY. Setting the price of electricity is a basic mechanism for aligning

supply and demand — but there wouldn’t be a single price point any more. Since

                                                                                                                                           
control system can effectively operating in real-time (i.e. effectively zero latency)
and can apply consensus-based architectural styles.
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every owner can decide whether or not to turn their equipment on or off

independently, then they might as well be able to control its current price. Device

control software must support such independence by replacing references to a

“price” variable with estimates of the best price available from a long list of offers.

This has the potential to make the ultimate price of electricity quite volatile,

depending on time of day, marginal usage level, and the physical location of

producers and consumers.

ARBITRAGE. Decentralization could create new ways to ‘game the system,’

because news about the “real world” may permit coalitions of providers to

manipulate supplies or reschedule demand for their benefit. Private producers

might not be legally obliged to keep the system running smoothly the way

regulated public utilities are, and certainly can’t be forced to through technological

means alone.

INSECURITY. An active attack is the extreme case of the risks above. Any decision

to trust an external agency becomes a presumption worthy of subversion. If there

were a single control message that could tell a malfunctioning device to shut down,

then forging such messages could take out the entire system. If there were not a

trusted settlement system, could attackers steal power without paying for it?2

                                               
2 In trading applications, this is known as counterparty settlement risk — the risk
that the buyer may become insolvent before the trade actually clears. Perhaps the
most famous example of such havoc is “Herstatt risk”, named for a German bank
that collapsed in the middle of a workday on June 26,1974 — it took several years
to sort out which overseas correspondent banks would get their money back after
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UNRELIABILITY.  Eliminating a single point of failure also eliminates a single point

of control. Hierarchically delegated regulatory authority establishes an agency

responsible for maintaining reliable power. If the role of regulation is relegated from

active management of the grid to merely establishing standard protocols, then we

may not even be able to know what systemic vulnerabilities we might face from,

say, an earthquake.

Each of the risks enumerated above are also opportunities. After all, the cardinal

virtue of decentralization is that it even though it may increase risk, it should also

reduce our exposure. Unlike a total regional failure, the entire system should still

keep working to some degree after a disaster. Society will also benefit from more

efficient allocation of resources overall: it may well be ‘better’ for some

neighborhoods to pay much more than others rather than artificially subsidize each

other.

Control software for this new world not only needs to establish interoperability

standards [55] — what kind of power will I get? For how long? At what price? —

but also needs to actively establish approximate equilibrium based on local

information alone. Device control software might even grow complex enough to

simulate speculative futures markets based on estimates of when a battery may

discharge, whether an accident knocks out a transformer, or increased demand for

a cogenerated byproduct, such as hot water. Moreover, that doesn’t even begin to

                                                                                                                                           
the German government decreed that domestic obligations were to be given
priority [2, 52].
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incorporate the emergent, serendipitous benefits of integrating energy management

with other information systems: What if your house learned your return flight was

cancelled and avoided heating the pool to begin with?

What we are fairly certain of, though, is that current architectural styles are

poorly matched to these challenges. Software applications for decentralized “power

webs” may well resemble efforts to decentralize “computing power” today: grid

computing or so-called web services are just two approaches for advertising,

discovery, invocation, and performance monitoring of the applications that will run

within power devices. Applications to control power webs will require robust trust

management, to filter out intruders who join the web with the intent of disrupting it.

They may also require sophisticated statistical modeling to optimize entire power

supply chains under the influence of uncertainties due to network latency and

independent agency. Based on our newly developed styles, we will revisit this

scenario in §12.3 with our own recommendations for developing such software.

1.2  APPROACH

Our approach to the challenge of developing software for decentralized systems

is architectural: proposing constraints on the configuration of components and

connectors that induce desired properties of the whole application. Since the initial

context of our interest in decentralization was Internet-scale application integration,

we chose to begin with REpresentational State Transfer (REST), the architectural style

behind one of the most popular decentralized applications to date: the World Wide

Web.
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REST was originally developed to explain the design of the Web’s network

protocols and client, server, and proxy software. Its key insight was a separation of

concerns between abstract resources, concrete representations, and their names

that neatly decoupled the traditional requirement for stateful interaction in

client/server systems and emphasized the genericity of service interfaces.

Furthermore, it accommodates multiple-agency namespaces, an essential step

towards decentralization.

However, some of REST’s essential features disqualify it for decentralized

applications. One-way, one-shot, and one-to-one representation transfers prohibit

REST servers from continuing to update clients as the representation of a resource

changes over time. Nor can it connect graphs of components without forcing

complete mutual trust, since its only mechanism for composition is the linear proxy

pipeline.

Nonetheless, it is an appropriate starting point because the

resource/representation abstraction readily maps on to the event source/event

notification abstraction required to maintain simultaneous agreement. Furthermore,

robust software infrastructure already exists for REST, so we believe that our

incremental stylistic extensions should correspond to incremental implementation

effort for prototyping.

The approach that guides our infrastructure implementation is to follow

precedents from the design of a successful infrastructure that already exhibits these

properties: the Internet. The dominant model for software integration today is to use
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binary components with Application Programming Interfaces (APIs). We believe

there is a new model for packaging software as network-accessible services using

open, standard application-layer messaging protocol interfaces. We call this

approach Application-Layer Internetworking (ALIN).

The approach that guides our application implementation is to investigate a

domain that directly reflects the range of centralized, distributed, estimated, and

decentralized social structures: auction markets. While there is a wide variety of

examples beyond merely focusing on prices (such as simulation or calendaring, to

name two), establishing market equilibrium is still the archetypal decentralized

problem.

1.3  CONTRIBUTIONS

First, we specify a formal model and definitions of the heretofore ill-defined

terms centralized, distributed, estimated, and decentralized, as well as testable

properties of each type of variable and resource.

Second, we design a family of architectural styles derived from REST that induce

several properties that REST alone could not: simultaneous agreement, ACID

simultaneous agreement, BASE approximate agreement, and complete consensus-

freedom.

Third, we develop open-source implementations for these styles, including

multi-protocol, application-layer event routers, management tools, and sample

applications.
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1.4  VALIDATION

Architectural styles for software are often descriptive efforts, but our

hypothetical styles are prescriptive instead. The study of software architecture has

typically been based on historical accumulation of experience, such as in the

design patterns community [86]. REST was articulated some years after the World

Wide Web was already successful. Even in this investigation, most of our ideas

come from reflecting upon the construction of several practical event routers and

building applications with them, rather than theory alone.

The standard method of evaluating an architectural style is observation in

practice: analysis of existing systems [203], and even controlled experiments where

the same application is built in multiple styles [92, 211]. But if we may term that

the inductive approach to identifying styles, by the properties they induce from

examples, then this dissertation takes a deductive approach, because it prescribes

specific new stylistic constraints that induce desired properties. The appropriate

measure of a deductive solution is to formally demonstrate that it is correct by

construction.

We will also illustrate that the resulting styles are indeed feasible to implement

and to apply. While we could make our points using some of the wide range of

application samples included in the MOD_PUBSUB project, we will introduce a

coherent family of auction applications that span the range of centralized,

distributed, estimated, and decentralized marketplaces.
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Specifically, we adapt a used-car marketplace to support: centralized control of

sale prices; distributed control using a best-price auction; estimated control in a

GUI interface that continues to display a price range once disconnected from the

network; and decentralized control of a generic concept such as “truck prices,”

assessed from a series of individual vehicle auctions.

1.5  ORGANIZATION

The basic organizational pattern of this dissertation is the pairing of a desired

property and the architectural constraints that induce it. We design several new

styles using this pattern of alternating subsections: specification of the required

properties, a definition of the new style, validation that the new style correctly

implements the abstract specification, and implementation issues encountered in

practice.

We begin with unmodified REST (Chapter 4) and proceed to derive a family of

consensus-based styles for centralized (Chapter 5) and distributed resources

(Chapter 6). At that juncture, however, we encounter the limits of consensus and

the necessity of decentralization. Developing applications on networks with

excessive latency, or that span agency boundaries, requires splitting a resource into

many local, independent resources. Chapter 7 introduces our general insight for

proceeding outside the so-called ‘now horizon’: explicitly managing the risk of

disagreement. This will inform our development of specific new properties and new

styles for both estimated (Chapter 8) and decentralized resources (Chapter 9).
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The remainder of the dissertation focuses on implementing infrastructure for,

and sample applications of, each of these new styles. First, Chapter 10 discusses

our approach towards connecting decentralized components, Application-Layer

Internetworking (ALIN); the design of our application-layer Transfer Protocol (TP)

router; several open-source and commercial implementations of the same; and

concludes by identifying and comparing aspects of our solution that reflect aspects

of each new style. Second, Chapter 11 illustrates the feasibility of our approach

towards assembling decentralized components by presenting a simple methodology

and applying it specifically to an archetypal auction market application.

Finally, Chapter 12 summarizes our work and identifies our specific

contributions, as well as outlining an agenda for future research in this area.
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Chapter 2:   PROBLEM ANALYSIS

Like any other design discipline, software development is subject to the vagaries

of fads and fashion. In recent years, there has been a surge in the popularity of the

term ‘decentralization’: we hear of ‘decentralized file-sharing,’ ‘decentralized

supercomputers,’ ‘decentralized namespaces,’ and a slew of similar claims of ‘peer-

to-peer,’ ‘Internet-scale,’ and ‘service-oriented’ architectures [59, 155, 176].

To date, the software engineering and software architecture literature has not

embraced a formal definition of ‘decentralization.’ Indeed, in a full-text search of

the ACM Digital Library, we found that it was often considered a synonym for

‘distribution’ until only recently. Even as of 1998, it only occurs in the official ACM

subject classification once [14], and then only with respect to the organization of

MIS departments and users [94, 127].

Our goal is to provide precise, testable definitions for each of our key design

regimes using well-known formal models of distributed computing. To that end, this

chapter will proceed to discuss the factors leading to decentralization, provide a

formal definition of simultaneity in terms of the consensus problem, and use that, in

turn, to formally define the properties of centralized, distributed, estimated, and

decentralized resources. All these are prerequisites for stating the specific problem

we intend to investigate: deriving new architectural styles that can assist in the

development of applications that use such resources.
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2.1  FACTORS

Let us consider an e-commerce example for elucidating the factors leading to

decentralization. In an ideal world, if a bookseller’s website says they still have one

copy of a novel left for sale, there would really be one left. In practice, there may

not.3 It may have been sold by the time you hit the ‘buy’ button. Or, the seller may

just be lying about its scarcity to drive up the price. Today’s applications have few

safeguards to prevent processing out-of-date or untrusted data. These errors, though

seemingly minor today, will compound into severe commercial and security risks

once we routinely expect to chain together services provided by multiple

organizations.

The essence of decentralization is that there can be more than one answer to

the same question. In this case, the question “How many copies are for sale?” has

one answer according to the seller’s software, another according to the (properly

skeptical) buyer’s software. Furthermore, even precise knowledge of the

bookseller’s claimed inventory at the warehouse may not be accurate. After all, it

could be burning down to the ground at that very moment, no matter what the

table in the “reliable” inventory database server might say.

Informally, we have identified two basic factors that can force systems to

accommodate more than one answer: it may take too long to find out that one

answer, or it may not be legally possible to mandate one answer. The former is an

                                               
3 “In theory, theory and practice are the same. In practice, they differ.”
        — Jan L. A. van de Snepscheut [223]
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absolute physical limit: latency; the latter is an absolute social limit: agency. Later,

we will argue that these two forces correspond to the two conditions that make

consensus formally impossible (asynchronous networking and faulty processes,

§2.2). For the moment, though, the next two subsections will discuss the causes

and effects of latency & agency.

2.1.1  Latency

It is important to understand the sources of latency because latency constrains

the physically realizable configurations of shared state in a software architecture, or

conversely, for understanding the limits of an application running on a given set of

machines. Money can buy exponentially increasing computing, communications,

and storage capacity, but latency is absolute.

Latency makes simultaneous agreement impossible in many real-world

situations. Consider how it affects a stock traded on the (centralized) New York

Stock Exchange. A stockbroker in London interested in knowing the current price of

the stock consults a server that broadcasts its current price. Because of fundamental

physical limits like the speed of light through fiber optic cable, she can only know

what the price of stock was several milliseconds ago, at best. Realistically, Internet

delays could range up to two seconds, or worse. Thus, it is impossible for the

London stockbroker to know the current price of a heavily-traded stock traded in

New York, as shown in Figure 1.
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Figure 1: Latency induces uncertainty for traders “further” away from a centralized
resource.

This is not an untenable situation, provided the stock price holds steady for

longer than two seconds. If the price of the stock changes every ten seconds, for

instance, then the London stockbroker has a full six seconds to place a buy order

and send her request before the price of the stock changes again (remember, we

presume her order will take up to another two seconds to propagate back to the

server in New York). The problem occurs when the interval between changes in

price drops below two seconds. In this case, the London stockbroker’s information

is always stale. Even at four seconds between updates, it arrives too late to act upon

reliably. (Furthermore, on many new networks, the maximum delay is much longer

than two seconds: consider the case of wireless carriers buffering traffic while the

caller drives through a tunnel.)

The concentric circles in Figure 1 represent latencies using a logarithmic scale.

Their radii are correlated with distance, but more intriguingly, also determine the

maximum update rate of an event source. In §7.1, we will term this a ‘now

horizon’, since it demarcates which components can reliably refer to the value of a

variable ‘right now.’
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While high-frequency data have small now horizons, even rarely-changing data

may constrain systems in the same way. Network latency also determines the

minimum reaction time of a system.

For example, the Federal Reserve Bank overnight interest rate may stay fixed for

months, but fortunes are made and lost in mere seconds after a change is

announced. Waiting for the next day’s newspaper coverage could prove ruinous;

even such a low-frequency event source requires high-frequency observation to

minimize the delay between observation and notification. Similarly, DNS is only

designed for daily updates, making it impossible to create a new second-level

domain name in less than 24 hours that works throughout the Internet.

2.1.1.1  Physical Limits

Feynman once observed that “When I talk about everything in the world that is

happening ‘now,’ that does not mean anything... We cannot agree on what ‘now’

means at a distance.” [65]

He was referring to a revolution in physics nearly a century old. Einstein

contradicted Newtonian physics by positing that uniform motion in a straight line is

relative — that no experiment can reveal which of two observers is moving and

which is at rest. The most famous consequence of this principle is that nothing can

travel faster than c, the speed of light in a vacuum.

Interestingly, physical information is apparently, like energy, a
localized phenomenon. That is, it has a definite location in space,
associated with the location of the subsystem whose state is in
question. Even information about a distant object can be seen as just
information in the state of a local object (e.g. a memory cell) whose
state happens to have become correlated with the state of the distant
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object through a chain of interactions. Information can be viewed as
always flowing locally through space, even in quantum systems [76].

Frank’s discussion of the ultimate physical limits to computation, storage, and

communication is the key to understanding why latency is an absolute constraint

for software architects: it takes time and energy to transmit information across a

channel, if one even exists.

PROPAGATION. An alternative interpretation of relativity is causal: c is the

maximum speed of bits. Popular reports of research in quantum computing using

entangled particles for “quantum teleportation” and “quantum cryptography” may

initially seem eerily “telepathic” (as even Einstein described the instantaneous

effects of entanglement), but actual transmission of information still requires a

corresponding classical message to be sent — below c — in order to recover the

state [19].

Furthermore, practical communication channels actually only achieve small

fractions of c: photons travel at 67% c over fiber; electrons travel at 10% c over

copper; and atoms travel at 0.0001% c over Federal Express. Furthermore, error-

correction, compression, and other channel coding techniques also add overhead

and jitter to propagation delays. Two major examples are the impact of bandwidth

limits and disconnected operation.

BANDWIDTH. In a related argument from [76], information transmission across

space can be viewed equivalent to information storage across time, and thus

subject to the same minimum-energy requirements. Since information flux, often

termed ‘bandwidth,’ is also an energy flux, the maximum capacity of channel must
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be finite. If the desired signal rate is greater than capacity, a buffer could be used to

store the input until the output is ready. However, total delay still increases linearly

until buffer space is exhausted and, then, data must still be discarded. Furthermore,

for store-and-forward networks, buffers on-disk or on-DRAM may be quite large

and high bandwidth, but still high-latency. This adds transit time to and from the

buffer to the total latency of the channel.

DISCONNECTION. Store-and-forward networks are also robust in the face of

limited network partitions. If a line-of-sight is occulted, as for interplanetary

networks, or for nomadic cellular users entering a tunnel, the network layer often

buffers further to mask the disconnection. System crashes are another source of

transient partitions. We choose to model the finite buffer capacity and timeouts for

supporting transient disconnection as an additional component of a channel’s total

maximum latency. Email, for example, typically will be delivered in minutes, but it

will not bounce back as undelivered for five days. That makes SMTP a five-day

latency channel for our analysis, regardless of what the average latency might be.

2.1.2  Agency

While latency is a physical limit, the concept of an agency is a socially

constructed one. We are referring to the divergent interests of the organizations that

ultimately own and operate the computers that software runs on, who have

different (possibly conflicting) goals and interests [200].

An agency boundary denotes the set of components operating on behalf of a

common (human) authority, with the power to establish agreement within that set
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and disagreement outside it. The anthropocentrism of the concept may seem

inappropriate for the concerns of software architecture, at first. The missing link is

the tacit assumption that, at least in a capitalist economy, every computing device

is owned by a person or organization, and is thus expected to operate on behalf of

that agency.

For example, our department recently installed a virus scanner on its central

mail server that promptly deleted several drafts of a paper. Those messages’

INFECTED flags were set solely by the scanner, which is configured, in turn, solely by

the support staff. No feature of that centralized scanner software was prepared to

brook dissent from its judgment (and furthermore, the attachments were deleted

forthwith, in accordance with an entirely separate privacy policy that forbids

support staff from storing mail!). In lieu of a decentralized virus scanner that would

have let each agent — sender, receiver, administrator — test INFECTED locally and

react independently, we defeated the scanner entirely by controlling a variable that

was under our control. It no longer scanned the attachment once we changed its

file-type code, the truth of which the scanner entrusts to the sending agency as

blithely as it arrogates exclusive control of the INFECTED flag for itself.

The generalization of this phenomenon is a ‘web of trust.’ If every architectural

element — every component, every connector, every computer — is controlled by

one agency or another, then every connection between them in an architecture

diagram must be justified by a corresponding trust relationship between its owners.
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Consider a database package. Run a ‘local’ copy for yourself, and then if you

store X=5, then 5 is the one and only true value of X. Accessing some remote

agent’s instantiation of the very same software package, though, raises corrosive

new concerns about bias and reliability. There is a profound difference between the

output of the local database component (“I believe X is 5”) and the remote database

service (“Someone else believed X was once 5”).

2.2  FORMAL MODEL

Lynch, in [144], claimed “The impossibility of consensus is considered to be

one of the most fundamental results of the theory of distributed computing.” In

1985, Fischer, Lynch, and Paterson proved that on a completely asynchronous

network (one with maximum message latency d=∞), if even one process can fail,

then it is impossible for the remaining processes to come to agreement [71].

Furthermore, Lynch’s textbook also includes a proof that even with a partially

synchronous network (one with only a finite d), but with message loss or

reordering, consensus still requires at least d seconds. In general, tolerating f

processes failing requires at least (f + 1) additional rounds [144].

However, this model of consensus does not ensure simultaneity. Some processes

may decide sooner than others, depending on the actual message latencies

encountered. Furthermore, if the value being shared is modified, the algorithm

ought to be run all over again. In that case, some processes may continue to use the

prior value after others have moved on. The following subsection will extend the
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well-known model of consensus to handle the additional requirements of

simultaneity.

2.2.1  Simultaneous Agreement

The term “simultaneous agreement” originated in contract law, specifically for

defining financial instruments. An ordinary cash transaction is a simple example of

simultaneous agreement upon a trading price, Ptrade. Computer scientists would call

this an atomic transaction, since money is exchanged for goods at the same

instant.4 Another permutation of the same problem is ensuring that every reference

to the same variable yields the same value throughout the entire system.

Specifically, if a leader’s variable X is assigned some value, any follower’s reference

to it using a local variable Y must return the same value, or block while waiting to

read the current value:

Simultaneous agreement holds between two variables X and Y
whenever Y = (X ∨ ∅).

The difficulty arises once X is assigned a new value: How can we ensure that Y

is eventually assigned the same value — and reset to ∅ before X changes again?

Since it takes at least d to establish consensus, simultaneous agreement requires

holding the leader’s value constant for longer than d. Similarly, tolerating f process

stopping failures requires holding the leader’s value constant for longer than (f + 1)

· d. A corollary is that it is impossible to guarantee simultaneous agreement for any

                                               
4 Or, at least within the ~100msec threshold of human perception, so that one party
can’t steal the goods and the cash.
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centralized resource that changes more frequently than 1⁄d times per second (or

1⁄(f + 1)·d times per second, in order to tolerate f failures).

To refine our definition of simultaneous agreement more precisely, we need to

qualify the value of a variable as a time-variate function by stipulating the existence

of a global clock.5 We can proceed to define simultaneous agreement as the

interval of time satisfying the following conjunction:

∃ t0 , ti , tj : ( ti ≤ tj ) ∧ (ti ≤ t0 + d) :

∀ v : ti ≤ v ≤ tj :  Pleader(v) = Pfollower(v)

   ∧∀ u : t0 ≤ u ≤ tj :  Pleader(u) = Pleader(t0)

That is, the leader and follower values must become equal at some point; and

the leader must not have changed in the meantime.

This condition is met in the shaded area of Figure 2, where world-lines are

drawn vertically for the leader and follower processes; the horizontal separation

reflects the time it takes a signal to traverse the distance between them. A message

takes at most d to travel, so simultaneous agreement only holds for the span of time

after the message arrives until Pleader changes from 5 to 3. However, if the variable

changes after an interval shorter than d, as from 3 to 7, it is impossible for the

message to arrive “in time”; and hence, simultaneous agreement is also impossible.

                                               
5 To be sure, it is only possible to synchronize clocks in an inertial frame of
reference. The argument that follows is limited to computers that are at rest with
respect to each other.
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message: '3'
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message: '5'
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pleader = 5

pleader = 3

pfollower = ∅
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d

pleader = 7

message: '7'pleader = 3

t0

ti

tj

Figure 2: The shaded region illustrates an interval of simultaneous agreement.

Note that our definition requires Pleader to be constant while agreement is

established. At the bottom of the diagram, even though the leader switches back

from 7 to 3 before the message “3” arrives at the follower, that is mere coincidence,

not simultaneous agreement. Either a follower must contact the leader and request

a lock to hold the value constant while it works, or the leader must indicate the

period of time it commits to holding a value constant, which is called a lease.

A leased value is represented by a (value, interval) pair, where interval is

specified by the start time and duration of the lease. In conjunction with a global

clock, the lease makes it possible for the recipient to determine whether the value

is still valid. In Figure 2, the follower can correctly reset the value of Pfollower to ∅ at
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the first instant the leader is able to change (in this case, from 5 to 3) if we extended

the contents of the message to specify a lease.

2.2.2  Related Models

Since we are addressing a fundamental aspect of coordinating multiple

computers, it is not surprising that there already is a wide variety of related models

in the literature. While by no means an exhaustive list, we would like to describe a

few and explain how our work is similar to, and different from each.

BYZANTINE GENERALS. The Byzantine Generals problem [139] is a variation of the

Prisoner’s Dilemma [84, 226] where several parties must coordinate an attack

simultaneously to win — but they can lie to each other, too. As it was originally

described:

Reliable computer systems must handle malfunctioning components
that give conflicting information to different parts of the system. This
situation can be expressed abstractly in terms of a group of generals
of the Byzantine army camped with their troops around an enemy
city. Communicating only by messenger, the generals must agree
upon a common battle plan. However, one or more of them may be
traitors who will try to confuse the others. The problem is to find an
algorithm to ensure that the loyal generals will reach agreement.

The impossibility results derived in that paper have since been superseded by

more general results, but the main reason it is relevant to us is that it explicitly

poses an equivalence between process failure and what we term agency conflict.

By drawing an analogy between an anthropomorphic “traitor” and a mechanical

failure, it reveals that the rhetoric of intent can be set aside for a formal abstraction

of the problem. The presumed loyalty of “lieutenants” is another assumption that

we represent using a hierarchical, bidirectional web-of-trust in our model.
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The solution originally proposed is only robust against conspiracies of up to 1⁄3

of the generals. This is often sufficient to establish consensus in read-only

decentralized systems, if not simultaneous agreement:

Many P2P storage systems are advertised as repositories of read-only
information. The biggest barrier to providing a writable system is
consistency—establishing the identity of the latest copy of data, or
conversely, that a particular copy is out of date. Such consistency
management usually requires a centralized resource to serialize
updates. Byzantine Agreement is an ideal distributed serialization
technology. [133]

INVARIANT BOUNDARIES. First identified in [36] as the boundary between systems

that agree on an invariant and those that cannot, it closely resembles the specific

condition of simultaneous agreement. A more general condition applying to

invariant boundaries was stated as the Consistency, Availability, Partitionability

(CAP) theorem in [35, 74], and later proven in [96], which states:

… it is impossible to reliably provide atomic, consistent data when
there are partitions in the network. It is feasible, however, to achieve
any two of the three properties: consistency, availability, and partition
tolerance. In an asynchronous model, when no clocks are available,
the impossibility result is fairly strong: it is impossible to provide
consistent data, even allowing stale data to be returned when
messages are lost. However, in partially synchronous models it is
possible to achieve a practical compromise between consistency and
availability. In particular, most real-world systems today are forced to
settle with returning “most of the data, most of the time.”

This is strongly related to our own approach, though we have chosen to focus

on the performance limits of achieving consistency. We will introduce a similar

boundary that indicates which components can refer to the value of a variable

‘right now,’ a boundary which we term the ‘now horizon’ of an event source in

§7.1. In particular, we have linked our definition of the ‘now horizon’ to a
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frequency-domain model of resources. That is, we can speak of a given horizon

restricting the maximum event notification rate of a source; or, conversely, qualify

which other software components can reliably refer to an event source with a given

minimum update latency.

LOGICAL CLOCKS. Over the years, there have been many approaches that

simulate the operation of a centralized, sequential processor atop a distributed

processing network: logical clocks [134], virtual synchrony [26], and group

communication [187]. Lamport’s original work took some pains to establish the

physical basis of the ‘Clock Condition’:

We now introduce clocks into the system. We begin with an abstract
point of view in which a clock is just a way of assigning a number to
an event, where the number is thought of as the time at which the
event occurred... We now consider what it means for such a system
of clocks to be correct. We cannot base our definition of correctness
on physical time, since that would require introducing clocks which
keep physical time. Our definition must be based on the order in
which events occur. The strongest reasonable condition is that if an
event a occurs before another event b, then a should happen at an
earlier time than b. [134]

Later, in another work formalizing the mutual exclusion problem, he

emphasized:

… we have continually used physical reality as our guidepost.
(Perhaps this is why hardware designers seem to understand our ideas
more easily than computer scientists.) We therefore give a very
careful physical justification for all the definitions and axioms in our
formalism.

… formal models of concurrent processes that we know of are based
upon the concept of an indivisible atomic operation. The concurrent
execution of any two atomic operations is assumed to have the same
effect as executing them in some order. However, if two operations
can affect one another-for example, if they perform inter-process
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communication-then implementing them to be atomic is equivalent
to making the two operations mutually exclusive. Hence, assuming
atomic operations is tantamount to assuming a lower-level solution to
the mutual exclusion problem. Any algorithm based upon atomic
operations cannot be considered a fundamental solution to the
mutual exclusion problem.

…The reader may find the introduction of special relativity a bit
farfetched, since one is rarely, if ever, concerned with systems of
processes moving at relativistic velocities relative to one another.
However, the relativistic view of time is relevant whenever signal
propagation time is not negligibly small compared with the execution
time of individual operations, and this is certainly the case in most
multiprocess systems. [135]

Like his work, our intent is to remind software architects that there are

fundamental physical limits upon today’s favored architectural styles: at bottom,

they depend on consensus, and consensus is ultimately impossible to assure. That

said, we tend to argue against models that assign logical round numbers to actions.

A key change from the original setting of these works to Internet-scale is that,

twenty years later, it is possible to have sufficiently accurate physical clocks.

Practical clock synchronization using the Global Positioning System (GPS) can

achieve time resolutions far more precise than wide-area network messaging

latencies [3]. In the “real world,” wall clock time is often used to arbitrate access to

resources: bidding deadlines, first-in-first-out shipping queues, and so on. All of the

architectural styles we will develop rely on a GLOBALCLOCK component to

synchronize lease expirations.

SINGLE-ASSIGNMENT VARIABLES. An architect could avoid disagreement entirely by

restating the problem to eliminate mutable variables [217]. One example is the

technique of single-assignment: rather than resetting the value of Pleader several
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times, a series of distinct variables could each be set just once: First-Pleader, Second-

Pleader, and so on. On the other hand, this model replaces a time-varying function

with merely a series of unconnected observations, it would also rule out a simple

user interface that displays “the price is currently P.”

A common pattern for representing time-varying data with single-assignment

variables (PCN, [46, 73]), so-called “futures” (Multi-Lisp, [104]), closures (DREME,

[83]), and Hoare’s Communicating Sequential Process model (CSP, [107]) is the

recursive list data structure. Processes coordinate by waiting for a variable to

become defined, but each new value is a pair containing a new value and a new,

undefined variable containing the future remainder of the list.

PEER-TO-PEER COMMUNICATION. [95] presents a formal model for peer-to-peer

computing that uses variables to represent channels between peers. Casting

communication channels as variables may make it clearer that the latency of a

network link also determines the maximum possible update frequency of any

interaction across them. It demonstrates that the limit is independent of bandwidth

or pipelining; rather, channel capacity only affect the size of the contents of the

variable (its representation).

2.3  DEFINITIONS

Our ultimate goal in this dissertation is to understand the implications of

decentralization. It thus behooves us to begin with its definition, and definitions of

several other terms we will contrast it with later on:
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Decentralization (n): the spread of power away from the center to
local branches or governments [151].

Perhaps the subtlest aspect of this definition is suggested by the verb ‘spread’:

one can only decentralize what was once centralized. Critically, this introduces the

stance of an external observer: deciding whether a given phenomenon is

centralized, distributed, estimated, or decentralized becomes a matter of

perspective. Our goal in this subsection is to provide testable definitions for each

type, depending on how control is shared and the degree of certainty required, as

elaborated in Table 1.

Consensus-based Consensus-free

Master/Slave Centralized Estimated

Peer-to-Peer Distributed Decentralized

Table 1: Classifying types of variables by control and consensus requirements.

Another way of introducing the terms we will define is by the degree of

indirection required. The basic element of information storage is the value:

centralization requires every agent to use the same value. This can be

accomplished as simply as by connecting several devices to the same wire or other

shared medium.6 The next level of indirection is a private namespace for storing

values over time: the variable. In a distributed system, a closed group of agents uses

a single name to refer to a shared variable — even though its actual value is not

                                               
6 “A wire is just a renaming device for variables.”

— Alain Martin, asynchronous VLSI designer [146]
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stored in one place, but rather in a set of ‘shadow’ variables held by each

participant. Later, in an estimated system, there will still only be one putative

shared variable, but the local shadow copy may be a less precise.

These two levels of indirection are fairly well known. In REST, they correspond

to the concepts of representation and resource, respectively. The additional

distinction our definition of decentralization relies on, though, is a public

namespace that may differ across agencies: a concept. An intuitive illustration is the

difference between typing the URL HTTP://WWW.WEATHER.ORG/LAX into a Web

browser’s address bar, and typing the concept "LA WEATHER REPORT" into a Web

search engine’s query box. The latter may return links to many different

organizations’ opinions of the weather in Los Angeles — and several more about

the weather in Louisiana (which is also abbreviated “LA”).

The definitions we will introduce in the remainder of this subsection are all the

more important because a single system can exhibit all of these traits

simultaneously, depending on the level of abstraction. Consider an online auction

service. To a buyer, it appears to be a decentralized marketplace, since anyone can

list goods for sale using commonly-understood product descriptions and categories.

It also appears to be an estimated service, since the prices displayed in a buyer’s

browser may be out-of-date or fraudulent. To a seller, it appears to be a centralized

auctioneer, since the service alone determines the order and validity of bids.

Moreover, to the service’s own engineers, it appears to be a distributed database

service, since the data is stored and processed on many servers working in parallel.
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2.3.1  Centralized

Centralized (adj): drawn toward a center or brought under the control
of a central authority [151].

Applied within the context of software architecture, centralization can be

described as the practice of assigning exclusive control to modify information or

take action. Two examples of centralized software architecture are the use of a

shared database in the client/server style, or the use of a single mouse input in an

event-driven user interface style. Many other components will rely on references to

the resulting database record or cursor position, respectively. Nevertheless, those

resources are the only authoritative sources of such information.

A variable X is considered centralized if and only if X is modifiable at
only one location, and all references to X from other locations require
simultaneous agreement.

By location, we mean something more specific than the street address of a

computer. Ultimately, information is represented by specific arbiters: physical

devices than can make an exclusive choice between representations of information,

such as a hole on a punched-card, a magnetic particle on disk, or a flip-flop circuit

on a chip.

If we permit information in a follower arbiter to be used in a computation

without establishing simultaneous agreement with the leader arbiter, we contradict

the definition of centralization by permitting the same computation at the same

time, depending on the same centralized variable, to yield different results at

different locations.
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The following additional rule is an elementary result of queuing theory, but

bears restating: if the request rate exceeds the service rate, total service time

increases linearly. Therefore, given that d is the maximum latency from the leader to

any follower:

A centralized variable requires waiting at least d seconds between
updates.

Note that this limit is entirely independent of computing speed or bandwidth.

Consequently, no centralized software architecture can process events occurring

more frequently than 1⁄d times per second (where d is the maximum latency

between components). This limit can cause serious problems if a software architect

intends that a centralized variable should represent some phenomenon in the “real

world” that occurs more rapidly.

2.3.2  Distributed

Distributed (adj): spread out or scattered about or divided up [151].

Sharing control between several agencies requires the concept of a variable that

can be modified at several locations, not just one. However, since arbiters at each

location are physically separate devices, distribution must be defined as a condition

over several ”shadow” variables rather than a new kind of variable in and of itself.

To be sure, many popular models for distribution merely extend the single

leader/multiple follower model of centralization by delegating control to another

leader temporarily (see §2.3.2.1 below). Even two-phase commit protocols for

‘distributed’ databases rely on a centralized transaction monitor. Similarly,
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collaborative document repositories that use locking delegate control over a version

to a client for a limited time. Not surprisingly, this ersatz form of distribution —

merely letting clients propose new values for a variable still controlled by a single

server — offers the same performance as any other centralized system.

A genuinely non-hierarchical (peer-to-peer) approach to distributing control

over the value of a shared variable, instead, is to apply a shared decision function

to an ensemble of variables owned by each participating agency. We believe that is

a more appropriate model of how power is distributed in society, or in software.

Each individual agent only controls a private preference, but the distributed

consensus value is established by some shared decision function, such as the mean,

mode, maximum, minimum, or majority.

It follows that since the function df()is identical throughout, and its inputs are

local variables that are each in simultaneous agreement with their respective

remote leaders, then every local result of applying df() will also be in simultaneous

agreement:

A variable Y is considered distributed if all references to Y are
replaced by the result of applying a shared decision function df() over
a series of simultaneously-agreed variables X1, X2, …

The minimum time it takes to calculate Y is at least the maximum latency

between any two locations in the system. Since simultaneous agreement with a

centralized variable requires waiting for the maximum delay from the leader to any

other follower, it follows that simultaneous agreement on an ensemble of
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centralized variables requires at least the maximum delay from each possible leader

to every possible follower in the system.

However, actually realizing the lower-bound time of (f + 1) · d is more difficult

than in the centralized case, since it requires strict clock synchronization and phase

alignment on every update. Only if every centralized variable changes at the same

instant, and for the same lease duration, can we guarantee that all agents have

received all updates after only d seconds have elapsed. Note that if some of the

input variables, in turn, are also distributed, it need not increase the minimum time

bound; all of the decision functions in the entire system could still evaluated as

soon as all the inputs are in simultaneous agreement.

The upper bound is the more relevant, and more involved, calculation. Without

loss of generality, we choose to ignore fault-tolerance (that factor of f above). Next,

we choose to model the modification of a centralized variable as an event with a

lease. Assigning a new value to variable v at time t implies that the value cannot be

modified during the interval [t, t + Lmin), where L is the lifetime of the lease. Since it

takes d to propagate information, it follows that simultaneous agreement is

definitely feasible during the interval [t + d, t + Lmin). That interval is obviously

nonempty, since we already concluded that Lmin must be greater than d in §2.2.1.

Simultaneous agreement over the distributed variable Y is only possible during

the intersection of all the intervals where simultaneous agreement also holds for

each variable X1, X2, …, XN.  Without loss of generality, we choose to sort the time
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at which each of those variables are assigned values in ascending order as t1, t2, …,

tN. Thus, simultaneous agreement over Y holds only during the intersection:

∀ i : 1 ≤ i ≤ N:  ∩ [t + d, ti + Lmin)

Since, in general, the intersection of several intervals of the form [minimum,

maximum) is the interval [max(minima), min(maxima)), that is equal to:

[tN + d , t1 + Lmin)

For that range to be nonempty,

Lmin > (tN – t1) + d

Since the times are a sorted sequence, the value of (tN – t1) can be expanded

into the sum of the differences between each successive time:

(tN – tN-1) + … + (t3 – t2) + (t2 – t1)

This is at most (N – 1) · max(tk – tk-1). The crux of the following calculation is that

it is not possible for successive times to be more than d apart.7 Informally, we

would already be in simultaneous agreement with a variable that had not changed

for at least d; we should have included the prior modification of that variable in our

sort order.

                                               
7 More precisely, though, they could be more than d apart if some of the inputs are
also, in turn, distributed variables. While recursive composition of distributed
variables does not increase the lower bound, it does increase the upper bound.
max(tk – tk–1) is actually the minimum lease between updates to variable Xk , which
we have shown is d for centralized variables and will show is N·d for distributed
variables.

For example, if the two-way distributed variable F depended on one centralized
variable, G, and one three-way distributed variable, H, then the total minimum
delay between changes to F would be 4d, rather than 2d (where d has its usual
definition as maximum network latency).
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Formally, if tk+1 – tk ≥ d, then the prior modification time of variable Xk+1, called

tk+1’, is at least tk+1 – Lmin and at most tk+1 – Lmax. This implies simultaneous agreement

must be possible during the interval [tk + d, tk+1), contradicting the sort order by

including tk+1’ instead. Thus,

Lmin > (N – 1) · d + d

Therefore, we conclude that a variable under the distributed control of N agents

takes at most N·d to modify. We can also state this as a limit on the update

frequency of a distributed variable:

An N-way distributed variable requires waiting at least N·d seconds
between updates.

Note that this limit is also entirely independent of computing speed or

bandwidth; it affects all consensus-based architectural styles. Consequently, no

distributed software architecture can process events occurring more frequently than

1⁄N·d times per second.

2.3.2.1  Delegated

It is possible to choose decision functions that allow “distributed” variables to

updated far more rapidly. Rather than outputting the actual consensus value, the

function decides which agent is (temporarily) in charge. Such delegation of

authority to a single central location requires distributed mutual exclusion

protocols. Such solutions can share control more rapidly, but require agents to wait

(block) before updating local variables.
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This is why our N·d finding above differs so significantly from today’s popular

understanding of “distribution.” If we choose a monotonic decision function, such

as oldest(); and require the input values to also change monotonically, say by time-

stamping each update request; then the dependency-chaining argument used above

to derive that factor of N falls out.

Consider the effect of choosing a decision function that implements a

distributed-mutual-exclusion protocol such as Petersen’s algorithm [180] or

Lamport’s Bakery algorithm [136]. In such turn-taking solutions, there is no way to

cancel attempts to acquire a lock. This means the input values of these decision

functions cannot change arbitrarily. Specifically, later changes to an input variable

cannot possibly change the output decision. A simple example is requiring

monotonically-increasing time stamps in order to choose the “earliest” lock

request.

In such cases, while the maximum delay for some client to change the shared

value may be as little as 2d, the maximum delay for a particular client to change

the value of the shared resource may be unbounded. Even when using a ‘fair’

mutual exclusion algorithm, it can require waiting for all N others to acquire and

release their locks first.

Therefore, we hasten to add this caveat to our result above: it is possible for a

distributed system to process events occurring more frequently than 1⁄N·d times per

second, indeed, as fast as 1⁄2·d times per second; but only if changes to local

variables can be arbitrarily delayed, by as long as N·d seconds.
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2.3.3  Estimated

Estimated (adj): calculated approximately [151].

Once simultaneous agreement becomes impossible to guarantee 100% of the

time, the next step is relaxing the probability to some lower percentage before

finally resorting to a completely decentralized solution at 0%. We refer to this

broad middle range between consensus-based and consensus-free systems as an

estimated system, since it relies on trading off precision for update frequency in

favor of establishing at least approximate agreement.

The crux of such substitution is a value-laden judgment about the threshold

probability that constitutes “approximate agreement.”8 The reason we add this

complication is that each agency has its own purposes when it refers to a shared

concept. For example, one may need to know the price to the nearest penny, while

another might be satisfied by ±50%. For another example, a buyer’s estimate may

need to err on the high side of prices, while a seller’s application needs low-ball

estimates. Both of these are forms of confidence-interval estimates, as opposed to

point-value estimates.

Furthermore, the actual predictability of current values from past data is limited,

especially as latency increases. Some values are simply more auto-correlated than

                                               
8 Technically, ‘approximate agreement’ applies specifically to consensus over real-
numbered values when using multiple-round variations of the algorithm to
converge on a decision [144].
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others: consider the difference between measurements of “outside temperature”

and “subject line of the latest email.”

Nonetheless, we intend to discuss estimated systems in contrast with

decentralized systems because they correspond to a distinct architectural choice.

Estimates extend the master-slave pattern of control by presuming that a ‘true value’

exists to establish simultaneous agreement with: even though our measurement of

the bookstore’s inventory may be imprecise, it is still not under the customer’s

control. In the next subsection, we will contrast this with the peer-to-peer pattern

where variables will be replaced by decision functions — but in that case, private

assessment functions rather than the shared ones used in distributed systems.

We begin our formal definition of an estimated variable with a declarative

relationship between two variables:

A variable E is considered to approximately agree with another
variable X with probability P% if, over a sufficiently long period of
time, the ratio of the time E(t) = X(t) out of the time E(t) ≠ ∅ is ≥ P.

In other words, P% of the time that the estimate is defined, it must be in

simultaneous agreement with the leader. The next step is to acknowledge that it

takes time to transmit information by positing a deterministic estimator function to

recover present values from past data:

A function ef() is considered an estimator of another variable X with
probability P% if its only input is past observations of the value of X,
and its output approximately agrees with X with probability P%.

Before we can use this to provide an operational definition of an estimated

variable that can actually be implemented, though, we need to depart from our
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model of consensus-based variables by adding the notion of ownership. That is, the

value of any consensus-free variable is both time-variate and agency-variate — it

not only depends not only upon when you ask, but also upon whom you ask:

An owned variable V is an ( V(time), Agency) pair, or alternatively,
VA(t).
An owned function f() is an ( f(), Agency) pair, or alternatively, fA().
Its result is owned by A.

A trust relationship between two agencies A and B holds whenever
A’s value for some variable V is identical to B’s. In that case, we say
“A trusts B”; if A can also modify the value of N, then “B trusts A” as
well.
A web of trust T for a variable V is a directed graph over the set of all
agencies, where each edge represents a trust relationship.

A trusted invocation of an owned function fA() is one that is applied
to several inputs VB, VC, VD, … if and only if there exists a path from A
to each of B, C, D, … in T.

Taken together, these definitions expand the concept of location used earlier

into an agency boundary. ‘Local’ and ‘remote’ now refer to whether a variable is

owned by the same agency that owns the function processing it, rather than a

relationship in space. Now we can specify how to compute a local estimate of a

trusted remote resource:

An owned variable XA is considered estimated by agency B with
probability P% if every reference to XA(t) by B is replaced by the
trusted invocation of  efB( XA(t – λ)), where efB() is B’s estimator, there
is a path from B to A in T, and λ is a positive value representing
transmission latency.
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Note that this definition does not necessarily produce estimates that the original

owner (A) would trust.9 It is sufficient that the estimate produced is substitutable for

B’s purposes.

Admittedly, these definitions do not provide guidance on how to actually

implement an estimator function. Almost any interesting estimator would be very

domain-specific, such as a dead-reckoning position predictor for a given kind of

vehicle, or a historically-informed model of interest rates. It also does not speak to

the complication of specifying ‘confidence intervals’ for discrete variables: what

would be the probable images for an occasionally-connected security camera?

There are also estimators that summarize multiple updates: typing faster than a GUI

application is prepared to respond can create synthetic events that coalesce those

keystrokes into a single string.

Nevertheless, the most commonly encountered estimator is the null estimator:

stasis. An ordinary Web browser that continues to display a cached page even after

the server operator changes it is one such example. The probability of approximate

agreement using the null estimator is readily calculable: delay since the last update

received divided by the average interval between updates. Polling a news site every

five minutes that changes hourly, on average, yields results that are in simultaneous

agreement (1 - 5⁄60) = 91.67% of the time.
                                               
9 Of course, T can also be dynamic. Trust relationships can be added or deleted at
any time — and that since it takes time to propagate trust changes, untrusted data
can still sneak in. Such dynamism could be called out by referring to T(t)
throughout, as well as subscripting the web-of-trust for each variable, too. In the
interest of simplicity, we do not add such distinctions in our notation.
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2.3.4  Decentralized

Decentralized (adj): withdrawn from a center or place of
concentration; especially having power or function dispersed from a
central to local authorities [151].

Decentralization is fundamentally different from either centralization or

distribution because it permits multiple, distinct, simultaneously valid outcomes for

the same decision. It also differs significantly from estimation, since several

independent agents with their own estimates of a centralized or distributed variable

can end up using multiple, distinct values at the same time, they are all attempting

to recover a single outcome for the shared decision. In a consensus-free system,

each agency’s updates merely represent its own opinion — and comparing more

opinions from other, trusted agencies can increase the accuracy of one’s own

opinion. The statistical premise behind this is that the errors of each agency are

independent: they can’t all conspire against you. Thus, a hallmark of

decentralization is its specific emphasis on agency conflicts — a shift from matters

of fact to matters of opinion.

Of course, if there is no causal connection between each agency’s own

decisions, a decentralized system degenerates into a set of isolated centralized or

distributed systems. Consider how independent copies of a spreadsheet

programming running on separate PCs have their own values for cell A1: without

positing any cross-references between those spreadsheets, the distinction that A1

happens to have multiple, distinct simultaneously valid outcomes on each PC is

moot.
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The interesting case for decentralization is when there is partial coordination

between peers about the “same” decision. To determine sameness, decentralized

concepts must be defined by each agency with respect to a shared namespace. This

stands in contrast to the shared decision function and mutually-trusted set of peers

in the case of distributed variables.

Moving from informal discussion towards a formal definition, we begin by

noting that a decentralized variable is not owned by any single agency (otherwise,

it would have a ‘true’ value). Instead, it is identified by a name that is owned by

some agency that all other agencies trust, at least to fix the syntax by which

individual agencies make representations about the “same” decision. We thus posit

that there is a bottom (⊥) of T, such that a path exists from every vertex in T to ⊥.

A namespace is a variable owned by ⊥ that contains a mapping from
each name to a list of the owned variables representing that name.
Alternatively, namespace⊥(name, t) = {variables}.

A set of correspondent variables for a given agency A and a name is
the set of variables representing name that A trusts:

correspondentsA(name, t) =
{XB : XB ∈ namespace⊥(name, t) : ∃ path A→B in T}

The next step is to form an assessment of the opinions held by the panel of

correspondent agencies, based on the best available estimate or simultaneously

agreed representation of agency’s opinion. However, since a decentralized

variable’s value is not even required to be in approximate agreement with any other

variable, we cannot specify a declarative condition that defines its validity.

Therefore, we can only offer this operational definition, based on an agency-
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specific decision function that can take into account the value of multiple remote

resources:

A function af() is considered an assessor of a set of correspondent
variables if its input includes past observations of any variables from
that set.

An owned variable X⊥ is considered decentralized according to
agency A if every reference to X⊥ by A is replaced by the trusted
invocation of afA( efA() • {correspondentsA(“X”, (t – λ)} ), where afA()
is A’s assessor, and efA() is A’s estimator for each of the variables in
the set of correspondent variables, and λ is a positive value
representing transmission latency.

Or, in less cryptic terms, a decentralized concept is represented by a

hypothetical variable owned by “nobody.” To actually refer to that variable in

practice, an agency must first determine which other agencies’ opinions it trusts;

second, try to determine what those opinions actually are, by using an estimation

function to recover its likely current value from past data; and finally, assess the

entire panel of other opinions according to its own policy.

2.3.5  Resource

So far, we have been describing the properties of abstract, mathematical

variables. Our bridge between theory and practice is be an architectural element

from REST known as a ‘resource.’

Consider how an architect would approach the challenge of actually using a

centralized, distributed, estimated, or decentralized variable to store, say, the ¥⁄$

exchange rate in a multi-agent trading application.
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The first challenge is for each component in the application to refer to the same

resource consistently. This is a naming problem: an additional layer of indirection

that uses a common symbol to refer to the value we are seeking consensus over.

Following our definition of an owned variable, a useful name syntax should couple

an agency identifier with every variable identifier — similar to how a Uniform

Resource Identifier (URI, [22]) concatenates a domain name and path name. The

essential reason for this level of indirection is time-independence. Since we are

dealing with time-variate variables, we consider each state change an ephemeral

event notification about an event source with a persistent name.

Our requirements for manipulating a named variable correspond to the

definition of a resource in REST:

The key abstraction of information in REST is a resource. Any
information that can be named can be a resource: a document or
image, a temporal service (e.g. “today’s weather in Los Angeles”), a
collection of other resources, a non-virtual object (e.g. a person), and
so on. … A resource is a conceptual mapping to a set of entities, not
the entity that corresponds to the mapping at any particular point in
time.

More precisely, a resource R is a temporally varying membership
function MR(t), which for time t maps to a set of entities, or values,
which are equivalent. The values in the set may be resource
representations and/or resource identifiers…. Some resources are
static in the sense that, when examined at any time after their
creation, they always correspond to the same value set. Others have a
high degree of variance in their value over time. The only thing that is
required to be static for a resource is the semantics of the mapping,
since the semantics is what distinguishes one resource from another.
[67]

We believe that our hypothetical architect needs centralized, distributed,

estimated, or decentralized resources, not variables alone. Adapting our formal
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model of variables to resources requires recognizing that the object of agreement

can also be a function, not just a value.

In general, the equivalence of functions and values seems obvious: on any von

Neumann architecture computer, where programs are also stored as data, so we

only need to refine our model of simultaneous agreement slightly. Specifically, we

choose to model a named variable as a time-varying membership function that

permits multiple, simultaneously valid representation formats for the same variable:

Simple agreement over a resource named R between a leader and a follower

separated by a positive transmission latency λ is defined as:

∀ t : t ≥ 0 : MR@follower(t + λ) ⊆ MR@leader(t)

This definition still permits the follower’s membership function to fail. If, say, the

network connection to a remote leader were interrupted, the resource could yield

∅, the empty set of representations. The additional constraint for simultaneity

would follow the line of argument in §2.2.1.

2.3.6  Representation

The second challenge our architect faces is format-independence. In a large-

scale software development project, it is unreasonable to expect that every

component will use identical data formats, operating systems, programming

languages, and so on. A resource can be made concrete using many equivalent

formats of the same abstract state: floating-point, text, pictures, audio, and so on.

Thus, the second architectural element from REST that we need is a

‘representation’:
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REST components perform actions on a resource by using a
representation to capture the current or intended state of that
resource and transferring that representation between components. A
representation is a sequence of bytes, plus representation metadata to
describe those bytes. [67]

Specifically, there are two key pieces of metadata from the definition of REST

we choose elevate for consideration in our own abstract model of representations:

the resource identifier and cache lifetime. These are encoded in four headers in

HTTP/1.1:  HOST, CONTENT-LOCATION, DATE, and EXPIRES. We relabel these for our

purposes as the agency, name, and lease of a value (content):

A representation is a 4-tuple (A, N, V, L), consisting of A, the agency
making the representation; N, the name of the variable being
represented; V, its claimed value; and L, a lease indicating the interval
of time when A can replace references to N with value V.

This model also permits us to define four types of representations that

correspond to our four types of variables: centralized, distributed, estimated, and

decentralized. Table 2 summarizes the rules that determine whether a local proxy

variable can be assigned the value found in a given representation tuple: based

upon whether it was made by self or others; whether it is currently valid or expired;

and whether there can be more than one simultaneously valid representation for

the same name.

Valid Lease Expired Lease

Same Agency  (self, R, v, now) efself(self, R, v, past) Master/Slave

Other Agency dfshared(others, R, vn, now) afself(others, R, vn, past) Peer-to-Peer

Consensus-based Consensus-free

Table 2: Rules for selecting valid representations for each type of resource.
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Table 2 also lets us speak of facts and opinions. Facts are representations made

by oneself, or by another trusted agency; opinions are a label for representations

made by any other trusted agency (untrusted strangers would be ignored entirely). It

also permits us to describe the three kinds of functions used earlier in our

definitions of distributed, estimated, and decentralized variables in new ways. A

shared decision function is used to consolidate one representation out of many

different agencies’ facts. A private ef() is used to derive current (estimated)

representations from old facts. Finally, a private af() is used to derive a current

representation from many different agencies’ opinions, old or new.

2.4  PROBLEM STATEMENT

The preceding analysis enables us to state the problems we intend to address in

this dissertation more precisely. We begin by decomposing our investigation of

software development for decentralized systems into a series of three sub-problems:

definition, design, and implementation.

First problem: What is the nature of “decentralization”? What we have found so

far is that to understand decentralization, we also have to define centralization,

distribution, and estimation formally. We also needed to apply those abstract

definitions to identify corresponding properties of corresponding architectural

constructs. Thus, we can restate our first question as:

What are the properties of centralized, distributed, estimated, and
decentralized variables and resources?
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Second problem: What architectural styles can enforce the properties that we

just identified for centralized, distributed, estimated, and decentralized systems,

respectively? For reasons we will discuss in the next chapter, we chose to begin

with the REST architectural style. This allowed us to restate our search for new

styles as an effort to extend an existing style:

What new architectural elements and constraints can be added to
REST to derive new architectural styles that support centralized,
estimated, distributed, and decentralized resources?

Third problem: Are such styles practical to implement and apply? Note that we

are not tackling the more ambitious questions of scalability or performance. Our

initial contribution is simply to establish that these new styles and applications are

possible. Similarly, while our styles are derivatives of REST, and even our

infrastructure implementations are derivatives of corresponding REST infrastructure,

such congruence is, in itself, not necessarily a contribution. Developing sample

applications will also require us to propose at least an initial design methodology

for decentralized applications in due course. Forgoing such elaborations, our third

problem can be restated as:

Are there practical implementations for each new architectural
element and constraint? Are these new styles usable for designing
centralized, distributed, estimated, and decentralized applications?

We begin our investigation of these three problems by summarizing past

research into related architectural approaches to decentralization in the next

chapter.
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Chapter 3:    ARCHITECTURAL APPROACHES TO

DECENTRALIZATION 

Our investigation of architectural approaches to decentralization begins by

considering related work from three different research communities: software

architecture per se; middleware technology; and precedents from internetworking.

3.1  SOFTWARE ARCHITECTURE

We begin by tracing the emergence of the very concept of software architecture.

The systematic study of software system architectures, as a discipline, is relatively

new, beginning in the early 1990s, and rapidly evolving [1, 88, 91, 179, 195, 202,

204, 229]. It has described a wide variety of techniques for designing, developing,

and maintaining software systems.

Within this literature, researchers have been describing ways to constrain

particular application architectures to enforce certain desired properties of the

entire system. Such concerns coalesced around the notion of an architectural style

[85, 89, 149, 160, 179]. An example is the popular Client/Server architectural style,

which enforces consensus by construction, because all operations on a shared

resource must be processed as transactions against a single, centralized database10.

Defining these terms more precisely can be a contentious exercise, so we chose

to adopt Fielding’s definitions in [67], which are based on local usage at UC Irvine:

                                               
10  Even if it were physically implemented on a distributed cluster of servers, we
would consider that a logically-centralized database.
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A software architecture is an abstraction of the run-time elements of
a software system during some phase of its operation. A system may
be composed of many levels of abstraction and many phases of
operation, each with its own software architecture.

An architectural style is a coordinated set of architectural constraints
that restricts the roles/features of architectural elements and the
allowed relationships among those elements within any architecture
that conforms to that style.

To take a closer look at these ideas, it is necessary to enumerate the sort of “run-

time elements” found in a typical software system: components and connectors.

Again, per [67]:

A component is an abstract unit of software instructions and internal
state that provides a transformation of data via its interface.

A connector is an abstract mechanism that mediates communication,
coordination, or cooperation among components.

Note that these are suitably generic levels of abstraction. A component may be

internally constructed using an imperative, functional, or object-oriented

programming language, but choosing an implementation approach does not extend

to describing the architecture of the overall system. Similarly, a connector may be

implemented by function calls with arguments on a stack, or by using a network

messaging protocol, but neither choice deems the entire system “RPC-style” or

“event-driven.”

Of course, there are more complex architectural elements that cannot be

considered exclusively either as components or connectors. Consider the case of a

filter that converts value from one currency to another. Depending on the level of

abstraction at issue, the converter can be seen as a component, containing a

complex and configurable program; or it could be seen as a mere connector that is
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translating presentation information for a localized user interface. Technically, the

definition of connectors in [67] would classify such a filter as a component:

Perhaps the best way to think about connectors is to contrast them
with components. Connectors enable communication between
components by transferring data elements from one interface to
another without changing the data [emphasis added]. Internally, a
connector may consist of a subsystem of components that transform
the data for transfer, perform the transfer, and then reverse the
transformation for delivery. However, the external behavioral
abstraction captured by the architecture ignores those details. In
contrast, a component may, but not always will, transform data from
the external perspective.

Traditionally, “without changing the data” would be taken to exclude operations

such as discarding, summarizing, or even predicting new data. However, at some

layers of abstraction, converting a price from dollars to euros does not constitute a

“change”; it is merely a different representation of the same price. For another

example, a service that computed a running tally of a stream of votes would have to

be considered a component, since it “transforms data”; but we might consider it a

connector if its ultimate purpose is to ensure that message traffic never exceeds

available bandwidth.

In our own work, we favor describing such services as connectors, because on a

decentralized, error-prone network, there is no possibility of guaranteeing reliable

message delivery — so the very goal of transparent connectivity is questionable. For

example, we will note later on that message loss due to network error is

indistinguishable from message deletion pursuant to security policies, and hence

we will refer to a TRUSTMANAGER “connector” in our analysis.
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3.1.1  Example: C2

As an example of an architectural style, consider how the C2 event-based style

works [213]. It is a useful example since it is distinct from both popular

understanding of the broad term Client/Server, and the REST style we will be

working so extensively with later on.

Decentralization has often been equated with “loose coupling,” which in turn is

often claimed as a virtue of event-driven architectural styles. For example, [42]

makes just such a claim, albeit in reverse order:

The components of a loosely coupled system are designed to
generate and respond to asynchronous events

Intuitively, an event-based style ought to be better prepared to react to changes

occurring “out there,” in the environment. An archetypal example is the inverted

control loop typical of Graphical User Interfaces (GUIs). Rather than programming

an application to proceed down a fixed path, demanding human input under

program control, GUI libraries divide programs into finer-grained ‘event-handlers’

that are invoked on demand by human input. A classic example of this is the

Model-View-Controller architectural style introduced by Reenskaug as part of the

Smalltalk project in 1979 [129].

Of course, there are many different architectural styles that constrain how event

handlers behave. C2 claims to use event notification to support dynamic evolution

of applications by eliminating one form of coupling between components:

The C2 style supports the development of distributed, dynamic
applications by focusing on structured use of connectors to obtain
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substrate independence. C2 applications rely on asynchronous
notification of state changes and request messages. [67]

By defining the only possible communications flowing “down” to lower layers

as notifications, a type of message that is purely advisory (no assured

consequences), C2 does not permit component designers to rely on any particular

lower-layer behavior. Of course, it is still possible, even common, to choose to

publish ‘notifications’ that are actually requests in disguise, but at least the C2 style

makes clear the costs of adding hidden dependencies that violate its intended

acyclic graph constraint.

C2 also includes some features that support decentralization. Its use of

independent components with no shared memory assumption implies that each

component must maintain its own state, and a perception of the state of other

components, to function and make decisions. Its use of multicast events decouples

individual components from one another because event sources and destinations

are not named — all message routing is done by the connectors. C2’s ability to add

and remove components from a C2 system at runtime, including components not

anticipated by the original system designers, is a necessary feature of decentralized

multi-agency systems. On the other hand, the entire integration is assumed to be

within a common trust domain. Only recently has our group considered enforcing

information hiding between different users’ components, such as a battle

management scenario requiring selective information flow, even between allied

forces.
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Other investigators have also studied architectures built around events for

integrating applications. Rapide [143] is an architectural style and tool-set that

focuses on formally analyzing and simulating architectures that communicate via

asynchronous events. However, requiring an entire application, developed out of

parts built by several independent organizations, to be described in a consistent

notation suitable for third-party static analysis may prove unrealistic [142]. Design-

time static analysis also does not adequately accomodate the dynamic nature of

decentralized software evolution [177].

3.2  MESSAGE-ORIENTED MIDDLEWARE

The term ‘middleware’ emerged by a process of exclusion: it can refer to any

software product used by application developers that is not already part of an

operating system, ranging from databases to performance monitors. It thus came to

include the infrastructure for connecting components in both event-based and

network-based architectural styles, sometimes known as “integration middleware.”

Its earliest origins are in the form of message queues, which decoupled

components that executed at different times (batching). The message bus was the

next logical phase, decoupling multiple components in “space” — so that all

components could participate on an equal basis. Similarly, message brokering

added an additional layer of indirection, where message destinations were selected

dynamically. The subtle difference of the latest phase, message routing, is its

presumption there already are multiple, distinct message passing-networks to

interconnect.
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There are two dominant forms of middleware in use today. One sort traces its

roots to Remote Procedure Calls (RPC, [27]), such as CORBA [171, 172, 205] and

COM/DCOM [38, 48, 231]. The others are lumped together under the heading of

Message-Oriented Middleware (MOM, {Khare, 1998 #1716}), such as IBM’s

WebSphere MQ [13], Tibco’s Information Bus [174, 184], and myriad Java Message

Service (JMS) [9, 113, 161] implementations. MOM arguably even encompasses

research into event notification services {Carzaniga, 1998 #887;Khare, 1998

#1650;Norris, 2002 #1674;Rosenblum, 1997 #535;Khare, 1998 #1826;Waldo,

1998 #1668;Millard, 2003 #1675;Bacon, 2000 #1751}, instant messaging

protocols [56, 153, 165], and tuplespaces [8, 112].

RPC-based middleware is insufficient for decentralized application

development. In presumes tight coupling between components, since the request-

response paradigm that implies the establishment of consensus, and the use of

somewhat arbitrary, fixed APIs as the only method of accessing another component

rule it out as a viable candidate for supporting decentralized systems [27].

Message-oriented middleware, on the other hand, has features that are much

closer to those needed by decentralized systems. Typically, messages are one-way,

can be delivered to multiple recipients implicitly, and can accommodate generic

data types. Many MOM systems support several different patterns of message

transfer: publish/subscribe or point-to-point, address-based or content-based, lossy

or reliable, sequenced or best-effort, and push or pull delivery.
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Of course, there are also approaches which bridge between both categories. For

example, Message-Driven JavaBeans [147] enable event-based communication

with components that only have an RPC interface. This is an example of

transforming an explicit invocation into an implicit one [90].

3.3  INTERNETWORKING

Decentralized systems must permit failure: crashed components, partitioned

networks, congested channels, and myriad other sources of uncertainty. Fault-

tolerance became the key motivation for implicit signaling, the key difference

between centralized, circuit-switched data networks and the decentralized, packet-

switched Internet. Rather than running an extra signaling link alongside each

pathway to indicate whether a link is available, broken, or congested — enabling

an ‘intelligent’ network core to control data flows — the Internet chose to rely only

on a ‘best-effort’ network that, seemingly paradoxically, did not have any way of

signaling why packets were lost. Nonetheless, it is still possible to achieve high

levels of reliability even over such a lossy network.

The solution was decentralizing network control from the core to the edges, an

approach termed “the end-to-end hypothesis” [49, 186, 198]. In particular, TCP

was layered on top of IP11 using a sliding-window protocol to arbitrate access

amongst decentralized nodes fairly [43]. Today, even most “reliable” MOM services

actually rely on TCP’s end-to-end retransmission to operate across the public

                                               
11 Actually, IP was only separated “out of” TCP after the fact, in 1978 [208].
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Internet. We plan to extend that analogy further to show how many of the different

MOM modes can be supported on top of a simple, best-effort, one-way event

notification service.

Another even more radical application of the end-to-end hypothesis is to extend

the best-effort model to reduce latency using speculative transmission. In Mirage

[218], for example, since the state the remote receiver will be in when a packet

arrives is uncertain, “extra” packets are sent along that react to those likely future

states, to take advantage of spare capacity afforded by then-novel gigabit networks.

A secondary observation from the internetworking research literature is that, in

many ways, the Internet remains quite centralized. Its correct operation relies on

hierarchical control of the Domain Name System (DNS) and IP address allocation.

Its applications also make egregious trust assumptions, such as the validity of any

FROM: address in SMTP, the root cause of e-mail spam.

Furthermore, another response to the threat of inconsistency and attack has

been to re-centralize some intelligence into the core of a so-called ‘active‘ network

[214, 215]. Requiring IP routers to execute arbitrary programs to sort, filter, and

prioritize traffic flows seems may seem at odds with the end-to-end principle’s

defense of ‘dumb’ networks, but it is still in line with the social reality of Internet

access today: most users must simply trust their ISPs. After all, decentralization can

only benefit a node with more than one link to the whole network; a leaf node’s

connectivity is centralized de facto, otherwise.
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Chapter 4:   UNDERSTANDING REST

Before we proceed to extend REST to accommodate centralized, distributed,

estimated, and decentralized resources, it behooves us to understand the properties

that REST can induce on its own.

The origin of REST is intimately related to the development of the World Wide

Web. It purports to explain the design of the most successful decentralized

application to date. Nonetheless, REST is not as suitable for developing

decentralized applications as is often assumed; it does not even specify a reliable

write mechanism, much less a model for asynchronous event notification. On the

other hand, our own proposed styles will be reusing and refining many of REST’s

existing features to support decentralization, such as caching and security.

The remainder of this chapter will introduce the structure of our arguments for

specifying, defining, validating, and implementing new architectural styles. Using

REST as an example, we will show why inducing consensus leads us to introduce a

new architectural element, the GLOBALCLOCK component, in order to strengthen the

original style’s latent requirement for clock synchronization.

4.1  MODERN WEB ARCHITECTURE

The World Wide Web is arguably the most successful decentralized information

system of the 20th century [23]. It immediately enabled users to read, write, and

navigate hypertext documents at global scale [21]. With additional effort, it enabled

‘virtual enterprises’ to deploy complex applications and manage collaborative



61

workflows [69]. While there were many “accidental” reasons for its rapid adoption

— installation without administrator privileges, ease of migrating existing files and

directories, flexible scripting interfaces and more — its essential advantage was

accommodating broken links {Khare, 1998 #1764}. The Web gracefully tolerated

inconsistencies arising from users’ freedom to create links to others’ works without

prior coordination.

The technological foundations for the Web’s success were laid decades earlier,

particularly the (wholly centralized) Domain Name System (DNS, [156]), which

made it so easy to identify external agencies. Nevertheless, the Web’s success

cannot be ascribed to the usual infrastructure for developing client/server

applications across the Internet — too many other similar systems had failed

already to reach that conclusion (such as WAIS [115], Hyper-G [148], and Gopher

[12]).

Thus, while “decentralization” is often equated with merely separating software

components across a network, the Web’s success as a decentralized system merits

explanation beyond the benefits of networking alone. We believe the key was

adding another layer of indirection12 between abstract resources and concrete

representations.

Depending on the form of the request (as specified in HTTP headers), a

representation of the requested resource is returned to the client from the server or

                                               
12 “Any problem in computer science can be solved by another level of indirection”

— David Wheeler, chief programmer for EDSAC {Khare, 1998 #1772}
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proxy. This representation may be trivial — the contents of a static file on the server,

or more complex — those contents transformed in some way (consider a dynamic

web page or one that is translated into a different language based on the client

browser’s locale). Constraining the architectures of Web applications (and, indeed,

the Web itself) in these ways has induced several beneficial properties: the Web is

highly scalable, extensible, and interoperable with many different types of devices

and data formats.

4.1.1  An Architectural Style for the Web

There are many different network-based architectural styles, such as client-

server and remote-data-access [67]. The style popularly known as “3-tier

client/server” is a combination of both of those styles: presentation interface at a

client, business logic on a server, and storage in a database. It was arguably the

dominant style of application construction before the Web became popular in the

mid-90s.

REpresentational state transfer (REST) was intended to explain the modern Web

architecture [70] that eclipsed it:

REST is an architecture that separates server implementation from the
client's perception of resources, scales well with large numbers of
clients, enables transfer of data in streams of unlimited size and type,
supports intermediaries (proxies and gateways) as data transformation
and caching components, and concentrates the application state
within the user agent components.

In this style, software components are recast as network services. Clients request

resources from servers (or proxy servers) using the resource’s name and location,

specified as a Uniform Resource Locator (URL, [25]). All interactions for obtaining
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a resource’s representation are performed through a synchronous request-response

pair using an open standard network protocol (HTTP, [68]). Requests could also be

relayed via an assortment of proxies and caches, all without changing its semantics.

Figure 5-8. REST
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Figure 3: The REpresentational State Transfer Style, from [67].

Figure 3 depicts a REST-style architecture that also reveals several of the simpler

styles it was derived from. Moving from left to right, we can follow client’s requests

as they are directed through firewalls, caches, and protocol gateways to a set of

three different servers. Along the way, the diagram also intends to show that REST is

a stateless, cacheable, layered client-server architectural style that requires uniform

interfaces (and can also take advantage of mobile code to extend those interfaces).

On the left-hand side we see three USERAGENTs. two of which are typically

browser-like Web clients because they contain a ‘history list’ for user navigation

(indicated by a client-side cache). All of them contain script-language interpreters

(indicated by the gears) that enable the so-called ‘Code on Demand’ architectural

style for dynamically extending the range of behaviors implementable on the client.
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In between, there are several layers of PROXYSERVERs and GATEWAYs. The first one

that all three clients are connected to is a caching proxy. Unlike each browser’s

private history caches, this sort of shared cache can take advantage of common

access patterns across users — as well as enforce organization-wide rules, as a

firewall might. It can support multiple inbound connections because the

interactions are stateless; it does not matter which user agent is making the request

because all session information must be encoded into each request. REST’s

emphasis on uniform interfaces is also revealed by the three outbound edges: the

proxy can connect to servers, proxies, and even gateways to non-Web information

systems interchangeably. Furthermore, the fact that one proxy can choose to

“chain” to another proxy indicates that REST is a layered style; to the degree that

proxy components can transform data, this makes REST a pipe-and-filter style as

well.

On the right-hand side, we see several types of ORIGINSERVERs: an application

server containing running objects and an Object Request Broker (ORB); a file server

containing directories and programs; and a WAIS server containing a repository

database. We see that there is a gateway component between the caching proxy

and the WAIS server because it converts the uniform REST interface to an external

protocol when accessing WAIS, as depicted by the grey edge. Separately, there is

also a cache within the file server, which is another form of load-balancing for a

server that might physically be implemented on several disks and processors.
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As an aside, the reason we choose to step back from this illustration and claim

that REST is not only a network-based architectural style, but also an

internetworking style itself, is that these derivation arguments apply equally well to

IP internetworking. A mesh of IP routers can be considered an “application” for

moving information around. The IP standards and host requirements [32] for TCP/IP

programs (“stacks”) are also stateless and layered client-server style. The converse of

this insight is that REST treats software components exactly as IP treats networking

devices: the uniform GET interface in HTTP is similar to the uniform receive-

packet/fragment interface in IP. It is a flexible enough interface to trigger any kind of

computation, yet fixed enough to connect to any kind of device/component.

4.1.2  Limitations of the “One-Way Web”

REST’s exclusive focus on supporting the specific domain of global

hypertext/hypermedia limits the range of applications it can support. To be sure, a

vast range of traditional client/server applications have already been successfully

‘ported’ to REST over the last decade. Applications that rely on real-time or event-

based interactions have not.

Returning to the discussion of C2 in §3.1.1, consider how it compares to REST:

As with other event-based schemes, C2 is nominally push-based,
though a C2 architecture could operate in REST’s pull style by only
emitting a notification upon receipt of a request. However, the C2
style lacks the intermediary-friendly constraints of REST, such as the
generic resource interface, guaranteed stateless interactions, and
intrinsic support for caching. [67]

Extending REST to support the additional capabilities of C2 or other event-based

styles would require significant redesign of REST, but the benefits would be
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significant. What is at stake is no less than an opportunity to complete the vision of

the Web as a two-way medium for reading, writing, and interacting with the entire

“universe of network-accessible information” [20].

Conversely, the challenges facing architects attempting to develop interactive

applications in the REST style mainly stem from three key limitations of what we

call the “One-Way Web”: REST has been designed to support one-shot, one-to-one,

and one-way information flow.

ONE-SHOT. Every representation transfer must be initiated by a client; generates

a single response; and if that response is an error message, there are no normative

rules for reacting to it. Even though the underlying connector technology may rely

on a reliable, ordered delivery mechanism, REST’s model of network interaction is

not very fault-tolerant.

E-mail, on the other hand, is an example of an application and network

protocol that work together to specify rather intricate behavior that ensures

robustness in the face of message loss, delay, and congestion. According to the

Simple Mail Transfer Protocol (SMTP, [182] and [54]), a Mail Transfer Agent (MTA)

must be able to guarantee that messages are in stable storage before sending any

acknowledgement messages. Furthermore, an MTA must store messages and

attempt delivery for several days (unlike the few-minute timeouts for TCP to fail).

To be sure, a few REST error codes suggest actions for the client to take, such as

redirects, password challenges, and temporary outage notices, but those are also

strongly tied to the hypertext domain and human end-users. Many application
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architects expect a style that aims to replace the dominant 3-tier client/server style

to provide equivalent mechanisms for reliable, ordered invocation of components

— REST’s send-once-and forget model is not sufficient.

ONE-TO-ONE. Every representation transfer proceeds from one client to one

server, which may optionally forward it along to another server, and so on. There is

no alternative to REST’s nested “proxy chain” for transferring information to an

entire group of components. Even in Figure 3, the branching depicted there is not

intended to be simultaneous: each client request message specifies which server to

relay it onward to. Furthermore, such instructions for proxy-selection are only

“hop-by-hop”: no single client is in a position to specify an acyclic graph for

information flow.

In the REST style, the only way to extend a system is by interposing a so-called

‘active proxy’ into the chain {Khare, 1998 #1648}. As [67] states, “Within REST,

intermediary components can actively transform the content of messages because

the messages are self-descriptive and their semantics are visible to intermediaries.“

However, a critical limitation for architects of decentralized systems is that a

nested pipeline requires every component involved to trust every other component.

Intermediaries owned by agencies that do not trust each other must be invoked

“serially,” by having the client directly call each one in turn with the intermediate

results.
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 Again, application architects expect a style that aims to replace the dominant

3-tier client/server style to provide equivalent mechanisms for group

communication and ordered invocation — REST’s pipeline model is not sufficient.

ONE-WAY. Since every representation transfer must be initiated by the client, and

every response must be generated as soon as possible (the statelessness

requirement) there is no way for a server to transmit any information to a client

asynchronously in REST. Furthermore, there is no direct way to model a peer-to-

peer relationship. The only workaround is to posit paired clients and servers that

use a common repository to have one component send and receive data

simultaneously using REST.

To be sure, there are certain representation formats that happen to be

isochronous. A video representation, for example, could just be a very large file

that takes time to download, or it could be a live camera generating the contents in

“real-time” and that arrive at the client with roughly the same delays. An even more

extreme example is the JavaScript tunneling technique we pioneered in

MOD_PUBSUB, for sending real-time events in the guise of a very long, slow, HTML

download. In fact, that approach could be considered a weak form of the Code-on-

Demand style, which remains REST’s most popular escape mechanism for

accommodating interactive information (Java applets, Macromedia Flash, etc.).

Given the difficulty of managing any sort of asynchronous data transfer from

servers to clients, much less establishing simultaneous agreement, high-frequency

resources are rarely used in REST-style applications today. Instant messaging
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applications are only the most visible example of the sorts of client/server

application that still are not implemented inside of Web browsers. Many more

custom enterprise applications remain locked into the legacy environment of

terminal emulators for lack of a two-way transfer mechanism in REST.

4.2  REPRESENTATIONAL STATE TRANSFER (REST)

Before extending REST to support the “Two-Way Web,” we need to specify

precisely what it is and what properties it can induce. The goal of this section is

twofold: to introduce the aspects of the original REST style we rely on for our

subsequent work; and to introduce the structure of the arguments we will advance

in our subsequent work.

In the case of REST, we are “working backwards” from a style to a formal model

that justifies its behavior: inducing the property of consensus. We will be specifying

the abstract capabilities for reading the value of remote variables and ensuring that

they are currently valid; defining the new architectural elements that represent

those capabilities; validating that these components can fulfill their abstract

specifications in practice; and finally, notes on implementing the style.

4.2.1  Property Specification

Centralization is easy to support if a variable can only be assigned a value once.

Immutability simplifies the requirement for simultaneity: the value that a follower

receives is guaranteed to remain in agreement with the leader’s value indefinitely.

References to this sort of variable require consensus — there is one decision to

be made by the leader, and all others must follow. Consensus, in turn, will be used
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later on as a stepping-stone for establishing simultaneous agreement in general, by

using synchronized expiration times.

The most direct mechanism for supporting a write-once centralized variable is

as simple as ensuring that the leader broadcasts the value it assigned to all possible

followers. However, it is not feasible to enumerate ‘all possible followers’ in any

dynamic, loosely-coupled system, because new components can be added at

runtime.

We propose an alternative mechanism that is client-initiated: read(). This way,

new followers can request the value of the centralized variable at any time. The

tradeoff is that read() also introduces additional delay. While the broadcast solution

only would take at most d seconds to deliver a message across the network, read()

requires an additional factor of d so the client can issue a request first.

Our aim in this subsection is to specify whether this mechanism can enforce the

property of consensus. Informally, consensus requires first, that read() returns some

representation (rather than null); and second, that the representation has not

expired yet.

First, we need to establish the strongest postcondition of read(). Formally, if X is

the leader’s centralized variable and Y is a follower’s variable, and both are

represented by functions that vary with time t, then initiating the read() procedure

at time t = NOW, with random network latencies λ1 and λ2 for the messages to and

from the central server, is specified by the following Hoare triple:
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{ (0 < λ1 ≤ d) ∧ (0 < λ2 ≤ d) }

Y  := read("X");

{ Y(NOW + λ1 + λ2) = X(λ1) }

Program 1: Specification of read().

That is, read() returns the value of the variable named X at the moment the

request arrives at the server. To compute the weakest precondition of this program,

we must quantify the latencies λ1 and λ2 over the entire interval (0, d]:

{ true }

Y  := read("X");

{ Y(NOW + 2d) ∈ ∀ λ1: 0 < λ1 ≤ d : ∩ { X(NOW + λ1)} }

Program 2: read() quantified over possible latencies.

That is, a read() can be invoked at any time, but the strongest postcondition it

assures is that, after at most 2d seconds, the value of Y will become some value that

X had during the first d seconds. This reflects a sort of “race condition”: the network

could deliver the request before any value has been assigned to X at all.

This postcondition for read() is not strong enough to guarantee consensus, only

indicate that it might be possible. For that, its precondition would have to be

strengthened to assume that X has already been defined before the request is made,

and is never changed again:
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{ ∀ t : t ≥ NOW : X(t) = X(NOW) }

Y  := read("X");

{ ∀ t : t ≥ (NOW + 2d) : Y(t) = X(t) }

Program 3: read(), if the variable has already been assigned a value.

The proof is straightforward, since the “set of values X had during the first d

seconds” has a single member; and we can strengthen the equality of X and Y to

hold indefinitely afterwards.

The next challenge that suggests itself is: What happens if X is updated? We can

specify expiration times in order to establish consensus over a finite duration

instead. However, we will find that this still makes it impossible to guarantee

consensus for clients invoking read() “too late,” within 2d of a value’s expiration.

We transform the program analyzed above by redefining the value of a variable

to be a (value, interval) pair. This will require positing a globally synchronized

clock, which itself if a solution to the simultaneous agreement problem. Using

synchronized clocks to define the interval, we can then define a function called

fresh() that verifies whether a value is still valid before using it. The Hoare triple for

the fresh(Value, Start, Lease) test specifies that it can be executed at any time:

{ true }

Y := fresh (V, S, L);

{ S ≤ NOW < S+L  →  Y = V
  (NOW < S) ∨ (NOW ≥ S+L) →  Y = ∅ }

Program 4: Specification of fresh().



73

With this in hand, we can now specify the behavior we expect of the REST

architectural style:

{ ∀ t : S ≤ t < S+L : X(t) = (X1, S, L)

∧ S ≤ NOW < ((S+L) – 2d) }

Y  := fresh(read("X"));

{ ∀ t : (NOW + 2d) ≤ t < (S+L) : Y(t) = X(t) = X1 }

Program 5: Composition of fresh()and read().

That is to say, if the leader’s value is defined, and stays that way for long enough

to send a read() request and wait for the return, the follower’s value will be equal

to the leaders.

The proof is straightforward, since the duration of the interval in the

postcondition is nonzero as long as the request is made during the value’s validity

and early enough for read() to terminate. Hence, the preconditions NOW ≥ S and

NOW < ((S+L) - 2d), respectively. Another consequence is that the minimum value of

L must be 2d for the interval in the postcondition to exist at all.

4.2.2  Style Definition

The REST architectural style induces (the possibility of) agreement by
constraining all components that refer to shared resources to request
a current representation from an ORGINSERVER each time.

The REST architectural style meets the specifications given above. It adopts the

client-initiated mechanism rather than the broadcast notification mechanism we
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discussed earlier. This choice enhances its scalability and dynamism, since a

subscription model requires additional state to be stored at the server.

As depicted in Figure 4, REST’s ORIGINSERVER implements read() and the client-

side USERAGENT invokes it using the GET method. Our only clarification is to ensure

that both implementations of fresh() are synchronized with the aid of a

GLOBALCLOCK.

Origin
Server    Client C S

REST

GET

GlobalClock

Figure 4: Illustration of the REST architectural style.

Recall that in REST, a resource can have multiple, simultaneously valid

representations. In the context of a global hypermedia application, those variants

might be in different file formats or different languages. Rather than testing for byte-

by-byte equality, the condition is whether a human reader would consider them

equivalent.

This level of indirection is the only significant departure from our formal

definition of consensus between variables.

4.2.2.1  The GLOBALCLOCK Component

Every component must refer to a centralized GLOBALCLOCK, or else refer to a

local proxy that is synchronized with it. This is how each representation
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(notification) can refer to a strict lease expiration deadline. Synchronized lease

initiation times are also necessary to ensure that a follower is not in disagreement

during the transmission of a notification (or takes unfair advantage of advance

knowledge of the new value).

Of course, the necessary degree of clock synchronization is determined by

domain-specific requirements. We believe a popular technique for breaking ties in

leader-election routines for decentralized systems will be to use a combination of

component IDs and timestamps. This is only reasonable as long as the probability

of collision is kept low enough. Therefore, we note the resolution of a GLOBALCLOCK

must be much finer than the timescale of any of the phenomena being modeled.

4.2.3  Validation

REST can induce consensus for centralized resources, as summarized in Table 3.

It cannot guarantee consensus because there is no way to be absolutely sure that

the leader’s value has been set already, and will remain the same after the reply

message eventually arrives. Our validation for this claim is an argument that, by

construction, the architectural elements and behavioral constraints of REST

correctly implement the abstract mechanisms that were already validated in §4.2.1.

Goal New Elements New Constraints Induced Property

R
ES

T Refer to a
centralized
resource.

GLOBALCLOCK makes
explicit how clients,
servers, and caches
are synchronized.

ORIGINSERVER must
always specify a
consistent expiry
deadline if the resource
is ever to be updated.

Consensus:
Ensures that local
resource proxies
could agree with
leader’s value.

Table 3: Summary of the REST style.
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Read() describes an ideal function that returns a representation instantaneously.

A REST ORGINSERVER’s implementation of GET will be somewhat more

complicated, since representations are generated with reference to external data

sources ranging from slow disks to remote service gateways. This induces apotential

error of ε, since the reply to a request that arrives at λ may only be generated at

λ+ε. One way to accommodate this is to increase d by the amount of ε appropriate

to the application at hand. That treats representation-generation latency as one

more component of overall network latency.

Similarly, fresh() describes an ideal function that works with absolute

timestamps of arbitrary precision. In practice, the GLOBALCLOCK we added to REST

must permit a degree of error in making time comparisons at separate locations,

both due to limitations of finite precision and relativistic limits to accuracy. Again,

one way to accommodate this timing error is to shorten effective lease durations by

an appropriate ε.

A more serious limitation that has gone unstated so far is that fresh() depends

on a validity interval being specified in the original message from the server a

priori. Many real-world ORIGINSERVERs do not specify when the next permissible

resource update is scheduled; the external environment could change it at random

(e.g. editing a file by hand on a filesystem-based Web server).

One practical bridge between an implementation of the REST style and our

abstract model is to set a default lease and force the server to discard or delay

updates that arrive sooner than that lease deadline. This is the heartbeat model,
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which we will discuss further in the next section, where we will extend REST to

guarantee consensus, and indeed, even a limited form of simultaneous agreement

as well.

4.2.4  Implementation Issues

We would like to note two potential implementation issues facing developers of

REST-style infrastructure: lease expiration policy and clock synchronization.

4.2.4.1  Expiration

Moving from the abstraction of ORIGINSERVER to practical implementation, we

need to explain how leases are determined (the terms S and L in the specification

section). Its response to a GET request must include not only the current

representation of the resource, but also the time it is generated and the time it will

expire.

If the expiration time is not specified, its default value must be ∞. The client

simply has no other knowledge of when it might expire, which forbids the server

from ever changing it again. This is true even if the deadline is later determined

some time after the representation is first generated — if any client received an

indefinite lease, every future client will be so bound as well.

There are two practical solutions to this risk. The first is to actually use write-

once resources: by putting timestamps into the name of a resource and redirecting

requests for the generic resource to the time-specific ones, each of those will only

have to be assigned once. This pattern is often found in online newspapers and

Weblogs.
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The second solution is for the server to consistently reply with expiry deadlines

of NOW+d+ε as long as no future update has been scheduled yet. On the Internet, d

is often assumed to be roughly five minutes, per the 255 second IP packet lifetime

or the TCP TIME_WAIT delay. In this case, every requesting client is still able to “use”

the reply value for ε. As soon as the server wishes to update a resource, it freezes

the update deadline — so requests after this point may fail due to the vagaries of

network latency — and then puts the new value into effect after that.

4.2.4.2  Synchronization

Moving from the abstraction of GLOBALCLOCK to practical implementation, we

need to note two additional concerns: clock skew and authenticity. These are very

real problems on the Web today [158].

Technically, “skew” refers to two different sources of timing error: initial

synchronization and errors in clock rates (“drift”). Regardless, what is critical is that

the amount of the error must be much less than the minimum useful life of a

representation, (Lmin – d). The Simple Network Time Protocol (SNTP, [154]) shows

that it is feasible to limit drift in proportion to the variance of the average latency

between trusted timekeepers (rather than the maximum latency), which is on the

order of milliseconds across the modern Internet [64]. Furthermore, the US Global

Positioning System (GPS) is a practical demonstration of how closely clocks can be

synchronized between fixed positions in an inertial frame — within nanoseconds.

This establishes that GLOBALCLOCK can be established to the requisite level of

precision, but accuracy is another matter entirely. Then, the key is deciding which
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timekeeping services an architect trusts for a particular application. GPS suffices if

one trusts the US Government; otherwise the former Soviet Union’s GLONASS and

forthcoming European Union Galileo systems serve as sovereign alternatives to

American military control of so-called ‘selective availability’ accuracy limits [3,

33]. Cryptographically-secure network notary services may also prove necessary for

clock synchronization across agency boundaries [103].

4.3  REST WITH POLLING (REST+P)

In this section, we will present a way to use REST that guarantees consensus,

and even manages a degree of simultaneous agreement. The maximum possible

update rate for centralized resources within the REST architectural style will be

shown to be 1⁄3d — we will have to derive entirely new styles to actually achieve the

theoretical maximum of 1⁄d in the next chapter.

4.3.1  Property Specification

To guarantee consensus, we need merely to eliminate the conditions that

prevented it. We found two such conditions in our analysis of REST: that the value

of X has not been defined yet, or that X’s value will expire before delivery. Our

solution is poll(), a new program that guarantees consensus. Its specification is

merely to keep re-reading until Y is defined:
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{ ∀ t : S ≤ t < S+L : X(t) = (X1, S, L)
∧ NOW + 2d < (S+L) }

*[ Y = ∅ → Y  := fresh(read("X")); ]

{ ∀ t : (max(NOW, S + d) + 2d) ≤ t < (S+L)  :  Y(t) = X(t) = X1 }

Program 6: Specification of poll().

Unlike the specification at the end of §4.2.1, poll() can begin executing even

before S occurs. In return, poll() guarantees consensus as long as whatever value X

is assigned to, remains valid for more than three network delays. It will take no

longer than two network delays after it begins execution, or three network delays

after X is assigned a value, whichever comes later.

The base case is that S ≤ NOW, in which case poll() executes once, and consensus

is established no later than NOW + 2d, as in §4.2.1. The inductive step is to repeat a

new execution of read(), given that the current one failed.

Consider a failure case. Returning ∅ implies that that S > NOW + λ1. Furthermore,

the scheduled time of the next execution of the loop is defined as NOW + λ1 + λ2; call

this NEXT_RUN. Combining the two, we can infer that S > (NEXT_RUN – λ2). Since the

maximum value of λ2 is d, we can further establish that S > (NEXT_RUN – d).

Since the clock advances on each execution (NOW := NEXT_RUN, as the

bookkeeping would have it), failure adds the critical piece of knowledge in the

inductive step: S > NOW – d. This again leaves us with two cases: either S ≤ NOW or

S > NOW. In the latter case, the monotonic increase of NOW allows us to deduce that,

at some point, S ≤�NOW, reducing the problem to the former case.
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Thus, executing read() repeatedly must succeed eventually. Once it does, that

final execution of read() will terminate by NOW�+ 2d — but since we know

S > NOW–d, that deadline is no later than S+3d. Combined with the base case, the

entire program will establish consensus by max(NOW+2d, S+3d). Finally, we factored

out 2d to state the postcondition used in the Hoare triple above.

All that remains is to prove that the interval in the postcondition is nonempty, as

long as the minimum lease duration is 3d:

∃ t : (max(NOW, S + d) + 2d) ≤ t < (S+L)
⇒

max(NOW, S + d) + 2d < (S+L)
⇒

Lmin = max(NOW, S + d) + 2d – S
⇒

NOW ≤ S+d → Lmin = 3d
   NOW > S+d → Lmin = 2d + (NOW – S)

That is, if poll() starts no later than d after X has been assigned, X need only

hold for 3d. However, if we can assume X can’t stay ∅ indefinitely — that it is

always assigned some value eventually — then we can establish Lmin = 3d.

This follows from our induction above: if X is defined, but the remaining lease

lifetime is too short, the first pass through the poll() loop will fail. If we assume that

X will eventually be assigned again, then we know that at some point, the loop will

terminate — and termination implies S > NOW�–�d. Substituting that into the

expression just given, 2d + (NOW – S), and we find that Lmin = 3d in both cases.

In fact, if the loop above were suitably modified to restart the loop every time

Y’s value became stale again, we could even establish simultaneous agreement:
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{ L > 3d }

*[ *[ Y = ∅ → Y  := fresh(read("X")) ];
   *[ Y ≠ ∅ → Y  := fresh(Y) ] ]

{ ∀ t : t ≥ NOW + 2d:  Y(t) = (X(t) ∨ ∅) }

Program 7: Repeating poll() when values expire.

A formal proof would follow along the lines we will discuss later, in §5.1.1. An

informal argument is that since the value of X alternates between defined and

undefined values, the postcondition is trivially true when it’s defined, and Y will

follow each assignment after a delay of at most 3d. Hence, we describe poll() as

capable of “slow” simultaneous agreement of at most 1⁄3d  Hz.

AFTERWORD: WAIT(). To be sure, it is also possible to describe a function very

similar to read() that would at least reduce the factor of 3d in poll() to only 2d.

Wait() is a semi-stateful variant of read() that delays returning until X is defined.

Formally, it can be described as follows (assuming X := X1 at time T):

{ (0 < λ1 ≤ d) ∧ (0 < λ2 ≤ d)
∧ ∃ T :    ( ∀ t : t < T :  X(t) = ∅ )
   ∧ ( ∀ t : t ≥ T :  X(t) = X1 )}

Y  := wait("X");

{ Y(max(NOW+λ1, T) + λ2) = X(T) }

Program 8: Specification of wait().

Or, after eliminating λ by quantification, Y( max(NOW+d, T) + d) = X(T). If T

occurs before the request arrives at the server, then after 2d, Y will be assigned that

value. If T is further into the future, however, then the reply message is sent
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precisely at T and Y will be assigned that value no later than T+d. In other words,

wait() behaves exactly like read(), except that it delays returning until a value is

assigned. A version of poll() that used the wait() primitive could achieve a

maximum update frequency of 1⁄2d.

4.3.2  Style Definition

The REST+P architectural style induces agreement by constraining all
components that refer to shared resources to repeatedly re-request a
current representation from an ORGINSERVER at all times.

The REST+Polling architectural style meets the specifications given above. It

adopts a client-initiated continuous polling mechanism rather than the one-shot

query model of REST alone. Unlike the new styles we will derive in the next

chapter, REST+P has the substantial virtue of not modifying the definition of a

server component, only changing the behavior of clients.

As depicted in Figure 5, all REST+P needs is a modified POLLINGCLIENT, whose

repeated GET requests are represented by multiple arrows.

Origin
Server

Polling__
Client__ C S

REST+P

GET GET GET

GlobalClock

Figure 5: Illustration of the REST+P architectural style.
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4.3.2.1  The POLLINGCLIENT Component

A POLLINGCLIENT will issue a GET request to an ORIGINSERVER and continue to

re-issue that request until the response becomes a valid representation. It must re-

issue requests no later than d seconds apart.

Requests into a POLLINGCLIENT component will block until some content can be

returned. An alternative event-based interface is for a request into a POLLINGCLIENT

component to return a series of representations over time by re-starting its polling

loop whenever the current representation expires.

4.3.3  Validation

As summarized in Table 4, continuous client-initiated polling (REST+P) can

guarantee consensus and even induce simultaneous agreement, though only for

centralized resources that change no more frequently than 1⁄3d.

Goal New Elements New Constraints Induced Property

R
ES

T+
P Refer to a

mutable
centralized
resource.

POLLINGCLIENT that
reissues a new GET
immediately upon
each expiration.

Polling request
rate must exceed
1⁄2d  Hz.

“Slow” Simultaneous
Agreement:
Local proxies will agree
with leader if its update
rate is less than 1⁄3d Hz.

Table 4: Summary of the REST+P style.

Our validation for this claim is an argument that, by construction, the

architectural elements and behavioral constraints of REST+P implement the abstract

mechanisms that were already validated in §4.3.1.

Poll() describes an ideal program that reissues a request instantaneously. At

worst, read requests must not be longer than 2d apart, or the proof fails. Since a
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REST+P POLLINGCLIENT implementation could be quite inefficient if it re-requested

continuously, the scarcity of bandwidth or processing power could delay requests

by an additional factor of ε. One way to accommodate this is to increase d by the

amount of ε. A more involved formal argument could be advanced to tighten this

practical bound to Lmin = request_intervalmax + d.

4.3.4  Implementation Issues

The polling loop is a popular technique for increasing interactivity without

burdening server implementation — when the tradeoff between the benefits of

statelessness and the increased overhead of processing additional requests justifies

it. Of course, polling also places a burden on client implementations to retry

requests, but a fundamental assumption of REST (and arguably of Internet-scale

architectures in general) is that “nearby” computing resources are faster to access

and more abundant, thus favoring processing at the edges of a network.

Indeed, today’s Web browsers already include vestigial support for this mode of

interaction. In HTML, a <META HTTP-EQUIV="REFRESH" CONTENT="N"> element in

the header of a document indicates that page should be reloaded every N

seconds.13

                                               
13 Despite appearances, though, this HTML header does not imply that there is a
“refresh” facility in HTTP/1.1 per se; at most, the server can issue an advisory error
message to retry the failed transaction after a specified interval.
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As mentioned earlier, unregulated polling can waste bandwidth and processing

power. A POLLINGCLIENT should not issue more than one pending GET request at a

time.

Furthermore, an additional optimization that leases enable is suppressing

polling while the current representation is still fresh. A subsequent read() request

could be issued only at the time of expiry without invalidating our performance

analysis, since a reply only takes at most 2d, while Lmin > 3d. An even more efficient

implementation could opt to wait until the full 2d elapses between requests,

without loss of generality.
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Chapter 5:   CENTRALIZED SYSTEMS

Client-initiated polling approaches are not sufficient for maintaining

simultaneous agreement between a centralized resource and a local proxy. Instead,

we propose an event-based approach that permits the central resource to broadcast

notifications of its state changes. Our insight is to recast the concept of a resource

in REST into an event source that emits event notifications corresponding to each

change in its representation(s). Building upon this reinterpretation of the REST

architectural style, we can induce several distinct properties: simultaneous

agreement using events; multilateral extensibility using routes; and simultaneous

invocation by using publish-and-subscribe integration.

5.1  ASYNCHRONOUS REST (A+REST)

In this section, we will present a way to extend REST into an event-based

architectural style. By taking advantage of asynchronous notification, followers can

be updated within at most d seconds of a change in the leader’s value.

5.1.1  Property Specification

We need a different sort of mechanism to induce simultaneous agreement for a

mutable centralized resource that actually permits the maximum update rate of 1⁄d

that we derived in §2.3.1. We propose adding a broadcast mechanism to extend

read(), called subscribe(), that we can prove is correct and minimizes total latency.

First, though, we need to define notify(), a new operation that lets the leader

directly set the value of a follower’s variable. This program could be described as
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an “instantaneous read() request,” since it eliminates the latency of sending the

initial request. Formally, its specification is:

{ 0 < λ ≤ d }

Y  := notify("X");

{ Y(NOW + λ) = X(NOW) }

Program 9: Specification of notify().

Or, quantifying the random value λ over its entire interval (0, d] to relax the

precondition so that it can be invoked at any time:

{ true }

Y  := notify("X");

{ Y(NOW + d) = X(NOW) }

Program 10: Notify(), quantified over possible latencies.

In conjunction with fresh(), we can assign the value of the local variable for the

duration of the remaining lease interval, if any:

{ ∀ t : S ≤ t < S+L : X(t) = (X1, S, L) }

Y  := fresh(notify("X"));

{ ∀ t : (NOW + d) ≤ t < (S+L) : Y(t) = X(t) = X1 }

Program 11: Composition of fresh() and notify().

This program, in turn, is used in conjunction with another program running at

the centralized server that invokes notify() every time the value of X changes. To
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describe the behavior of subscribe(), we need to introduce CLOCK, a monotonically

increasing value representing the passage of time:

{ L > d }

XLast := ∅;
*[ X(CLOCK) ≠ XLast → XLast := X(CLOCK); 

Y  := notify(Xlast, CLOCK, (CLOCK + L)); ]

{ Y(t) = (X(t) ∨ ∅) }

Program 12: Specification of subscribe().

That is, subscribe() establishes simultaneous agreement between X and Y

indefinitely. Our argument proceeds by enumerating the value of the function X(t)

as a series of disjoint (value, interval) pairs. A lease interval, in turn, is a (start,

lease) pair such that lease ≥ Lmin. We must show that this program sets the value of

any follower variable Y(t) to the series of corresponding disjoint pairs

(value, (start + d, start + lease)). Since Lmin > d, each interval is nonempty, so Y will

remain in simultaneous agreement with X.

X(t)

Y1(t)

Y2(t)

Yn(t)

d Lmin

...

Figure 6: Illustrating simultaneous agreement using notifications with leases.
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Figure 6 visualizes our argument. As X is assigned a series of colors, each

follower Y1, Y2, …, Yn receives each message after some random latency λ. The

worst-case intersection is for some Yn that always encounters λ=d.

Returning to our formal argument, we must establish the base case, that

simultaneous agreement holds initially; and the inductive step that maintains it.

Initially, Y(NOW) is presumed to be ∅, so the condition holds. The only step that can

modify the value of Y is notify(), which also preserves simultaneous agreement

during the interval [CLOCK+d, CLOCK+L). And finally, by our definition of X(t) as a

series of disjoint leased values — every successive pair in the series must have a

distinct value — each change to X will falsify the guard of the loop, triggering a

notification. Furthermore, as long as it takes less than d seconds to execute notify(),

the busywaiting loop is guaranteed to detect every change in the value of X, and

hence Y will also be set to each value assigned to X after subscribe() is invoked.

EXPIRATION POLICY. What happens when lease is not known at start? This is a

typical case, where the timing of the next update is unknown. The solution will be

either to use a heartbeat — broadcasting a new event notification every Lmin

seconds — or to send explicit invalidation messages — delaying an update by d

seconds to send a “clear” message to every follower before switching over to the

new value. The optimal strategy will depend on the ratio of the distribution of

random update intervals to Lmin, and the ratio of Lmin to d.

To illustrate the tradeoff between availability and responsiveness, consider an

event source that changes hourly, on average, using a network with a maximum
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latency of five minutes. An example of a heartbeat solution would be to broadcast

the current state every ten minutes, so that all subscribers could be in simultaneous

agreement 1 – d⁄Lmin
 of the time, or at least 50%. The invalidation solution would be

to broadcast the new value whenever the source changes, but with a five-minute

embargo: the actual changing of the value has to be rescheduled far enough into

the future so that every follower can be notified beforehand. This ensures

simultaneous agreement, on average, 1 – d⁄Lavg
 of the time, or about 92% in this

example.

Before issuing a blanket recommendation in favor of invalidation, however,

consider what happens if the event source changes as soon as six minutes later. The

heartbeat solution cannot re-establish simultaneous agreement for nine minutes,

while the invalidation would only take only five.

Conversely, if the next change occurred after nine minutes instead, the

invalidation solution would still take five minutes, but the heartbeat would only

take one minute — expiry would be already have been scheduled for the tenth

minute. Another way of explaining this effect is that, even though the update

frequency is limited by d in either case, designers need to account for aliasing

errors caused by phase-alignment.

5.1.2  Style Definition

The A+REST architectural styles induces simultaneous agreement by
constraining NOTIFYINGORIGINSERVER components to return a
continuous stream of updated representations of a resource until a
WATCH request expires.
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The mechanisms we have been describing so far could be said described as

event-based. By simply recasting a variable from a time-variate function into an

event source — a named object of interest that can be observed for notification of

its changes — we can take advantage of several popular architectural abstractions.

The key semantic shift this implies is that successive event notifications must have

some relationship over time: the values assigned to such a variable must be of the

same type. Such time-series of successive values may even permit higher-order

analysis such as trend lines or summation.

To extend REST to incorporate the subscribe() mechanism proposed above,

then, we need a working definition for events that maps onto existing REST

elements. Rosenblum & Wolf [197] propose that “An event is the effect of the

termination of an invocation of an operation on some object of interest…Events

occur regardless of whether or not they’re observed.” Our stance is perhaps the

opposite, insofar we consider that the very act of ‘observation’ to be what

distinguishes events from messages. Specifically, our concern stems from the

realization that ‘on the wire,’ there is little discernable difference between a

messaging protocol and an event-notification protocol. However, there is a

dramatic difference between the programming model for a batch message queue

and an event handler. Thus, our view might be summarized as “event notifications

are messages that cause actions.”



93

In either case, though, there is a clear distinction between the occurrence of an

abstract event and the concrete notification of an observation of one14. We see in

that distinction a clear analogy to the membership function in REST that maps

abstract resources to concrete representations.

Notifying
Origin
Server

    Client C S

A+REST GlobalClock

WATCH

NOTIFY

Figure 7: Illustration of the A+REST architectural style.

We propose, then, to recast a REST resource as an event source; and a REST

representation as an event notification. The capability REST is missing, though, is

asynchronous notification. One does not GET the state of an event source; one

needs to establish a persistent relationship in order to WATCH it. Thus, an

Asynchronous REST (A+REST) needs a new element, NOTIFYINGORIGINSERVER, to

generate successive notifications of changes to a resource, as shown in Figure 7.

5.1.2.1  The NOTIFYINGORIGINSERVER Component

An NOTIFYINGORIGINSERVER will transfer representations of every change to a

resource as long as a client stays connected. It could be implemented as a wrapper

around an ordinary ORIGINSERVER resource by polling it, in turn; or by monitoring

                                               
14 We are using the terms ‘occurrence’ and ‘observation’ according to their
definition in the event lifecycle model of [196].
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an internal resource abstraction such as the filesystem. In either case, an

NOTIFYINGORIGINSERVER’s connection back to a client must accommodate not one,

but a series of response messages for each request.

This requires maintaining state for each subscription relationship. Unlike a GET,

a WATCH request requires specifying the duration of a subscription relationship. In

order to support reflection over such long-lived subscription records, we believe

each subscription should be a REST resource itself. This will let us ‘inherit’ a many

capabilities from the REST ORIGINSERVER model: controlled access to event sources

and cryptographic security mechanisms for representation transfers; firewall

traversal via proxies; content-negotiation over formats and languages; and caching.

5.1.3  Validation

A+REST indeed induces simultaneous agreement for centralized, mutable

resources, as summarized in Table 5. We validate this claim by arguing that, by

construction, the architectural elements and behavioral constraints of A+REST

implement the abstract mechanisms already validated in §5.1.1.

Goal New Elements New Constraints Induced Property

A
+

R
ES

T Refer to a
mutable
centralized
resource.

NOTIFYINGORIGIN-
SERVER that can
send multiple
responses to a
WATCH request.

Every resource
update must lead to
transmission of a
new representation
to all watchers.

Simultaneous
Agreement: Ensures
that local resource
proxies will agree
with leader’s value,
even if it is being
updated at 1⁄d Hz.

Table 5: Summary of the A+REST style.
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Notify() is implemented simply by using REST representation transfers. Since the

reply message in an REST request-response pair is itself a representation, complete

with caching information, notify() can be implemented by transmitting multiple

responses while verifying the fresh() test for each one using a GLOBALCLOCK. To be

sure, generating a concrete response message can take time, depending on the

representation media type and other factors. This increases d by an ε appropriate to

the application at hand. In extreme cases, though, beware that the sheer size of a

representation can exceed available bandwidth to the degree that it significantly

distorts d.

It can be more difficult to establish whether an NOTIFYINGORIGINSERVER

implements Subscribe() correctly. It requires each and every change in the value

(representation) of a resource to trigger an event notification. A busy-waiting loop

needs to run often enough to eliminate the possibility of a ‘lost update.’ This

requires the ‘sampling rate’ for observing an event source to exceed the maximum

possible frequency of the source. Therefore, an NOTIFYINGORIGINSERVER

implementation must assure that it has enough computing capacity, etc. to ensure

that a scan takes << d seconds.

5.1.4  Implementation Issues

Moving from the abstract model of an NOTIFYINGORIGINSERVER to practical

implementations, we need to consider three key issues: how subscriptions are

created and managed; how its connectors interact with the network; and how event

sources are observed.
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A detour to examine an existing Web-based event notification system is an

instructive counterexample. The Jabber instant messaging project [152, 153]

includes a browser-based “buddy list” user interface. It implements the wait()

mechanism discussed in §4.3 using a modified HTTP server to handle requests for

an invisible presence icon. Such requests block until some buddy’s presence

information changes — and then the server drops the TCP connection. Typical Web

browsers support scripting language events triggered by a failed image load, which

in turn are used to reload the entire buddy list page.

While approach does indeed add a degree of asynchrony to REST model, it is

not an NOTIFYINGORIGINSERVER because 1) can only transmit a single notification;

2) its subscription model depends intimately on TCP; 3) and it does not have a

robust enough timing model for observing event sources and leasing event

notifications to establish simultaneous agreement.

First, support for multiple responses requires modifying the REST client and

server connectors slightly, in order to hold open a network connection — similar to

REST’s existing support for request pipelining and HTTP/1.1 persistent connections

[157]. Not only does client-initiation add latency for “re-subscribing” after every

buddy list update, the network-layer overhead of re-establishing TCP sessions can

cost additional round-trips. Our later work on so-called “isochronous persistent

connections” in MOD_PUBSUB addressed these challenges within the limitations of

current REST infrastructure by recasting many response messages as a single, slow,
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very long-lived, representation transfer. It permits full 1⁄d Hz update rates because it

eliminates the page reloading round trip as well.

Second, truly simultaneous agreement requires a robust timing model: both to

synchronize components and to ensure that event sources are observed on

schedule. The Jabber approach still permits arbitrage between followers acting on

inconsistent presence information. It neither specifies a deadline by which all

followers will stop displaying outdated presence information for a given buddy

(heartbeat); nor accommodates pre-caching of information that is scheduled to

become valid later on (invalidation). A closely related challenge is scheduling event

source observations. In MOD_PUBSUB’S Perl Common Gateway Interface (CGI,

[102]) implementation, for example, the smallest meaningful, reliable time unit is

an entire second, because its key observation loop scans directories on disk for the

appearance of new files — which is limited to the one-second resolution of UNIX

filesystem timestamps.

5.2  ROUTED REST (R+REST)

While A+REST tackled the essential challenge of latency, this section will focus

on improving REST’s support for multiple agencies. Just as asynchrony relaxed the

requirement of only one response per request, message routing will relax the

requirement that responses must only be sent back to the requester. With

redirection of replies, services can be composed in a manner that eliminates

unjustified trust relationships — and minimizes total latency as well.
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5.2.1  Property Specification

We would like to define an architectural style that ensures a new property:

multilateral extensibility. The test of multilateral extensibility is whether new

application functionality can be added by using architectural elements owned by

several different agencies, all at the same time. Examples of such behavior range

from supplying external data files, as when purchasing a third-party font for a word

processor; to linking in external programs, as with image processing plug-ins for a

photo editor; or even synchronizing customer addresses between billing and

marketing systems, as with database synchronization tools in an application

integration suite. Since the web of trust between agencies is a directed graph,

inducing the property of multilateral extensibility requires architectural

configurations that enforce directed trust relationships to ensure that data flows

only between trusted parties.

Recalling the terminology of owned functions, owned variables, trust

relationships, and trusted invocations from §2.3.3, multilateral extensibility can

formally be defined as the ability to compose trusted invocations without requiring

the agencies owning those functions to trust each other.

Consider the application of two agencies’ functions to a variable owned by a

third: FA(GB(XC))). Clearly, a user (U) that evaluates such an expression must trust

each of the three participating agencies. Formally, U’s web of trust must include

those edges: TU ⊇ { U→A, U→B, U→C }.



99

If we evaluate the nested expression directly, though, we find that we need

different trust relationships:

{ TU ⊇ { U→A, A→B, B→C  } }

y := FA(GB(XC)));

{ y = FA(GB(XC))) }

Program 13: Nested composition requires transitive trust.

By our definition of trusted invocations, the owner of a function must trust the

owners of all of its arguments, hence the graph given in the precondition. Whereas

if we unrolled the expression into three sequential invocations, the owners of those

new functions would not have to trust each other:

{ TU ⊇ { U→A, U→B, U→C } }

y1 := XC ;
y2 := GB(y1) ;
y3 := FA(y2) ;

{ y3 = FA(GB(XC))) }

Program 14: Sequential composition only requires direct trust.

Recall that assignment only requires the agency on the left hand side to trust the

one on the right. Because the result of each evaluation is assigned to a temporary

variable owned by U, our precondition only specifies a web of trust (T) containing

edges from U.

To resolve this discrepancy, we introduce delegate(), a helper function that

simply relabels the ownership of information:
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{ TU ⊇ { U→A } }

y := XA ;

{ yU = XA }

Program 15: Specification of delegate().

Then, the property of multilateral extensibility can be enforced by simply

interleaving calls to delegate between any two agencies that don’t trust each other:

{ TU ⊇ { U→A, U→B, U→C } }

y := FA(delegateU(GB(delegateU(XC)))))

{ y = FA(GB(XC))) }

Program 16: Nested composition of delegate() only requires direct trust.

In essence, the delegate() function “launders” trust relationships by constructing

inference chains that are always rooted at U.

5.2.2  Style Definition

The R+REST architectural styles induces multilateral extensibility by
eliminating the constraint that response messages must return to the
ORIGINCLIENT; instead, a ROUTINGPROXY may relay the response to a
3rd party.

Though delegate() may appear to be a trivial bookkeeping detail, managing to

add it to REST without encountering the unreasonable latency of calling each

function sequentially will lead to message Routing (R+REST).

Consider the printing example illustrated in Figure 8-A. In the top row, we begin

with an ordinary REST printing scenario. The printer is the resource and POSTing a
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print job to it yields a representation containing the number of pages actually

printed. Note that while GET requests are required to be idempotent, we are using

POST for a resource with side effects (in this case, printing).

POST

OK

print
job

page
count

OK

POST

print
job

page
count

Notary
Watermark

Payment
Accounting

POST

OK

print
job

page
count

Notary
Watermark

Payment
Accounting

A)

B)

C)

Figure 8: Multilateral extensibility requires eliminating untrusted links.
[Note that while row B has six arrows/network delays, row C only uses four.]

Now suppose an application architect is expected to enhance the system with

two new features. The agency that owns the printer wishes to account for all pages

printed and charge payment from users. At the same time, the user wants to have all

of her printouts digitally notarized, with a cryptographic seal encoded as a

watermark in the printout.

The REST architectural style makes it comparatively easy to enact these

extensions. Because of its emphasis on generic interfaces, proxy servers can be
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inserted into the path to modify each transaction. The resulting “proxy chain” is

depicted in the middle row, Figure 8-B.

However, extending the system correctly requires that watermarking be the last

step before printing, in case there are other modules added later on (such as, say,

converting color to black-and-white). Correctness also requires that the accounting

module be the first step that processes the page count “receipt.” In other words, the

user doesn’t want anyone tampering with her notarized printouts, and the owner

doesn’t want anyone tampering with the page counts.

This uncovers three problems with the REST approach: unjustified trust

relationships, increased latency, and hop-by-hop proxy selection.

•  Proxies permit an agency to modify both incoming and outgoing

representations. Nesting requires complete mutual trust between every

participating agency, because any proxy along the pipeline could

compromise the data flow.

•  Conversely, proxies that do not modify incoming or outgoing data flow only

serve to increase total latency. In an ideal REST solution, WATERMARK is

trustworthy because it doesn’t care about the reply message, and ACCOUNTING

is trustworthy because it doesn’t touch the request message. Nonetheless,

each of those no-ops still adds d to the total latency of the system.

•  REST only permits a USERAGENT to select between a server or a proxy server;

it does not permit specification of a multiple-hop, end-to-end path. Even

extending the application as shown in Figure 8-B still requires the user to
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explicitly redirect its requests from the printer to WATERMARK; and also

requires an entirely out-of-band mechanism for the printer owner to control

the WATERMARK server to redirect its output to ACCOUNTING.

The bottom row, Figure 8-C, depicts a better solution. Rather than modeling

WATERMARK as a proxy that makes a nested call to ACCOUNTING in order to reply to the

user, we model it as an ordinary server that redirects its output to the printer, rather

than the original caller. Similarly, ACCOUNTING is only inserted in the data flow at

one location this way. Furthermore, with the ability to specify an entire routing

path, it is possible for the user to explicitly request that the print job be notarized,

printed, and paid for without positing further out-of-band mechanisms.

Routing
Proxy    Client C S

R+REST

ROUTE
C

POST
Origin
ServerS

GlobalClock

Figure 9: Illustration of the R+REST architectural style.

This calls for a new component that is a cross between an ORIGINSERVER and a

PROXYSERVER that can redirect its output to another server, rather than returning to

the calling client. Figure 9 illustrates how a ROUTINGPROXY redirects what normally

would be a representation transfer back to a client connector into an relayed POST

to another server component, as specified by the ROUTE method.
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5.2.2.1  The ROUTINGPROXY Component

A ROUTINGPROXY component behaves both like a server, since it generates

responses without any further nested transactions to other components; and like a

proxy, insofar as it relays data onward to other servers. It requires an additional

control facility (header) to let the client specify that onward relay path. Of course,

in the process of dispatching the request message, the ROUTINGPROXY might itself

modify that relay path; that is an accepted consequence of trusting a ROUTINGPROXY

rather than calling several services sequentially. There are practical and essential

challenges to implementing this facility.

In practice, the initial client has to be able to specify not only the resource

identifiers of the onward destinations, but may need to include authentication data

for each, and even pass parameters. If the user wishes to browse a bookseller’s site

with the prices automatically converted to £ by his credit-card processor, the

instructions to the bookseller’s ROUTINGPROXY would also include credentials for his

bank and information about which currency pair he wanted to use. If the bank used

a challenge-response protocol (such as digest-authentication, [77]), the interaction

model would even require additional round trips. Error reporting in such cases

would also be complicated by the need to indicate where along the path such

errors occurred, and their severity.

The essential challenge is preventing routing loops. If a path is dynamically

constructed, by permitting intermediate ROUTINGPROXY nodes to edit the path and

add destinations, then there is a possibility of infinite recursion.
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In HTTP, loop suppression is the role of the VIA: header. Even if a server could

detect all the possible synonyms for its own resource identifiers — an incomputable

task because of redirection, DNS aliasing, and other factors — it may prevent a

legitimate, layered, reuse of the same service (e.g. nested digital signatures). On the

other hand, it is also meaningless to re-sign a message that has changed only

trivially (an updated DATE: header, say).

The necessary mechanism is one that correctly prevents relaying only of

essentially identical representations. In REST, that is the role of unique

representation entity tags (ETAGS). Originally developed for cache revalidation, they

account for domain-specific rules about what constitutes “essential identity.” Thus,

a ROUTINGPROXY must maintain a stateful cache of the ETAGS of message it is

currently relaying to ensure that it only relays a request once.

5.2.3  Validation

R+REST indeed induces multilateral extensibility to compose several

independently-owned services without presuming trust between those services’

owners, as summarized in Table 6. We validate this claim by arguing that, by

construction, the architectural elements and behavioral constraints of R+REST

implement the abstract delegate() mechanism we already validated in §5.2.1.

Our obligation to provide an implementation of delegate() is solved completely

by backhaul: directly calling the inner component and then subsequently calling

the outer component.  Our goal is to minimize latency by avoiding an extra

network delay to return intermediate representations back to the original caller. A
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ROUTINGPROXY can correctly implement delegate() because the instructions passed

in by the calling agency justify the transitive closure it requires before calling the

inner service. When U tells A to route its reply to B, A relies on the assertion

encoded in the routing instruction, U→B, to deduce that for this particular

invocation, A→B.

Goal New Elements New Constraints Induced Property

R
+

R
ES

T Compose
services
provided
by multiple
agencies.

ROUTINGPROXY
Component that
permits clients
to control
relaying.

Every representation
transfer must be
justified by a
corresponding edge
in the web of trust.

Multilateral
Extensibility:
Can compose trusted
invocations without
requiring mutual trust.

Table 6: Summary of the R+REST style.

One significant caveat is to note that correct correspondence between

ROUTINGPROXY and delegate() requires path integrity. If an intermediate node fails to

obey the routing instructions, or rewrites them, whether due to error or malice, our

proof would be invalidated.

5.2.4  Implementation Issues

There have been two significant efforts to extend Web applications using routing

rules for HTTP messages: the Protocol Extension Protocol (PEP, [80]) and the

Mandatory Extension Mechanism (M-HTTP, [81]). Each of these replaced ad hoc

proxy-selection of each hop in REST with explicit direction from the requestor.

Intermediate proxies could be instructed to select one of several ‘compatible’

implementations of a service; if none could be found, it could also determine

whether the request should continue or fail. These efforts were guided by the plug-
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in module interfaces available in popular web servers, such as Netscape’s NSAPI

and Microsoft’s ISAPI. The critical improvement was that by adding mandatory

error and warning semantics and richer response formats, they improved debugging

regardless of where errors occurred along the path. In the context of SOAP, this

lesson resulted in adddding the MUSTUNDERSTAND header [31].

Extracting the routing logic from the underlying service implementations also

enhances confidence that a ROUTINGPROXY can be trusted to enact a path. More

advanced routing engines even propose to resolve constraints, load balance, and

infer type conversions to select paths dynamically. This approach is familiar in

workflow research [116] but is only beginning to be applied to Internet-scale

software component integration. With the advent of ‘web services,’ interest in

dynamically routing requests has inspired several proposals, such as WS-Routing

[82] and ‘SOAP routing’ {Khare, 1994-5 #1829}.

5.3  ASYNCHRONOUS, ROUTED REST (ARREST)

Together, A+REST and R+REST provide an even more powerful abstraction for

application architects: publish/subscribe integration. By combining the ability to set

up a long-lived WATCH relationship with the ability to redirect those notifications to

a third resource, even 3rd and 4th parties can extend deployed applications by

composing an arbitrary graph of services, all synchronized by the flow of event

notifications.
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5.3.1  Property Specification

We would like to define an architectural style that ensures a property that goes

beyond simultaneous agreement over the state of resources, to ensure simultaneous

invocation over the output of a function of that resource. If there is an event source

publishing price quotes, and a separate service that computes the present value of

financing that amount on a credit card, an application architect also ought to be

able to treat the output of that analysis as valid ‘right now’ in order to display both

the full price and monthly payments side-by-side.

Stabilizing F(X) rather than X itself is only possible if X changes slowly enough.

There are several possibilities we encounter along the way to establishing the lower

bound of 1⁄2d Hz (ignoring, of course, the additional ε of time it takes to evaluate F()

itself):

1. Fetch X, then evaluate F(): 1⁄4d Hz. Each operation takes 2d, but there is no

guarantee that read() alone establishes consensus.

2. Fetch X and route to F(): 1⁄3d Hz. If read() succeeds, it takes 2d to send the

new value directly to F(), and an additional d to return the output to the

caller.

3. Poll X, then evaluate F(): 1⁄5d Hz. Poll() takes up to 3d after X is defined, plus

2d for calling F().

4. Watch X, then evaluate F(): 1⁄3d Hz. Subscribe() takes up to d after X is

defined, plus 2d for calling F().
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5. Watch X and route to F(): 1⁄2d Hz. Subscribe() only takes d to invoke

notify()upon updates, and sending the new values directly to F() establishes

simultaneous invocation within 2d.

Clearly, the first two are only partially satisfactory, since they do not even

guarantee consensus. Furthermore, nesting additional function applications adds 2d

each time, without taking advantage of delegation (routing).

Figure 10 illustrates how the combination of Asynchrony and Routing leads to

the highest performance: triangulation. It presents five approaches to the problem

of computing FA(GB(XC))): two using read(), which could fail; and three using some

form of subscribe(). In the case of REST+P, the dash-dot line shows the worst case.

In order to compare characteristic update frequencies, we did not count the initial

subscribe() requests, by assuming they were occurred beforehand.

3d3d

REST R+REST ARREST

4d
2d

5d

A+REST  /  REST+P

FA

XC GB

FA

XC GB

FA

XC GB

FA

XC GB

t=0 WATCH WATCH

NOTIFYGET

POST

POST

ROUTE

(double arrows
mean ‘transmit
repeatedly.’)

(dashed lines
indicate the
update rate)

Figure 10: World-lines illustrating the total latencies for simultaneous invocation in
each of our centralized styles.
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Formally, though, there is no specific new facility associated with simultaneous

invocation. The specification of the combination does not confer greater

explanatory power. However, it does have a significant impact on the definition of

the style (§5.3.2) and its implementation (§5.3.4).

5.3.2  Style Definition

The ARREST architectural styles induces simultaneous invocation by
adding a CENTRALIZEDEVENTROUTER component that can create,
update, delete, and enact subscriptions, which are constraints that
force updated representations to be relayed to all matching
subscribers’ ORIGINSERVERs.

The combination of both Asynchronous and Routing elements with the REST

style enables centralized publish/subscribe integration. This allows followers to rely

on local computations that depend on remote resources, because simultaneous

invocation guarantees the architect that the appropriate event handlers will be

called automatically in order to keep local results synchronized with the leader’s

value.

Central.
Event

Router
    Client C S

ARREST

SUBSCRIBE

C
Origin
ServerS

POST

GlobalClock

Figure 11: Illustration of the ARREST architectural style.

While there is no change in the formal specification of both asynchrony and

routing, the combination of the two permits us to define a new architectural
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element for the sake of convenience: the CENTRALIZEDEVENTROUTER. Its most

important novelty is the introduction of first-class subscriptions.

A subscription is an (S, D, L) triple consisting of S, the name of
source to be monitored; D, the name of the destination resource to be
notified; and L, a lease indicating the interval of time when the owner
of S intends to notify D of each change to S.

Recall that a NOTIFYINGORIGINSERVER must maintain state for the duration of a

WATCH relationship, but there is no particular necessity for reflecting upon such

state. In other words, since the only action that can create a relationship is the

initiating client’s WATCH request, there is no need for an administrative model to

reason about subscriptions, nor any way for 3rd or 4th parties to create such.

On the other hand, the concept of a routing path is entirely ephemeral in

ROUTINGPROXY: paths apply to a single resource request. Adding a routing path to a

WATCH request, though, can create a persistent relationship between several

resources across agency boundaries. Entire application architectures can be

encoded as a series of appropriately-chosen subscriptions and “drop-boxes” to

store and forward event notifications.

Note that while a subscription must be owned by the same agency that owns S,

the event source, it can be created by anyone that S’s owner trusts. Formally,

creating a subscription does not even require the consent of D’s owner, because

any resource must be prepared for the possibility of unwanted notifications

(“spam”). This is why we speak of the ability for 1st parties (requesting clients), 2nd
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parties (replying servers), 3rd parties (other clients), and even of “4th parties”

(administrators) to create and manipulate subscriptions.

5.3.2.1  The CENTRALIZEDEVENTROUTER Component

A CENTRALIZEDEVENTROUTER is a container for event sources, just as a REST

OriginServer is a container for resources. However, it has an additional, stateful

mode of operation. Clients can request creation of SUBSCRIPTIONs by specifying a

resource to monitor, a resource to notify, and the duration of the relationship. The

response is not the state of the monitored resource, as it would be with GET or

WATCH, but rather the identity of a newly created resource. Unsubscription now

becomes a matter of deleting this new resource. Indeed, access controls for the

creation and deletion of SUBSCRIPTION resources can enact complex trust models.

Finally, the creator of a subscription need not be the same agency as either the

monitored or the target resources’ owner: this provides for both explicit and

implicit invocation of services. We call this approach “composing active proxies,”

because it allows architects to connect software components by redirecting the flow

of messages across the network, without directly modifying any of the underlying

services {Khare, 1998 #1648}.

5.3.3  Validation

ARREST indeed induces simultaneous invocation when composing services, as

summarized in Table 7. We validate this claim by arguing that, by construction, the

new architectural elements and behavioral constraints of ARREST do not weaken
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the arguments already advanced for A+REST and R+REST in §5.1.3 and §5.2.3,

respectively.

Goal New Elements New Constraints Induced Property

A
R

R
ES

T Refer to the
results of
services that
depend on
centralized
event sources.

CENTRALIZEDEVENT-
ROUTER Component
combines facilities to
recast Resource/
Representation as an
Event Source/ Event
Notification model.

Notifications are
relayed directly
through services
(proxies) to
minimize
latency.

Simultaneous
Invocation: Ensure
that services are
invoked with the
same inputs at the
same time, every
time.

Table 7: Summary of the ARREST style.

The key issue is whether the function being invoked can be characterized as an

“event handler”: non-blocking, re-entrant, and fast. To achieve simultaneous

invocation of F(X) whenever X changes, we know that a NOTIFYINGORIGINSERVER

and a ROUTINGPROXY can be composed to initiate F(X) within at most 2d of a

change to X. However, F() itself must terminate quickly, since the total “margin of

error” is only Lmin–2d. Second, actual network latencies may be << d, so even

though the update rate may be low enough, two particular invocations of F() may

occur very close together. Hence, the requirement for non-blocking evaluation, to

permit more than one outstanding invocation — to say nothing of the likelihood

that F() may be used by many different subscriptions at the same time. Third, it

should not have side-effects (re-entrancy): the same handler may get invoked again

and again with the same value of X if the centralized server’s expiration policy uses

a heartbeat.
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Admittedly, these are difficult requirements to test for, not least of which is the

Turing-complete termination criterion. Furthermore, there may be additional levels

of nesting, and every level increases Lmin by d. However, for any F() that does satisfy

these tests, CENTRALIZEDEVENTROUTER can guarantee simultaneous invocation.

5.3.4  Implementation Issues

There are two significant new implementation issues arising from combining

ROUTINGPROXY and NOTIFYINGORIGINSERVER into a single CENTRALIZEDEVENTROUTER:

support for the new concept of ‘subscription’ resources and scalability.

5.3.4.1  Reflection

Support for first-class subscriptions calls for an additional, reflective interface for

introspection to create, update, and delete them. Recalling our discussion of Jabber,

note that its approach violates the boundary between the application and network

layers [235], both by relying on network connectivity to indicate a subscription

lifetime (i.e. a TCP half-close); and by avoiding end-to-end identification by only

using ephemeral IP addresses and TCP port numbers to distinguish subscribers from

each other.

In contrast, subscription resources are created and destroyed by separate

network transactions; and rely on resource identifiers that have much longer

lifetimes and are consistent across agencies (at least, while using DNS for host

names). For example, in MOD_PUBSUB we currently attach a KN_ROUTES subdirectory

to every topic (event source) to enumerate the subscriptions to it. This makes it

much easier to discover what other agencies are rendezvousing at that topic.
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Adding recursion to reflection also provides us the ability to reason about higher-

order access control. For example, denying write access to

/FOO/KN_ROUTES/KN_ROUTES prevents others from discovering the list of other

agents watching /FOO/.

Looking ahead, the capabilities of a WebDAV-based event router could WATCH

entire collections of resources (using subscriptions that specify a DEPTH: header,

say), as well as enumerating collections of subscription resources to efficiently

navigate the sets of subscribers to a resource.

5.3.4.2  Scalability

The significant new opportunities CENTRALIZEDEVENTROUTER poses relate to

scale: optimizing dispatching for multiple subscriptions to the same resource; and

retransmission policies for offline route destinations.

The former is a classic area of research for Internet-scale event notification

services: if subscriptions can be viewed as continuous, standing queries over a data

stream [15], how might such queries be optimized? The IBM Gryphon project is just

one example of the research interest in efficient query compilation and execution

[6]. The common theme in this research area is the choice of a query language for

expressing subscriptions. Given a fixed query grammar, the problem of scanning an

input stream for matches can take advantage of techniques found in the extensive

literature on parsing and compilation [7].

A related opportunity is currying intermediate filter output: if F() is a popular

currency-conversion service, can its output be reused for other subscribers using
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the same currency pair? It seems reasonable to use existing REST caching policies

for determining sufficient similarity between independent requests. On the other

hand, hypertext caching may only be feasible because the range of USERAGENT

behaviors is so small; arbitrary service requests may have too much context to be

usefully share results with others.

Store-and-forward notification is another area ripe for engineering optimization.

Just because the networks we are analyzing guarantee d as the maximum network

latency for reliable messaging, that doesn’t mean it can send a message to a

recipient that’s not there. R+REST already raises the possibility of routing to a

destination resource-identifier that is nonexistent, or at least unavailable. While it is

technically correct to discard such notices, a practical system may want to store

and retransmit notifications to allow recipient systems to survive crashes that last

much longer than d. At that point, entirely new resource-utilization and scheduling

subsystems may become necessary — this stops looking like a web server and far

more like an e-mail server.
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Chapter 6:   DISTRIBUTED SYSTEMS

In the previous chapter, we added the concept of subscriptions to REST. To

complete our derivation of an event-based style from REST, we also need to add

publication. This chapter distributes the ability to publish from a single central

location to many additional locations. The effect is to distribute control over the

representation of a resource across several peers.

Our goal is to add multiple publishers without sacrificing simultaneous

agreement. This leads us to measure our success according to the ‘ACID’ properties:

whether changes to a distributed variable are Atomic, Consistent, Isolated, and

Durable. Since there is little any generic architectural style can do to assure

consistency and durability — these depend on application-specific semantics and

implementation-specific behavior, respectively — our focus shifts to ensuring

serializability, since total ordering of operations consequently induces atomicity

and isolation. This leads to our specific goal of eliminating the risk of ‘lost updates.’

The lost update problem occurs when two clients attempt to publish a new

value for the same variable at the same time: neither party would be aware of the

other’s work, and one party’s work could be blindly overwritten. Our general

approach is to add Decision functions that determine which of several peer copies

is currently “in charge.” However, because our model of a network for any

consensus-based architectural styles is a reliable one, we can use the ersatz-

distribution ‘shortcut’ described in §2.3.2 to update distributed resources as

frequently as once every 2d seconds. In effect, our decision functions collapse
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down to centralized locks when the only type of failure to be modeled is the fail-

stop process.

In this chapter, we will introduce two styles: REST+D for 2-way sharing, and

ARREST+D for N-way sharing. We add pairwise distribution to REST using locks to

temporarily delegate control to a single client. To enable N-way sharing of control,

we need a distribution function that can derive the common state from a vector of

each peer’s current state. That requires adding event-notifications to our concept of

a decision function, to keep all N publishers in simultaneous agreement; as well as

eliminating the need to re-read the value after locking to prevent lost updates.

6.1  PROPERTY SPECIFICATION

The earliest popular distributed system was arguably the database management

system. Even when applications and DBMSes ran on the same mainframe, there

were still clear advantages to separating the concerns of data storage and

application logic in this architectural style. However, that boundary also induced

new risks due to delegation of control: what if the database itself failed?

The common measures of interchangeability are the ‘ACID properties,’ standing

for Atomicity, Consistency, Isolation, and Durability [101]. Their general intent is to

make using a remote database indistinguishable from using tightly coupled local

storage. However, most practical systems have to make tradeoffs in the degree of

‘ACIDity’ precisely to avoid such tight coupling.

From an architectural perspective, the essential abstraction is the transaction: a

related set of operations on a related set of resources. The archetypical mechanism
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for enforcing transactional integrity, in turn, is to maintain a parallel lock for each

resource, and use any of several mutual-exclusion algorithms to arbitrate control of

those locks.

We are not concerned with fairness, only safety and progress. Fair locking

algorithms are necessarily stateful, so an open, Internet-scale system can only be

expected to offer access to some client to guarantee overall progress. As for

performance, we have already established the theoretical minimum: N-way shared

transactions require a minimum lock lifetime of N·d seconds (§2.3.2); though

solutions based on locks (temporary centralization) can reduce this to 2d seconds

(§2.3.2.1).

6.1.1  Atomic

Atomicity: The system under test must guarantee that transactions are
atomic; the system will either perform all individual operations on the
data, or will assure that no partially-completed operations leave any
effects on the data. [99]

Atomicity can be induced by distributed locks. One extremely simple strategy is

to lock the entire database: one lock for all resources. As long as the entire database

is written back to disk before releasing the lock, then this property can be satisfied

simply by performing all operations while holding the lock.

However, it is extremely inefficient to lock an entire server. To minimize

contention and maximize concurrency, architects often desire finer-grained locking

schemes. However, that could cause an architect’s intended transaction to require

atomic operations on several resources at the same time. Not only must a

component ensure that it can eventually acquire all of the locks it needs, we shall
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see below that the Isolation and Consistency properties also require a mechanism

to release all those locks simultaneously. This problem is known as a compound

transaction, often implemented using an external transaction monitor [101].

To enable compound transactions, it is also critical for the architect to totally-

order every lock, in order to ensure every participant in a transaction prioritizes

lock acquisition identically. This approach is also known as token-coloring, based

on the literature of solutions to the “drinking philosophers” problem [45].

For all these reasons, we do not tackle this problem directly in this chapter: we

will presume that architects can represent compound resources as yet another

(singleton) resource. A brief example would be the choice to represent a customer’s

billing address as a single SHIPTOLOCATION resource rather than independent CITY,

STATE, ZIP, … resources.

6.1.2  Consistent

Consistency: Consistency is the property of the application that
requires any execution of a transaction to take the database from one
consistent state to another. [99]

Simply put, there is nothing a domain-independent architectural style per se can

provide to enforce consistency — even with complete serialization.

The archetypal example of consistency is the conservation of funds in a banking

application. Before and after a money transfer between two accounts, the total

balance of the bank must not change — it must not be possible to observe an “in-

between” state where funds have been debited from the source without being

credited to the destination yet.
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However, a naïve implementation of compound transactions would not enforce

such conservation. The application could still write an incorrect balance into the

destination account and it would still be a valid transaction because the in-between

state was not visible.

Consistency should properly be considered a domain-specific property induced

by the actual component logic — not the architectural style, which must

necessarily be generic.

6.1.3  Isolated

Isolation: Operations of concurrent transactions must yield results
which are indistinguishable from the results which would be obtained
by forcing each transaction to be serially executed to completion in
some order… This property is commonly called serializability. [99]

This property specifies the consequences of concurrent accesses: they must not

appear to be concurrent. Ensuring that all updates to shared resources are isolated

is tantamount to simultaneous agreement. Therefore, one solution is not merely to

ensure that updates appear to be serialized, but that updates are actually serialized.

A mechanism that enforces this requirement is simply to delay pending updates

long enough to ensure that the update rate does not exceed the theoretical

maximum. Then, the mechanisms we have already introduced for establishing

simultaneous agreement have time to execute.

It is possible to increase concurrency beyond this limit if separate transactions

depend on non-overlapping subsets of a database — the same challenge of

determining an appropriate granularity we encountered in §6.1.1. However, it is

not clear that a completely domain-independent architectural style can achieve that
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degree of isolation automatically. Dependencies between resources are necessarily

determined by domain-specific application semantics.

6.1.4  Durable

Durability: A transaction is considered committed when the
transaction manager component of the system has written the commit
record(s) associated with the transaction to a durable medium. [99]

Durability is largely an implementation issue, because it is a matter of degree.

Durability measures a tradeoff between failure and performance that software

architects (and end-users, at run-time) must make consciously:

No system provides complete durability, i.e., durability under all
possible types of failures… A durable medium can fail; this is usually
protected against by replication on a second durable medium (e.g.,
mirroring) or logging to another durable medium. [99]

Indeed, the latter point is the primary architectural decision that affects the

property of durability: whether or not to trust the network. In theory, a fully reliable

network ensures that merely broadcasting a commit-event notification to a set of

replica servers will eventually lead to a durable write on each server after d+ε

(where ε is the storage delay). In practice, a fallible network calls for a solution such

as a two-phase commit protocol between all the replicas, at the expense of

increased message traffic and total round-trips.

Another way of expressing this architectural decision is by choosing the level of

abstraction of a “durable medium.” The first case resembles drawing an architecture

diagram with a RAID device in place of a single disk: architecturally this merely

replaces a faulty component with a less-faulty one (albeit with differing latency,

bandwidth, and cost). The opposite of such black-box substitution is a drawing with
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several parallel components that jointly share control over a record using an

explicit decision function. Ultimately, this is a recursive argument: distributed

control of a variable is automatically more durable by virtue of eliminating a single-

point-of-failure.

The only other architectural feature that influences the property of durability is

simply the number of copies. Assuming that critical faults in durable storage are

randomly distributed and independent, distributing control across additional

replicas will increase durability of the entire system.

6.2  REST WITH DELEGATION DECISIONS (REST+D)

The earliest efforts to extend the Web to support authoring clients immediately

ran afoul of the “lost update” problem. To the degree that the server’s copy of a file

was the sole authority for a resource’s representation, two editors using local,

cached copies could overwrite each other’s work. This limitation of HTTP is

reflected in REST as well.

In this subsection, we derive a new style that extends REST to induce ACID

simultaneous agreement for pairwise distributed resources (that is, where authority

for a resource’s representation is shared between a client and the server). More

specifically, our goal is a style that enforces Atomicity and Isolation automatically,

while still enabling architects to maintain (application-specific) Consistency and

Durability properties.
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6.2.1  Style Definition

The REST+D architectural styles induces simultaneous agreement for
a 2-way distributed resource using a new component, MUTEXLOCK,
that enforces the constraint that only one component may modify the
representation of a resource at a time.

Precisely because REST explains much of the design of HTTP, it is instructive to

consider why WebDAV [60] needed to modify the design of HTTP/1.1 so

extensively in order to support distributed, collaborative authoring.

In HTTP/1.1, there is no mechanism for a client to explicitly modify a resource

on the server. Even with rudimentary PUT support, updates can be lost, since there

is no notification mechanism to keep a local copy synchronized with a remote

resource while it is being edited. Furthermore, another practical challenge was its

support for the legacy HTTP/0.9 behavior of using TCP connection termination to

indicate the end of a message. This meant that an aborted upload could replace the

current representation, violating the Atomicity requirement.

In addition to mandating atomic behavior for resource creation and

modification, the WebDAV standard also created a new LOCK method for

HTTP/1.1. For each resource, a WebDAV server must also maintain a stateful lock

record to track which client has exclusive write access at the moment. Therefore,

locks explicitly delegate control over a resource from the server to an external

client. Of course, since there is no notification mechanism to maintain

simultaneous agreement for other, read-only, clients, WebDAV can only fully

support 2-way shared resources (where one of the controllers is always the server).
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Another fundamental shift in WebDAV is the creation of first-class COLLECTION

resources that aggregate multiple REST resources. In ordinary Web usage, the slash

('/') is just another character in a URL, one that only coincidentally might

correspond to a server’s internal abstraction of files-and-directories. By contrast,

COLLECTIONs allow users to reason about hierarchical containment of resources on

the same server (in conjunction with the DEPTH: header). Note that this is the only

form of aggregation WebDAV protocol supports directly; there is no way to

atomically update multiple resources that do not share a common pathname

prefix.15

Rather than continuing to describe extensions to the REST architectural style

that would be detailed and powerful enough to explain all of the new concepts

found in WebDAV, we opt to define the only additional element we need to support

ACID transactions: MUTEXLOCK. As shown in Figure 12, MUTEXLOCK is a proxy that

wraps around an ORIGINSERVER to restrict access to one CLIENT at a time.

                                               
15 Ongoing work on the Delta-V versioning protocol extensions to WebDAV [50] do
at least raise the possibility of “external collection members,” but still with the
caveat that atomic updates can no longer be guaranteed across server boundaries.
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Figure 12: Illustration of the REST+D architectural style.

6.2.1.1  The MUTEXLOCK Component

The MUTEXLOCK Component ensures mutually exclusive access to an

ORIGINSERVER. It contains an atomic test-and-set register identifying the only client

whose request messages it will forward on to the ORIGINSERVER until instructed

otherwise, or until the lease expires. All other requests are simply discarded until

the register is reset.

This solution presumes that an ORIGINSERVER has at least some primitive PUT

capability with an atomic commit (as a safeguard against aborted transmissions).

MUTEXLOCK also requires a finite maximum lease duration for locks, in order to

prevent a crashed client from bringing the entire system to a halt.

6.2.2  Validation

As [99] itself notes, “No finite series of tests can prove that the ACID properties

are fully supported.” Our argument for the validity of REST+D, therefore, rests upon

establishing that MUTEXLOCK fulfills the requirement of a 2-way transaction manager,

which we already established would uphold the relevant ACID properties. As
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summarized in Table 8, our new style for REST with Delegation (REST+D) prevents

lost updates by using a lock for each resource, and enforces complete Isolation by

re-reading resource state once the lock has been acquired.

Goal New Elements New Constraints Induced Property

R
ES

T+
D Refer to a

pairwise
distributed
read/write
resource
reliably.

MUTEXLOCK
Component
ensures only one
client at a time
has write access
to the origin
server.

Lock must be
acquired before
attempting write;
then current state
of the resource
must be re-read
before writing.

ACID (Pairwise)
Simultaneous
Agreement:
Clients can modify
centralized
resources within 3d
— but only in the
absence of
contention.

Table 8: Summary of the REST+D style.

Our obligation to provide an implementation for a 2-way decision function is

satisfied by MUTEXLOCK. Essentially, the decision function takes the value of the

central lock arbiter as input to a mutual exclusion protocol to determine which

component is currently “in charge,” and we use that component’s value as the

correct current value.

In the balance of this subsection, we will argue for the safety and progress

properties of the REST+D style.

SAFETY. Acquisition of a lock is our new precondition for issuing a PUT request

in the REST+D style. Assuming that MUTEXLOCK maintains a separate lock record for

every resource on the ORIGINSERVER (which must be arranged in a tree — no

“symbolic links” that could form cycles), then there are two cases. First, if the lock

record is clear, a single test-and-set operation suffices to assign the lock to the
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requesting client, and the encapsulated PUT request is pipelined onward to the

ORIGINSERVER. If it is not clear, then we can know it must eventually become clear,

no later than Lmax , the maximum lock (lease) lifetime.

However, note that in the description above we still have not proven safety

according to the ACID properties. The problem is that “pipelining” together a lock

request and a write request in one shot does not verify the precondition that the

write is replacing the immediately preceding state — it could lead to a lost update.

Isolation requires the client to re-read the state of the resource after acquiring a lock

(unless a write is completely independent of the past state, an application-specific

exemption for architects to consider optimizing for).

Since the MUTEXLOCK discards any request from any client other than the lock-

holder, including GETs, it functions as an exclusive-read, exclusive-write lock

(EREW, in Parallel Random Access Memory (PRAM) parlance, [111]). Thus, the

maximum update rate is determined by the minimum lock lifetime, since the

update can’t “take effect” until other clients can read it. This reduces the potential

performance of REST+D by requiring at least 3d between updates (as compared to

the theoretical best case of 2d).

Consider how long it takes to arbitrate between two writers that both wish to

update a resource at the same moment (and do not even care about lost-updates):

the first “winner” sends a single pipelined LOCK/PUT/UNLOCK request, which takes

only d. In the meantime, the second writer’s request is blocked; the soonest it could

be sure to proceed is if the server immediately notified it of the LOCK expiration,
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which would take d. Then, it would take a third network trip for the new value to

actually arrive at the server, adding up to a total delay of 3d for a 2-way shared

update.

PROGRESS. If the corresponding lock record is not clear, the current client’s

request will fail. However, eventually some other client will be able to acquire the

lock. This segues into the second portion of our argument: MUTEXLOCK may not

guarantee fairness, but it does guarantee progress. One significant reason is that

most fair solutions to the distributed mutual exclusion problem require maintaining

additional state information at the server to prioritize among an unbounded range

of clients.

Thus, to argue for the validity of REST+D, we must only argue that the

maximum delay for some client to acquire a lock is finite. For any given client

process, we can indeed construct a counterexample that interleaves steps taken by

other clients that leads to an infinite delay in lock acquisition. All the same, the

maximum duration that a lock can remain clear when there are pending clients is

clearly not infinite — the very next client that requests a lock must succeed.

6.2.3  Implementation Issues

Any practical implementation of the REST+D style faces two separate

implementation challenges: minimizing the latency “between” the MUTEXLOCK proxy

and the ORIGINSERVER; and ensuring durability over a fallible network.

LATENCY. Note that in Figure 12, there is a note below each set of network

connections that indicates that the CLIENTs are connected to the MUTEXLOCK over
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the Internet, with a maximum delay of d, but the MUTEXLOCK itself is very tightly

coupled to the ORIGINSERVER, minimizing the additional delay it causes to at most

2ε. For example, locking is often built directly into a WebDAV repository, making ε

<< d.

DURABILITY. Resource updates must be committed to stable storage before

generating any successful response message. This requires accounting for the

latency due to interactions with stable storage devices (disks, tapes, etc.) Under

certain conditions, this could be a significant multiple of d.

Furthermore, since storage devices can fail, too, merely presuming that the

network reliably delivers write request messages is not sufficient either. There must

to be some way to signal the client that a commit has occurred.

To be sure, WebDAV does not make any normative claims about durability

before replying successfully. One of the only application-layer transfer protocol

standards that does, by contrast, is the Simple Mail Transfer Protocol (SMTP). It

obliges the receiving mail server to commit a message to disk before any Mail

Transfer Agent (MTA) can reply "200�OK". This is essential for a store-and-forward

email system, because only a successful reply can relieve the sender of its duty to

attempt retransmission (although even that duty typically lapses after a few days;

SMTP can still silently lose email messages).
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6.3  ASYNCHRONOUS, ROUTED REST WITH DISTRIBUTED

DECISIONS (ARREST+D)

A single, centralized server poses a risk: if it fails, the entire application

architecture fails. The alternative is to distribute that task across several servers. To

the degree that system failures are independent, greater distribution implies greater

reliability and availability. Majority voting is just one simple example of a shared

decision function that can recover from the failure of up to N⁄2 processes.

Another straightforward solution is replication from a master server to a set of

slaves, using a leader re-election process to transfer control to a backup server in

case the master fails. This requires an event notification facility to ensure that slaves

are always “in sync.”

Replication can even achieve higher performance than delegation did. It can

allow updates as rapidly as every 2d seconds — because enforcing Isolation

doesn’t require an additional round-trip to read the current value. Piggybacking the

lock grant on an event notification messages establishes simultaneous agreement as

soon as the client gains the lock.

Recall, though, that replication is still an ersatz form of distribution, since it

actually requires designating a central point of control at all times. In practice,

messages lost in transit during a server failure cold still cause that entire system to

halt.

We have already specified an architectural style that adds event notification to

REST; to derive ARREST+D, we will show how to induce ACID simultaneous
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agreement for N-way distributed resources (that is, where authority for a resource’s

representation is shared across a set of N peers).

6.3.1  Style Definition

The ARREST+D architectural styles induces simultaneous agreement
for an N-way distributed resource using a new component,
FAIRMUTEXLOCK, that enforces the constraint that only one component
may modify the representation of a resource at a time and that every
component could modify it eventually.

The decision function we intend to implement with ARREST+D is a fair mutual

exclusion protocol. Based on inputs from each process indicating when it declares

interest in locking the shared resource, the decision must cycle fairly through all the

contenders. This way, we can preserve the best-case results of REST+D when there

is no contention, while still bounding the worst-case for any particular client by

bounding the number of times it can be bypassed in lock acquisition.

A simple implementation of this process is to couple a MUTEXLOCK with a FIFO

queue, rather than summarily rejecting lock requests while the lock is already

outstanding. We will show how to implement the combination of these two

facilities, called FAIRMUTEXLOCK, by maintaining a copy of the queue at each

publisher.

Figure 13 depicts how this component fits into the ARREST+D architectural

style. In the abstract, it acts as a crossbar switch to ensure that every read and write

access to a resource is mirrored between three servers. Unlike previous styles, each

agent must actually maintain an independent resource, since the ‘distributed’
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resource is actually calculated by applying a decision function over all three

replicas.

ARREST+D

Publisher
#1 of 3

Subscriber
#1 of 3

Publisher
#2 of 3

Subscriber
#2 of 3

Publisher
#3 of 3

Subscriber
#3 of 3

Agent #1

Agent #3

Agent #2

Fair
Mutex
Lock

Figure 13: Illustrated example of a 3-way shared resource in the ARREST+D
architectural style.

6.3.1.1  The FAIRMUTEXLOCK Component

We must transform the MUTEXLOCK component so that it can manage contention

between all N potential publishers. Continuing to use an unmodified MUTEXLOCK

risks starvation for some publishers; there is no mechanism to rule out traces that

bypass some contenders infinitely often.16 Conversely, our abstract specification of

the behavior of a FAIRMUTEXLOCK component is that the bypass number be < N. This

is a strong fairness requirement; it implies that no client may re-acquire the lock if

any other client is still waiting.

A centralized implementation of FAIRMUTEXLOCK would be to couple MUTEXLOCK

with a FIFO QUEUE. Such a QUEUE would be a proxy server that simply buffers its
                                               
16 This formulation of fairness, in terms of the number of times a process may be
passed over, is apparently due to [39].
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input requests and delivers them one at a time to the downstream server (in this

case, the MUTEXLOCK proxy server). Of course, this only makes the Queue another

bottleneck, which we shall eliminate below.

The second major change required is to replace the ORIGINSERVER with a

CENTRALIZEDEVENTROUTER. By requiring all N publishers to subscribe to the shared

resource at the CENTRALIZEDEVENTROUTER, each of the local proxy variables remain

in simultaneous agreement (and hence, the decision function remains stable, too).

In effect, this scenario adds notifications to an ordinary WebDAV server.

Returning to QUEUE, however, we still must replace it with a genuinely

distributed mutual-exclusion protocol. A classic example of a distributed decision

function is Lamport’s Bakery algorithm for arbitrating access to a critical section

[136]. The original is presented for a process Pi in Program 17: contending

processes claim a monotonically-increasing ticket number (the “doorway”), and

then wait their “turn” to enter the critical section.

choosingi := true ;

ticketi := max( ticketsk≠i ) + 1;

choosingi := false ;

busy-wait-until ( ∀ k : k ≠ i ; choosingk = false )

busy-wait-until (∀ k : k ≠ i ;  ( (ticketk , k) > (ticketi , i )

∨ (ticketk = ∅) )

critical section ;

ticketi := ∅ ;

Program 17: Typical presentation of Lamport’s Bakery algorithm.
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The Bakery algorithm has since inspired many variants [11]. Perhaps its most

compelling property is that it can implement distributed mutual exclusion without

relying on any lower-level atomic operation (as many once thought necessary

[138]). This suggests that it can, indeed, be transformed from a shared-memory

algorithm to a synchronous network protocol. Presuming a finite d for message

latency, all we need to do is insert a pause after the doorway, to ensure that the

writes have time to propagate before the busy-waiting loops. Furthermore, since we

can rely on a GLOBALCLOCK component, we can also use physical timestamps to

simplify it as in Program 18:

ticketi := NOW ;

wait-until d ;

busy-wait-until (∀ k : k ≠ i ; ( (ticketk , k) > (ticketi , i ) ∨ (ticketk = ∅) )

critical section ;

ticketi := ∅ ;

Program 18: Simplified Bakery algorithm using a clock and a network.

6.3.2  Validation

As summarized in Table 9, our new style for Asynchronous, Routed REST with

Delegation (ARREST+D) prevents lost updates by sharing a lock for each resource

fairly. We aim to validate that ARREST+D automatically enforces complete Isolation

by ensuring that all local copies of the leader’s variable are in simultaneous

agreement when leadership passes to the new lock-holder.



136

Goal New Elements New Constraints Induced Property

A
R

R
ES

T+
D Refer to an

N-way
distributed
read/write
resource
reliably.

FAIRMUTEXLOCK
Component
to arbitrate
shared locks
with bounded
bypass.

For a peer-to-peer
solution, all N must
cross-subscribe to
each other’s
centralized ticket
variables.

Atomic, Isolated,
Durable:
Ensure updates apply
to all N resources
reliably within 2d
and at most N⋅d.

Table 9: Summary of the ARREST+D style.

Our obligation to provide an implementation for an N-way df() is satisfied by

FAIRMUTEXLOCK. Essentially, the decision function takes the lock-requests of each

component as input to a mutual exclusion protocol that returns which component

is currently “in charge”; and we then use that component’s value as the correct

current value.

The remaining question concerns the performance of this architectural style:

what is the minimum interval it permits between updates to a distributed variable?

Surprisingly, the bound is not as high as originally discussed in §2.3.2. While any

particular client may get stuck waiting for all N others to write first, some client will

always be able to acquire the lock.

The reason our decision function produces a stable output so quickly is that the

inputs are not allowed to change in ways that would affect its output. Newly-

minted tickets have monotonically increasing timestamps, and also cannot be

canceled until that lock is eventually granted. Therefore, the ordering of the queue

is stable after only d seconds have elapsed.
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Of course, another way of looking at this is that we have neatly sidestepped the

problem of solving the peer-to-peer mutual exclusion problem by positing an

external solution: the global clock itself. A completely clock-less solution would

face N⋅d delays for the decision function to stabilize, as commonly found in

hardware communication buses [212].

The second reason that ARREST+D can achieve a lower minimum bound

between updates of 2d, rather than REST+D’s 3d, is that event notification

eliminates the extra hop of requesting that the current value of the variable be

transmitted to the new lock-holder. At least when using the distributed BAKERY

solution, cross-subscription17 between all N peers allows update notifications to go

directly to the new lock-holder without being relayed via a central server.

6.3.3  Implementation Issues

Whereas an implementation of REST+D requires an actual MUTEXLOCK to

arbitrate delegation decisions, we propose an end-to-end implementation of

FAIRMUTEXLOCK that will not require modifying CENTRALIZEDEVENTROUTERs at all.

Program 19 shows how to implement the queue as a set of local variables at each

publisher, using acknowledgment messages to avoid characterizing d. This

approach actually dates back to an even earlier work by Lamport, the mutual

exclusion example given in the classic paper Time, Clocks, and the Ordering of

Events in Distributed Systems [134].

                                               
17 This presumes that all N peers know of each other in advance; dynamically
adding or subtracting members from that set complicates matters further.
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LockRequest ()

Q[ i ] := NOW ;

Publish("/FOO/LOCKREQUEST", (i, Q[ i ]) );

LockRequestHandler (sender, timestamp)

Q[ sender ] := timestamp ;

Publish("/FOO/LOCKREQUESTACK", (sender, NOW) );

LockRequestAckHandler (sender, timestamp)

Acks[ sender ] := timestamp ;

CheckLock();

LockReleaseHandler (sender)

Q[ sender ] := ∅ ;

CheckLock();

CheckLock ()

If (∀ k : k ≠ i ; (Acks[ k ] > Q[ i ]) ∧

((Q[ k ], k) > (Q[ i ] , i) ∨ (Q[ k ] = ∅) )

Publish("/FOO", updatedValue() );

Publish("/FOO/LOCKRELEASE", i );

Program 19: Pseudocode for implementing a FAIRMUTEXLOCK peer.

The program presumes that each publisher has already subscribed to each of the

topics it has a Handler for. Each publisher maintains a vector of acknowledgments

and a queue of pending lock requests. When any component needs to modify the

shared variable, it notifies the group of its interest; waits for acknowledgement of its

“ticket” (in Bakery-speak); and then waits until it has the oldest outstanding ticket.



139

The function we did not specify, though, is updatedValue(). The key to

eliminating lost updates is that the “user” cannot specify the new value

immediately upon requesting a lock. Instead, the new value must be re-calculated

in case it depends on the current value of the variable at the time the lock is

actually granted, which might be considerably later.
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Chapter 7:   CONSENSUS-FREE SYSTEMS

At this point, we reach the limits of consensus-based styles operating on

partially-synchronous networks. This is the boundary separating centralized and

distributed systems — where a variable has only one value at a time — and the

fresh challenges raised by consensus-freedom.

In fact, our analysis is literally based on the concept of a boundary: there is a

‘now horizon’ that separates the set of components that can reason about the value

of a given variable ‘right now’ from those that can only refer to its value ‘back

then.’ Beyond the now horizon, representation transfers that once could be treated

as ACID cannot do better than our so-called ‘BASE’ properties.

This chapter discusses the generic challenges of decentralization; we will return

to deriving specific architectural styles that incorporate these findings in the

subsequent two chapters.

7.1  THE ‘NOW HORIZON’

Simultaneity is a useful shortcut for programming distributed systems, but it can

only go so far. The question is, How far?

It is straightforward to determine whether a local resource can be in

simultaneous agreement with a remote resource: the two components must trust

each other and use a network whose round-trip time is faster than the shortest

interval between updates.
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Another perspective is to compute the dual of this rule: every resource defines

the subset of other components that can possibly establish simultaneous agreement.

We call this frontier of possibility the ‘now horizon,’ because only inside of it can

one speak of that resource’s representation ‘right now.’

Beyond that boundary, its current value can only be approximated using a

variety of estimation methods. That estimate, in turn, constitutes an independent,

locally-owned resource with its own characteristic ‘now horizon’ for further

processing.

It is possible to map out the components of an application according to the

latency between the underlying hardware in order to draw visual conclusions about

the feasibility of simultaneous agreement. The key step is transforming ordinary

space, where a disk might sit a few inches from a processor, into a gauge of time,

where the disk may be tens of milliseconds away. For the same reason, another

processor in a city thousands of miles away could still be “closer” in time than a

local disk.18

                                               
18 Jim Gray uses a vivid illustration of memory hierarchies: “To put this in human
terms, our clocks run in minutes. If I ask you a question, you say: “Just a minute,”
you compute and you tell me the answer. If you do not know, you ask someone in
this room (cache) and it is two minutes. If you have to go to cache it is like going
somewhere on your campus. If you have to go to main memory, it is an hour’s drive
there and back. If you have to go to disk, it is 2 years (like going to Pluto!), and if
you have to go to [tape] it is like going to Andromeda…” [100]
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Figure 14: Logical and physical views of a transcontinental network.
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Consider the example of an application running on data centers in Los Angeles,

Chicago, and New York. Figure 14 depicts the logical layout of the network — four

centrally connected servers with two disks and a dedicated tape backup server —

as well as the physical assignment of devices to each city. Neither of these

conventional views informs an architect of the relative communication latency

between these components. Figure 15 presents two different views of that network:

as a component graph whose edges are weighted by the maximum transit time, in

milliseconds; and as a “latency map” depicting the total distance of each

component from the network.

Note that visualizing latency calls for a logarithmic scale, since we wish to

model everything from day-long email delays to microsecond-scale operating

systems thread-switching delays. Interprocess communication (IPC) across a LAN is

merely another kind of delay, indistinguishable from a few extra kilometers of

wiring.

Map in hand, note that a circle around an arbiter whose radius is the minimum

lease time of the variable traces out a boundary between components that can

achieve simultaneous agreement and those that cannot. For simplicity, we are also

assuming that all components trust each other in this example; otherwise, there

would be gaps in the now horizon corresponding to regions controlled by untrusted

agencies.

The value of this approach is that it can help architects diagnose whether or not

consensus-based styles are feasible for a given application. By identifying the
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resources to be shared and their characteristic update frequencies, we can analyze

various hardware configurations or conversely, determine the maximum update

frequencies centralized or distributed solutions could bear.

Returning to our example, imagine that the application is controlling a natural

gas pipeline network. A pressure sensor in Los Angeles that is being read 100 times

per second cannot be shared outside of LA. To confirm this, draw a 10 millisecond

(100 Hz) circle centered on LA, and note which components fall outside that

boundary. This makes it immediately evident that feedback for that valve cannot be

controlled in New York. A centralized solution can’t establish simultaneous

agreement at that frequency across the continent, even at the speed of light.

Another example reveals that even if the entire system required distributed

control based on the concurrence of operators in all three cities (to ensure a precise

balance between input and output gas flows), tape backup records could still be

falsified in case of an accident. Since 3-way shared control of a resource with 30

msec maximum latency could occur within as little as 90 msec, it is clear that a

corresponding 10 Hz resource cannot be backed up to tape with certainty before

the state changes again.

In fact, the now horizon concept can be used to work backwards and ask, If

regulators require every action in the system to be logged in real-time, how fast can

the whole system react? The authoritative representation of a resource at any given

moment now has to be centered on the tape drive itself. Since the maximum
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latency to any point in the system is 542 msec19, and any actual control decisions

would be taken by a server (not the backup server itself), the maximum feedback

frequency is roughly 1Hz. With this analysis, the architect can go back to the user

and check whether such a design would assure adequate safety.

7.2  BASE REPRESENTATION TRANSFERS

If 1 Hz is not safe enough — the desired system can’t be inscribed within a

single now horizon — then the architect must consider different architectural styles

that cope without consensus.

A familiar manifestation of this problem is when an already-deployed system

starts bogging down because atomic transactions stop working at Internet-scale.

Nonetheless, transactions have become a popular mechanism for coordinating

distributed systems precisely because they mask the effects of distribution. Indeed,

the classical measures of a client/server interaction are the ACID properties:

Atomicity, Consistency, Isolation, and Durability. Together, they aim to maintain the

illusion of total serialization in the face of the twin challenges of latency and

agency. That makes the ACID transaction model antithetical to decentralization,

                                               
19 This figure was computed by using the all-points-shortest-paths algorithm for the
weighted graph in Figure 15. Note that latencies between nodes cannot be
measured by the distance between them on that graph. Instead, latency must be
measured with respect to some central arbiter.

It is not possible, in general, to embed a weighted network latency graph into two-
or three-dimensional space so that all pairwise distances are consistent. That is why
we added the dotted lines, to designate direct network transit paths from New York
to Chicago. This difficulty remains even when calculating distance using a different
norm (e.g. Manhattan ‘city block’ distance rather than Euclidean geometry).
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which requires permitting independent agencies to maintain multiple,

simultaneously valid world models.

Our key insight is that decentralized systems can actively manage the risk of

disagreement by seeking approximate, rather than simultaneous, agreement.

Recalling our definition of representations from §2.3.6, we observed that in any

consensus-based style one must discard representations made by untrusted

agencies, or that have expired. Rather than treat representation transfers as rigid,

ACID transactions, one can extract approximate information even from

representations that arrive late or from external agencies.

Uncertainty arises from three physical limits to precision: noise, power, and

relativity; and one social limit to accuracy: sovereignty of independent agencies.

Accurate Precise Both

Figure 16: An illustration of precision and accuracy using a dartboard.

We can still extract some meaning by casting other agencies’ past

representations as merely Best-effort, Approximate, Self-centered, and Efficient

observations of a time-variate phenomenon, as summarized in Table 10.20

                                               
20 Note that our use of the acronym BASE differs from two other groups’: Basically-
Available, Soft-state, Eventually-consistent in [36]; and Byzantine Fault Tolerance
with Abstract Specification Encapsulation from [193].
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Limit Property Constraint Mechanism

Noise Best-effort Minimize latency Retransmission

Power Efficient Minimize buffering Summarization

Physical

Relativity Approximate Minimize error Prediction

Social Sovereignty Self-centered Ignore spam Trust Management

Table 10: Summary of BASE constraints and mechanisms.

7.2.1  Best-Effort

Best-effort representation transfers may be lost, delayed, or
reordered.

All communication channels are limited by noise, and hence confront a tradeoff

between error rates and transmission rates [201]. Describing a network as “best-

effort” is another way of stating d = ∞ — leaving us no way to distinguish between

lost and delayed messages. To make progress, we must minimize d , the average

latency encountered.

One way to take a long-tailed random distribution and reduce its variance (and

hence, its mean) is to repeat the process: if we transmit more copies, the earliest

time that one of the messages will be received will keep decreasing. However,

sending multiple messages, whether by intention or by chance, both reduces total

channel capacity (bandwidth) and requires additional memory at the receiving end

to ensure that subsequent copies are discarded, rather than treated as new

messages.

The fundamental strength of IP internetworking is its “best-effort” store-and-

forward message delivery model. It accepts that there is some probability of total
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message loss, but pushes the burden of retransmission and reordering, if necessary,

out to the edges of the network.

The same identification mechanism for duplicate-suppression is also necessary

for ordering messages reliably. Since a best-effort network is not isochronous,

message delivery times do not reflect message transmission times (i.e. messages can

be re-ordered). We can either presume the use of synchronized clocks to compare

absolute timestamps, or reply on sequence numbers with a “sliding window” of

unacknowledged identifiers [224].

7.2.2  Approximate

Approximate representation transfers may expire.

All communication channels are limited by relativity, and hence cannot transmit

information faster than the speed of light in that medium [66]. The actual velocity of

information can be several orders of magnitude slower (e.g. email). High latency

can thus delay a message past its duration of validity.

Nevertheless, even past observations can help minimize the error between the

current value of the variable it represents and its local estimate. A prediction

function is measured by the amount of error that can be tolerated while still

constituting “approximate agreement.” The ideal predictor, by our specification,

achieves a P% probability of agreement, based solely on regression against past

observations.
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7.2.3  Self-Centered

Self-centered representation transfers must require the recipient to
trust the sender.

Communication channels assume the receiver trusts the messages transmitted

through it. This bypasses the sovereign independence of the recipient to establish its

own trust relationships with the various possible senders. To prevent abuses of trust,

we need mechanisms that ensure messages transmitted on a channel were

legitimately initiated by the purported sender.

Self-centered trust management can filter out messages from trusted

correspondents and reject messages from untrusted or partially-trusted

correspondents. Formally, self-centeredness is specified in the same manner as

multilateral extensibility: every inbound communication must be justified by a

corresponding edge (or path) in the receiving agency’s web of trust.

7.2.4  Efficient

Efficient representation transfers must not require buffering.

It is impossible to sustain an information transfer rate in excess of a channel’s

capacity. Unchecked, guaranteed message delivery can inexorably increase latency.

To ensure this does not occur — ensuring that buffers, even if necessary, remain

finite — information buffered for transmission may need to be summarized,

updated, or even dropped while still queued.

Another way of specifying this limitation is that, if a channel were abstracted as

a 2-way shared resource, the maximum update frequency of the channel must
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exceed that of any of the resources being shared across it. For example, any effort

to transmit ten keystrokes per second on a one-second latency link would have to

resample the 10 Hz keystrokes into “ten-character strings” sent at 1 Hz. Such

coalescing of data while a round-trip time elapses is similar to the Nagle algorithm

for delaying short TCP segments [164].

There is more to efficiency than minimizing the overhead of underlying

communication protocols. The very format of a representation could be

compressed, such as if the keystrokes actually spelled out English words.

Furthermore, the semantics of a representation could be relied upon to cancel out

compensating transactions (e.g. pressing a key followed by the delete key might

result in zero messages being sent — for a word processor; by contrast, a

videogame may require both keystrokes). This property could also interact with

approximation to summarize data in ways that assist prediction by recipients, such

as minimizing aliasing effects by smoothing audio or video streams (rather than

blindly resampling them at randomized intervals).

7.3  RISK MANAGEMENT

The broader impact of replacing ACID transactions with BASE representations is

a shift from processing facts to opinions. This is essential when integrating software

services run by multiple agencies across the Internet. There must be some way to

incorporate the opinions of trusted correspondents into local, independent

estimates in a consensus-free system; otherwise there would be no connection at

all between a set of completely isolated applications.
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The implicit starting point is that ‘one can only de-centralize what was once

centralized’ — that decentralization would be superfluous if latency and agency

limits did not interfere. In reality, though, a decentralized concept can only be

described in terms of multiple different, simultaneously valid beliefs about that

concept held by independent agencies.

The feedback mechanism between them may be as simple as measuring the

average or the majority, or as complex as a statistical model simulating an

underlying physical process. In any case, there are two different kinds of risk to

manage: precision and accuracy.

The proper measure of precision is the correspondence between an estimate

and the actual measurement, a one-to-one comparison of a local follower variable

and a remote leader variable. Measuring accuracy, however, requires reference to

the “true” measurement, a many-to-one assessment of many remote peer variables,

each of which we presume has some potential claim upon the truth.

 To the degree that each agency’s measurements of the shared concept reflect

independent sources of error, and those values are numeric, the Central Limit

Theorem establishes that the distribution of the averages approaches a Gaussian

normal as the number of observations increases [63].

There are many similar statistical methods that can increase the accuracy of an

estimate, depending on the probability distribution of the phenomenon being

measured. In fact, if the semantics are well-known, a range of operations can be

enabled within a bounded error (“balances within $5”) using escrow locks [169].
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More generally, assessment methods that can incorporate multiple agencies’

opinions are strictly superior to the strategy of choosing only one agency to follow

(i.e. more choices are Pareto optimal [199] — one can’t be made worse off by

merely making more choices available ).

An ultimate expression of this principle is the constitutional right to a trial by a

jury of one’s peers. As stated in a recent judgment by the US Court of Appeals for

the Ninth Circuit, “fact-finding by a jury, rather than by a judge, is more likely to

heighten accuracy” [216].21

                                               
21 It certainly would have in that case: Allowing a judge addicted to marijuana to
impose the death penalty “highlight[s] the potential risk of accuracy loss when a
capital decision is reposed in a single decision-maker” [216].
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Chapter 8:   ESTIMATED SYSTEMS

We have argued that neither centralized nor distributed architectural styles

function at all outside the ‘now horizon,’ so a new approach must be devised to

connect islands of locally-centralized or locally-distributed systems. The foundation

of any such approach is to accepting and managing the risk of disagreement

between local proxies and the remote resource.

The first step is to improve the precision of a local proxy: minimizing the error

between the current value of the local resource and the (single) remote resource it

corresponds too. Later, in the next chapter, we will also address the challenge of

accuracy: choosing a ‘true’ value by assessing several remote resources.

In this chapter, we are going to introduce two new styles for working with

estimated resources. The first, REST+E, is an educational example that does not

actually specify any additional properties or constraints — it merely explains how

REST is already intended to behave on real-world networks, where d = ∞. Caches,

TCP sockets, passwords, and content-negotiation are all features of that help induce

BASE properties for ordinary request-response interactions across the Internet.

The second style, ARREST+E is more interesting: once we can presume an event

model exists, we can posit a much richer set of estimators. The essential shift is that

once an architect can refer to time-series data — a stream of changing

representations of the same resource over time — we can add intelligence to the

infrastructure to predict current values more precisely.
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8.1  PROPERTY SPECIFICATION

We offered both declarative and operational definitions for estimation in §2.3.3.

The former definition was stated in terms of the probability that the current local

value is equivalent to the current remote value, which is ultimately bounded by the

degree auto-correlation of the time series. The latter definition postulated the

existence of an estimator function to generate such local values.

To be sure, establishing the degree of autocorrelation is domain-specific, and

furthermore, does not begin to account for cross-correlation between other time

series. For example, the weather report may exhibit enough of a diurnal cycle that a

component that has been cut off from the network for several hours can still

presume that nighttime temperatures ought to be cooler. Even more specific

predictions might be possible if additional event histories were also available, such

as the historical and current air pressure and wind direction.

In a pedantic sense, our definition still stands, since any domain-specific

knowledge of meteorology would be reflected in the auto-correlation of the

“weather report” as a whole, which subsumes these other variables. Nevertheless,

we forthrightly disclaim that our definition takes a purely information-theoretic

approach to the predictability (“entropy”) of a variable.

On that basis, we can specify four mechanisms that both of our estimated styles

use to induce BASE properties of representation transfers:

MINIMIZE LATENCY. Best-effort networks can lose, delay, and reorder messages.

Under such conditions, retransmitting a message multiple times can only serve to
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lower the average latency. Similarly, using unique sequence numbers for each

message can enable recipients to sort them in order and discard duplicates.

MINIMIZE BUFFERING. Efficient networks cannot buffer messages indefinitely.

Without buffers, senders must compress, coalesce, or discard messages to ensure

that their transmission rate remains at or below the bandwidth limit of the channel.

This mechanism is known, in general, as summarization.

MINIMIZE ERROR. Approximate networks can keep functioning using expired

information. When using out-of-date data, receivers must predict the current value

based on past observations. This can be as trivial a policy as inertia — REST+E

presumes that the future will be much like the present — or as complex as a time-

series-driven simulation.

IGNORE SPAM. Self-centered networks keep functioning because recipients must

be responsible for their own trust decisions. In an open, dynamic multiple-agent

system, there can be no single authority for establishing trust. Instead, from the

perspective of any one agency, the security challenge is to discard everything

except messages from other agencies it trusts. (Note that this is quite separate from

assessing whether the information itself is trustworthy, an aspect we will address in

the next chapter.)

8.2  REST WITH ESTIMATES (REST+E)

In this section, we will present an interpretation of REST’s default behavior

when applied to asynchronous networks. Many of the architectural elements that
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were guaranteed to work on finite-d networks can only offer some probability of

success under such conditions.

8.2.1  Style Definition

The REST+E architectural style induces BASE properties by
constraining all representation transfers to use the TCP/IP, CACHE,
ACCESSCONTROL, and CONTENTNEGOTIATION Connectors, respectively.

In REST per se, the challenge of coping with consensus-freedom is either

pushed down to lower layers (e.g. TCP) or ignored (e.g. cache inconsistency). The

central constraint of the REST+E style is inertia: past values are presumed to be

current values.

For the sorts of human-readable resources found in the global

hypertext/hypermedia application domain, this is not an unreasonable strategy. As

the analysis of expiration policies towards the end of §5.1.1 pointed out,

infrequently edited resources on networks with low median latencies can still

achieve relatively high probabilities of simultaneous agreement. Of course, this

becomes less tenable as we attempt to develop Internet-scale applications that

manipulate resources changing at up to 5 Hz.22

                                               
22 A general rule of thumb is to presume that the average latency of packets
traversing the public Internet is on the order of 100-200 msec. An equivalent way of
stating this lower bound is “5 Hz.” This includes simple presence and instant
messaging, for example, but rules out 30fps videoconferencing. And indeed, the
ambitions for any generic Internet-scale event notification service tend to focus
around human inputs and low-frequency sensors, rather than attempting to also
subsume dedicated multimedia conferencing protocols. For more on this
partitioning of the range of feasible applications, see {Khare, 1998 #1650;Khare,
1998 #1826}.
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Figure 17: Illustration of the REST+E architectural style.

Within the performance envelope of the hypertext/hypermedia domain, we can

identify several connectors that induce BASE properties in practice. Best-effort

retransmission is handled by TCP stacks; approximation is provided by caches that

return stale data; self-centered trust management is enforced by password-based

access controls; and efficient use of bandwidth is made possible by negotiating

appropriate media formats.

8.2.1.1  The TCP Connector

Representation transfers are presumed to be reliable because they are

implemented using TCP sockets. By dividing up representations in to smaller TCP

segments for transmission, and assigning unique sequence IDs to each, the TCP

stack built into Internet hosts hides the problem of minimizing d several layers

below HTTP itself [181].

Nevertheless, TCP segment lifetimes are still limited to those of IP packets. Most

implementations will thus presume a connection has been lost after only a few
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minutes. Thus, “best effort” representation transfers with REST+E are more

accurately characterized as “best-effort for up to five minutes.”23

8.2.1.2  The CACHE Connector

Inertia is most directly reflected by REST’s caching policies. REST applications

can take advantage of caching at several layers. The Web today sports caches at

origin servers, for load-balancing; at proxies, for shared/public access; and even

within browsers, for maintaining user navigation history.  In fact, the HTTP/1.1

standard specifically states:

By default, the Expires field does not apply to history mechanisms. If
the entity is still in storage, a history mechanism should display it
even if the entity has expired, unless the user has specifically
configured the agent to refresh expired history documents. [68]

The EXPIRES: header that quote refers to is part of HTTP/1.1’s implementation

of the REST caching model. Representations have a creation DATE: and either a

relative or absolute EXPIRES: deadline. They can also include an ETAG: that

uniquely identifies that representation’s contents for future IF-MODIFIED-SINCE:

revalidation requests.

This model acknowledges risks of imprecision due to clock skew and network

partitions by creating an entire vocabulary for MAX-AGE, MIN-FRESH, and so on

                                               
23 Since 255 seconds is the putative maximum lifetime of an IP packet. In practice,
the remaining-lifetime field is often interpreted as a hop-count limit rather than a
wall-clock limit, which expires much sooner than a full 255 seconds on modern
networks. Remember, IP was designed in an era of Bell 212A modems offering
mere hundreds of bits per second — and yet it still functions on today’s terabit
links!
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[158]. The underlying assumption is that for sufficiently high-frequency resources,

clients are expected to poll (a/k/a revalidate) often.

Approximation by inertia also applies to lock resources in WebDAV. The default

behavior of an ordinary REST+D authoring tool beyond a DAV server’s now

horizon is to presume that a lock remains in force until its expiry deadline. If, for

whatever reason, you can’t trust the administrator of the origin WebDAV server not

to steal your lock; or eliminate the possibility of server failure; or if your PUT

messages are delayed to arrive after your lock has expired, you still risk overwriting

an interim state of the resource (a ‘lost update’).

8.2.1.3  The ACCESSCONTROL Connector

In REST+E, real-world security risks intrude in the form of various password

authorization and cryptographic privacy schemes. There is definitely an

acknowledgement of agency conflict between clients and servers, but the power to

control access lies solely with the server in REST+E.

With HTTP authentication, a USERAGENT client explicitly delegates trust by

revealing its credentials to the server.24 It need not employ an additional trust

manager — but only because the strict client-initiated request-response interaction

                                               
24 Literally. It remains an astonishing design flaw of the Web that the standard BASIC
authentication mechanism in HTTP transmits passwords in the clear. Even cookie-
based and HTML form-based analogues are rarely more secure.

The initial emphasis on statelessness in Web architecture relegated proposals for
more modern security schemes such as digest-authentication [77] to the fringes,
much less building in support for more complex public-key infrastructures (which
in turn were swept under the rug of separate “encryption” protocols such as SSL
and S-HTTP [188]).
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model ensures that any reply message must have been a) solicited and b) originated

from a trusted server.

8.2.1.4  The CONTENTNEGOTIATION Connector

REST+E only models one-shot request-reply interactions, in which the reply is

generated ‘instantaneously’ and buffered for later delivery over a limited-bandwidth

link. There are no provisions for updating a transfer in progress, or for conserving

bandwidth allocation across several requests (‘flows,’ in QoS parlance).

The latent HTTP features that do come to the fore to increase efficiency in

REST+E are content-negotiation and content-transfer-encoding. These features help

select an appropriate representation for a resource, based on client preferences and

capabilities.

While negotiation is typically described in terms of selecting an appropriate file

format or language/locale, it can also be used to strip down content for handheld

devices or perform other types of summarization [75].

HTTP/1.1 also specifies a curious feature that crosses the boundary between the

network and presentation layers: the ability to compress or otherwise re-encode an

entire transfer. It is specified in the CONTENT-ENCODING: header, which is similar to

(yet entirely different from) the CONTENT-TRANSFER-ENCODING: header in the

Multipurpose Internet Mail Extension specification (MIME, [78, 79]).

8.2.2  Validation

The four REST+E facilities correctly recast ACID representation transfers as BASE

representation transfers by attempting to recover as much probability of agreement
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between the estimate and the real value as possible in a single request/response

interaction.

Goal [Old] Elements New Constraints Induced Property

R
ES

T+
E Refer to a

read-only
centralized
resource
beyond its
‘now
horizon.’

[TCP/IP]

[CACHE]

[ACCESSCONTROL]

[CONTENT-
NEGOTIATION]

Inertia assumes that
the most recent
representation is still
valid, until cache
revalidation fails.

Approximate
agreement.
The local proxy
should be in
simultaneous
agreement P% of
the time.

Table 11: Summary of the REST+E architectural style.

BEST-EFFORT. The use of TCP minimizes latency caused by message loss, at least

on a timescale of minutes.

APPROXIMATE. The use of caches uses an implicit prediction rule that the past

value is still current. When using REST+Polling with caches, the risk of

disagreement is limited to one and a half round-trip times, divided by the average

lease duration.

SELF-CENTERED. The use of server-driven authentication challenges and one-shot

request-reply interaction ensure that unsolicited or untrusted responses cannot be

transferred.

EFFICIENT. The use of content-negotiation and compression can minimize

bandwidth requirements, if not quite ensure that the total bandwidth is less than

capacity.

NON-INTERFERENCE. There is a further obligation when validating the REST+E

style to establish that these four new elements do not interfere with each other.
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Indeed, there are synergies between them: retransmission increases the probability

of successful delivery of the latest information, improving precision; caching and

access controls eliminate network traffic in support of efficiency; and content-

negotiation minimizes bandwidth to “leave room” for TCP retransmission.

8.2.3  Implementation Issues

The implementation challenges for REST+E are well-known issues in Web

implementation [132]. Cache efficiency and coherence have been thoroughly

investigated [34]. Maintaining meaningful security policies with little more than

access control lists and URL pathname patterns is another well-known challenge

[210]. The risks of depending on offline verification of credentials has also largely

been sidestepped by requiring on-line solutions for certificate revocation and

electronic payments [62, 167]. Finally, content transcoding schemes for using

channel capacity efficiently emerged soon after the invention of proxy servers [75]

and even form the basis for commercial “Web accelerators” [57].

8.3  ASYNCHRONOUS, ROUTED REST WITH ESTIMATES

(ARREST+E)

Inducing BASE properties using time-varying event sources has much greater

potential than basing estimates on one-shot request/reply interactions. In

ARREST+E, we will add several types of estimating connectors that strengthen

retransmission, summarization, prediction, and trust management by discerning

patterns over time.
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8.3.1  Style Definition

The ARREST+E architectural style induces BASE properties by
constraining all representation transfers to use the STOREANDFORWARD,
SUMMARIZER, PREDICTOR, and TRUSTMANAGER Connectors, respectively.

ESTIMATORs are a variant of connectors that do not ignore expired

representations/notifications, but use a Web of Trust and statistical, economic, or

other risk-management techniques to approximate the current value of a remote

resource. This allows ESTIMATOR connectors to emit “synthetic messages” on their

output interfaces even when there may be too much or too little information

arriving on their input interfaces.

Specifically, our approach for extending REST into a consensus-free style

requires eliminating references to remote resources. If all components refer solely

to local resources; and estimators are the only connectors that can exchange BASE

representations between local and remote resources; then we can neatly isolate the

effort of measuring a remote resource’s value precisely.

Central.
Event

Router
    Client

ARREST+E

SUBSCRIBE
Origin
Server

POST

GlobalClock

Credentials TrustManager Credentials TrustManager

C S C S

Summarizer PredictorStore/ForwardStore/Forward

Figure 18: Illustration of the ARREST+E architectural style.
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8.3.1.1  The STOREANDFORWARD Connector

The goal of the STOREANDFORWARD connector is to increase the probability of

successful representation transfer. Primarily, this requires attempting retransmission

for as long as the representation remains valid — not merely giving up after IP times

out.

Retransmission requires some mechanism for distinguishing unique messages

from repeated ones. The longer a message can remain pending, the larger the set of

identifiers must be. Of course, duplicate detection also places a correspondingly

larger burden on communication endpoints to maintain longer-lived cache of

previously-seen IDs.

All of this suggests that STOREANDFORWARD requires a longer-lived address space

than TCP’s (IP address, port number, sequence number) triples. After all, while the

network layer may be limited to routing ephemeral IP packets, at the application

layer we routinely encounter event notifications that may remain valid for decades

— consider the permanence of MESSAGE-ID: headers for Usenet articles or email

messages.

ISO Global Unique Identifiers (GUID, [110]) would be one choice for

identifying representations. We propose reusing the mechanism already used for

caching in HTTP: entity tags (ETAG:). Typically generated by applying a one-way

hash function to the representation body, entity tags allow recipients to efficiently

detect and discard duplicate representations. This builds upon the similar role we
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proposed for entity tags in §5.2.2.1, namely, suppressing routing loops for a

CENTRALIZEDEVENTROUTER.

A secondary function for identifiers is to indicate relative ordering, as with TCP’s

increasing sequence numbers for each segment. Our second assumption for

STOREANDFORWARD is that every event notification has a creation timestamp. This still

permits some endpoints to recover an ordering, to the degree that resources are

available to do so (buffer space, processor time, etc). This is separate from

timestamps that may be found within an event notification to allow application-

specific reordering. The Data Stream Management System (DSMS, [15]) research

community has also encountered this distinction, which they termed intrinsic vs.

extrinsic timestamping.

8.3.1.2  The SUMMARIZER Connnector

Since, in practice, latency can be exacerbated by buffering due to bandwidth

limits, there are real advantages to having a connector to suppress transmission of

expired messages, to say nothing of coalescing related sequences. Such a

SUMMARIZER adds yet another requirement for identifying event notifications, in this

case a name for the source of each event.

In conjunction with the entity tag and creation date, the resource identifier

included in each REST-style representation allows a SUMMARIZER to correlate

changes to an event source over time. Unlike a messaging system, where each

email or article is presumed to be an atomic, write-once resource that must be
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delivered intact or not at all, event notifications are only intended to be snapshots

of a single phenomenon over time.

Therefore, while messaging services treat their payloads as unique and

anonymous, event notification services are entitled to “mess with the message.” A

simple example is the role of Timewarp’s anti-messages [114, 141] or Usenet

cancellations [109]. A later “message” can annihilate an earlier one, given the

correct credentials and an identifier to locate it. Another example is how modern

GUI environments manage input events for “slow” applications. The GUI can

coalesce individual keystrokes, cancel out temporary depressions of a shift key, or

even elide intermediate mouse movements by replacing several traces with straight-

line motion to the latest coordinates.

8.3.1.3  The PREDICTOR Connector

The goal of the PREDICTOR is to synthesize new data from old. Our original

specification was narrowly stated in terms of the auto-correlation of a time-series,

but a PREDICTOR also gives the architect freedom to divine correlations to any other

available information or models. That is because it encapsulates a Turing-complete

program rather than only a statistical function.

This definition permits prediction strategies ranging from the generic (frequency-

counting) to domain-specific (weather forecasting). Recall that for REST+E, we

derived that even the most basic strategy, inertia, can provide high reliability if a

resource changes slowly enough. Unfortunately for the architect, it is often
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precisely when a resource is updated that the user’s fortunes may be most affected

— literally, in the case of financial market data.

Thus, in ARREST+E, an architect is free to deploy more complex strategies that

take full advantage of event streams. However, a PREDICTOR must conserve its use of

both space and execution time, since it may be executed every time new

information arrives. Furthermore, the theoretical requirement for bounded space

and time is compounded by the practical requirement that many such processes are

executing concurrently. The challenge of scheduling large-grained, highly-stateful

prediction processes within an event router may begin to resemble process

scheduling in an operating system, or query planning within a database

management system.

8.3.1.4  The TRUSTMANAGER Connector

The fundamental new challenge for enforcing the Self-centered property, by

comparison to REST+E, is that adding asynchrony and routing permits spam. The

notify() interface can be invoked by any other component at any time, unlike the

traditional receive-reply mechanism.

By contrast, in REST+E, messages can only arrive if they is specifically

authorized: servers only accept requests from trusted clients, and TCP sessions only

return data from that server. Now that we cannot defer message integrity to the

network layer, we posit a TRUSTMANAGER for enforcing integrity at each endpoint.

Formally, a mechanism for inducing multilateral extensibility could be reduced

to a filter that verifies that a trust relationship exists between any sender and
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recipient components’ owners, whether before transmission or after receipt. We

can imagine even stronger forms of this requirement that also tag each message

with access rights as a form of capability-based security, but that is not required in

our basic model of trust.25

An even more sophisticated complication is granting and revoking trust

dynamically. While ordinary REST request-reply interactions last for only a short

time, a subscription relationship may persist for much longer. This raises the risk

that the Web of Trust may change during the subscription, as when passwords are

lost or payments fall into arrears. A TRUSTMANAGER provides a locus of control for an

architect to specify more detailed policies, potentially down to the level of

approving or disapproving each transmission over the network.

Indeed, with some knowledge of application semantics, it is conceivable that a

TRUSTMANAGER could synthesize compensating messages that can cancel out the

input of participants discovered to be untrustworthy later on — perhaps using the

same mechanism as the cancel-messages discussed above for SUMMARIZERs.

8.3.2  Validation

The four ARREST+E facilities correctly recast ACID representation transfers as

BASE representation transfers by attempting to recover as much probability of

                                               
25 In other words, if Alice trusts Bob, our simple model requires trusting Bob not to
go publish her secrets in the newspaper. Email works like this today; there is no
control of over message forwarding. One could imagine, however, a stronger
mechanism that would still require later recipients to ask Alice for decryption keys,
say — if Bob were willing to cooperate.
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agreement between the estimate and the real value as possible by taking advantage

of available information about the past values of a variable.

BEST-EFFORT. Since STOREANDFORWARD minimizes latency, it induces the property

of Best-effort representation transfers. Identifying stored messages uniquely allows

architects using ARREST+E to continue retransmitting messages as long as they

remain valid; indeed, to even transmit already-expired messages if bandwidth is

available. This allows the application to tolerate loss of network connectivity

between agencies for far longer than TCP/IP can alone.

APPROXIMATE. Since PREDICTORs minimize error, they induce the property of

Approximate representation transfers. Using both past values of a variable and

other information about the state of the application, a Turing-complete PREDICTOR

can achieve lower risk of disagreement than CACHEs can alone.
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Goal New Elements New Constraints
Induced
Property

STOREANDFORWARD
Connector that adds
end-to-end
retransmission and
acknowledgement
policies.

End-to-end
retransmission of
notifications and
acknowledgments.

Best-Effort data
transfer:
Cope with
message loss.

PREDICTOR Connector
for encapsulating
Turing-complete
prediction functions
of past states.

Predict probable
current state from
past data (when
possible).

Approximate
estimates:
Cope with
message delay.

TRUSTMANAGER
Connector that drops
notifications from
untrusted sources.

Ensure that all
reachable endpoints
are also trusted.

Self-Centered:
Cope with
dynamic
participation.

A
R

R
ES

T+
E Refer to a

read/write
resource
connected by
a faulty
network
beyond its
‘now
horizon.’

SUMMARIZER
Connector to
resample queued
events at lower
frequency.

Enforce bandwidth
limits; Prohibit
transmission of
superceded data.

Efficient data
transfer:
Cope with
network
congestion.

Table 12: Summary of the ARREST+E architectural style.

SELF-CENTERED. Since TRUSTMANAGER discards “spam,” it induces the property of

Self-centered representation transfers. Because event notification (ARREST) permits

unsolicited messages to arrive at any time, it is not sufficient to simply assume that

ever reply message was initiated by a request to a trusted server, as ACCESSCONTROL

does alone.

EFFICIENT. Since SUMMARIZERs minimize buffering, they induce the property of

Efficient representation transfers. By processing entire sequences of queued
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messages representing past values of a variable, a Summarizer can compress or

cancel several messages more effectively than one-shot CONTENTNEGOTIATION can

alone.

NON-INTERFERENCE. There is a further obligation when validating the ARREST+E

style to establish that these four new elements do not interfere with each other.

Beyond the synergies identified earlier in §8.2.2, these connectors are even more

effective because they can update the local proxy resource (‘event source’) at any

time. A STOREANDFORWARD connector could take advantage of multiple

paths/protocols to deliver the same message, as long as those paths exist in the

recipient’s Web of Trust. A sender’s SUMMARIZER connector could take advantage of

the behavior of the recipients’ corresponding PREDICTOR connector to minimize

errors.

8.3.3  Implementation Issues

Only STOREANDFORWARD and TRUSTMANAGER could be expected to be completely

independent of event source semantics, and hence implemented in a generic

ARREST+E framework. There are decent default examples of SUMMARIZERs suitable

for generic implementation — dropping outdated ‘in-flight’ representations,

concatenation, compression — but domain-specific coalescing could do much

better. In contrast, PREDICTORs must be entirely user-supplied to do better than the

default presumption of inertia.
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8.3.3.1  Retransmission Strategy

STOREANDFORWARD requires a concrete retransmission strategy — it cannot simply

flood a channel with more and more copies of a message in hopes that one will get

though. The schedule could be paced by an acknowledgement counting, sliding

window protocol to offer reliable, ordered service much like TCP (ZACK is a sample

implementation of such an end-to-end protocol, see §10.2.3.2).

Or, it could take advantage of entirely different communications technology,

such as one-way satellite paging {Khare, 1998 #560}. Even un-acknowledged radio

broadcasts can be effective at reducing the probable latency, especially when using

appropriate forward-error-correction and multi-scale, multi-resolution rebroadcast

policies.26

Finally, a retransmission schedule also needs to take into account the

performance characteristics of the underlying transfer protocol. It may even have to

incorporate mechanisms to estimate current bandwidth, delay, and jitter limits. This

                                               
26 One intriguing possibility is the use of structured namespaces to coordinate
multiple variants of the “same” resource. Suppose one wished to broadcast a
weather report to soldiers in the field over a one-way channel. A naïve approach
would be to rebroadcast a weather map as often as possible and hope that soldiers
gained access to the network for long enough to receive a complete copy. A more
sophisticated approach might be to fill the channel with, say, 10km2-scale maps
half the time, and 1km2-scale the rest. This increases the odds that during a short
burst of connectivity, a soldier recovers at least some of the map, and the effective
resolution could increase over time. See [206] for a similar approach applied to 3D
scene rendering at variable levels of details.

It would be quite intriguing to apply such abstractions to non-graphical data as
well; imagine reconstituting a newspaper by subscribing to separate HEADLINE,
STORY, and PHOTO event sources…
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way, an event router can distinguish between acceptable retransmission frequencies

for an instant-messaging interface on the LAN, or an email interface over a dial-up

modem on the WAN. Of course, this performance data is also relevant for choosing

summarization strategies, too.

8.3.3.2  Impedance Matching

A potentially more sophisticated approach is to combine pending notifications

to form a single, larger-grain summary. In some GUI toolkits, this is known as

coalescing mouse positions or keystrokes [87]. In the larger context of knowledge

management, Gelernter memorably described resampling as the “squish” operation

[93]. User preferences also govern this process; it was first termed ‘impedance

matching’ in the ‘Getting to Know’ notification service (GtK, [183]) for controlling

the pace of collaborative activities. An even more sophisticated model for

comparing and merging partial sequences of collaborative actions to a shared

document is operational transforms (dOPT, [61]).

For the architect, all of these approaches require carefully designing data

structures suitable for incremental materialization. For example, in our Web

browser-based sample applications, we developed a pattern for using hash tables

keyed off of an event’s KN_ID to reassemble a wide variety of data structures. In

the INTROSPECT topic browser, a directory listing is not a GET snapshot in time, but

a WATCHed resource that collects entries one at a time, so the list is always dynamic

(for better or worse). This turns out to be another example of multi-resolution

agreement — if we had infinite bandwidth, we’d just send the entire updated
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directory listing on each change, saving the client this sort of effort. Instead, we

needed to offer the tradeoff of delta-coding finer-grained updates at finer-

timescales.

8.3.3.3  Stateful PREDICTORs

It is beyond the bounds of this thesis to discuss the vast array of techniques for

predicting the behavior of event sources; the literature of control theory in applied

mathematics is but one starting point [207]. Our focus is on describing how such

techniques are packaged as software components and employed within our

architectural styles.

The most challenging aspect is devising a common programming interface that

supports the entire range of estimators, from the trivial null estimator (inertia) to

weather-prediction supercomputers. At the highest level, it is simple enough — a

PREDICTOR connector receives representations of external resources on its input and

produces representations of a local proxy resource on its output — but the internal

framework support could be more elaborate. How should past values be stored for

later reference? How much? Are time-series a basic data type? Moreover, there is

the (insoluble) challenge of ensuring that PREDICTORs terminate.

8.3.3.4  Credential Management

Enforcing a Web of Trust for each agency complicates the trust management

problem significantly. Essentially, credentials that were once centralized in a single

ORIGINSERVER or USERAGENT must now be distributed across multiple agencies —

and using estimates for them entails further risks.



175

Not only are these risks of construction (buffer overflows, cryptographic

weakness, etc), there are risks inherent in decentralization as participants join and

leave the application. The least of these are traditional challenges of managing a

Public-Key Infrastructure (PKI, [128]). The novel aspects are addressed in the

growing literature on decentralized trust management (PolicyMaker, [28]) and

distributed security infrastructures [192].
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Chapter 9:   DECENTRALIZED SYSTEMS

In this chapter, we shift from the challenge of precision to that of accuracy —

from estimating facts to assessing opinions. All of our previous architectural styles

have manipulated resources owned by a single agency; this is the first time we

explicitly address agency conflicts — the possibility that the agencies that own the

components of an inter-organizational application do not trust each other.

Consider how a currency-trading application would cope with the decentralized

market for foreign exchange. In the absence of any “true” value for an exchange

rate, a weakly-consensus-based approach would be to “fork” a decentralized

resource into multiple, independent resources and simply attempt to estimate each

one individually.

Suppose a foreign exchange trader has access to two banks. In that case, the

hypothetical resource TRADER.COM/YEN-RATE could be replaced by the set

{CHASE.COM/JPY, CITI.COM/JAPAN}. However, that leaves the user with two

seemingly-unrelated choices: ChaseYen and CitiYen. Both would end up being

listed alongside Euros and UK Pounds as though they were pseudo-currencies of

their own.

If the program specification is to trade dollars whenever the Yen-rate for dollars

exceeds the Euro-rate, how could a fair comparison be made? After all, the

customer’s ultimate requirement is for legal tender Japanese Yen, not ChaseYen or

CitiYen — though both banks’ resources happen to be simultaneously valid

estimates of it.
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Decentralized styles of software architecture need to accommodate some

mechanism for recovering a single local belief based on multiple external inputs.

For one customer’s purposes, their experience is that Chase is twice as reliable as

Citibank, so their model should set TRADER.COM/YEN-RATE :=  2⁄3 CHASE.COM/JPY +

1⁄3 CITI.COM/JAPAN. For another, it may be to choose whichever bank’s offer is

cheaper, depending on whether the application needs to buy or sell Yen overall.

More sophisticated economic models could then be applied in order to make such

assessments.

9.1  ASYNCHRONOUS, ROUTED REST WITH ESTIMATES AND

DECENTRALIZED DECISIONS (ARRESTED)

This is the last of our new styles, in which we graduate from approximate

agreement with a putative single valid value, to complete consensus-freedom with

multiple, simultaneously valid values.

The new capability we propose adding to ARREST+E is a component that

determines the local value of a decentralized concept by assessing a panel of other

agencies’ corresponding resources. This sort of Decentralized decision function

serves to share control of a resource among several agencies, just like the other

decision functions in our distributed styles (REST+D and ARREST+D). Unlike those

two, however, a decentralized solution cannot be based on transactions, locks, or

other attempts to enforce ACID properties.
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9.1.1  Property Specification

Inducing the property of consensus-freedom is difficult because it requires

proving a negative: the absence of consensus requirements. Indeed, inducing this

property reveals a paradox: the freedom to disagree can only be secured by

agreement over concepts that are even more fundamental. A troop of scouts, each

with their own compass, may disagree over what direction the troop is headed —

but only because there is still universal agreement over the meaning of North,

South, East, and West.

All an architectural style can do is help architects to locate and eliminate

dependencies on external agencies’ resources. Our proposed mechanism for

eliminating consensus requirements is to isolate such dependency within an

assessment function and a correspondence function, as defined in §2.3.3 and

§2.3.4, respectively.

9.1.1.1  Assessment

A more direct example of a quintessentially decentralized algorithm is the

consistent hash [117]. An ordinary hash function maps an infinite domain onto a

finite range; a cryptographic (“one-way”) hash also frustrates attempts to invert that

mapping as well. As long as two agencies agree to use the same hash function (and

any parameters, such as a secret key), simultaneous agreement over its output is

assured — even at a distance. Essentially, the algorithm is centralized, even if the

inputs are private.
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The difficulty arises when some of its parameters are allowed to vary. For

example, a common use for hash functions is to distribute items across a set of

containers. For several independent components to share the same containers (e.g.

a pool of Web cache servers), they must ensure that they all map items the same

way. This requires simultaneous agreement among all participants over the hash

algorithm and the set of available containers.

To add or subtract a cache from that pool, the entire system would have to be

halted first — two clients with inconsistent views of the pool would no longer share

the same mapping of items to containers. A better solution would permit clients

with different views of the set of containers to still map the same items to

approximately the same places.

Informally, a consistent hash function addresses this problem by generating a

series of probable containers to rendezvous at, rather than just one. Thus, even

when clients have different snapshots of the cache pool membership at different

times, they can still be assured that they will rendezvous at the same place with

arbitrarily high probability if they read or write to enough of those candidate

containers.

The broader lesson of this solution is that this is an example of a “shared-

nothing” architecture: individual agents can still calculate the decentralized

concept “which container does this item belong in?” without requiring

simultaneous agreement with any other agency.
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Another related formalism is Herlihy’s wait-free hierarchy of synchronization

primitives [106]. A concurrent data object is wait-free if it does not busy-wait nor

block waiting for some other condition to become true. Such objects can be

characterized by their consensus number, the maximum number of processes that it

can solve the consensus problem for without waiting. In that terminology, an

assessment function must not rely on any synchronization primitive with a

consensus number > 1.

9.1.1.2  Correspondence

Of course, independence without cooperation leads to isolation, not

decentralization. There must still be a way for agents to establish that other, external

resources also represent the “same” concept. This requires agreement over syntax,

semantics, and trust relationships; in our definition of decentralization in §2.3.4,

these requirements appeared in the guise of the correspondents() function.

In the caching example, there is an “obvious” layer of syntactic agreement; in

this case over the alphabet for URL strings that identify items and the particular

consistent hash function. The next layer of abstraction would be concerned with

establishing consistent semantics: ensuring that the result of an older GET request is

not substituted for another client’s POST invocation. And finally, there is issue of

whether a user trusts the organization running the caching proxy; consider the case

of a Chinese citizen and the “Great Firewall” [166], which censors access to news

and websites the government finds objectionable regardless of users’ trust

decisions.
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9.1.2  Style Definition

The ARRESTED architectural style induces consensus-freedom by
constraining all components to replace references to external
agencies’ resources with an ASSESSOR component that incorporates
information from multiple agencies without depending on consensus
with them.

The specific mechanism we propose adding to our architectural styles to

“eliminate dependencies on external agencies’ resources” is an ASSESSOR

component. Rather than relying on a local proxy resource to reflect the current

value of a remote one — as we have in all of our previous styles — a local

assessment reflects the current values held by several agencies about the same

concept.

As long as ASSESSORS use decision functions that do not block, the result is a

shared-nothing (decentralized) application architecture. This new component also

subsumes the role of the correspondents() function. An architect must provide rules

for an ASSESSOR to select resources that are syntactically and semantically

equivalent. (Note that we already presume that the TRUSTMANAGER introduced for

ARREST+E that ensures all connections in the architecture are trusted.)

By comparing Figure 19 to the ARREST+D style depicted in Figure 13, the

former 3x3 crossbar has fragmented into three different ASSESSORs for each agent.

The Web of Trust on the side explains which agents trust each other; so in the case

of Agent #2, we can see that it relies solely upon its own local judgment.

Nonetheless, both of the other Agents still choose to trust #2’s values as an input to

their own assessments.
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3
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Trust

Figure 19: Illustrated example of a concept shared by 5 agencies in the ARRESTED
architectural style.

9.1.2.1  The ASSESSOR Component

The unique characteristic of an ASSESSOR is that it combines several inputs into

one output. This is a significant shift from the era of application-integration for

distributed systems using brokers [172]. The essential behavior of a request broker

is a lookup() function that resolves names to addresses in an entirely application-

independent manner. This only permits brokers to select one input to connect a

local proxy to.

Consider a purchasing application that needs to reorder paint when supplies are

low. A centralized solution would be to connect the local variable PAINTPRICE

directly to a remote variable maintained by PAINTSELLER-1 (or, if it were

unavailable, redirect requests to PAINTSELLER-2). A distributed solution would be

to connect the local variable to a marketplace website, say, PAINTBROKER. At any
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given moment, PAINTBROKER would select the best price available from all N

PAINTSELLERs.

By contrast, a decentralized solution would be to tie the value of the local

variable to all of the suppliers simultaneously. The price the purchasing-planning

application should use could be based on the best price to prevail in the market for

the given color, quantity, and delivery schedule required. An ASSESSOR may

therefore need to take into account supplier reliability, timeliness, and past volume

discounts to determine its decision.

In the context of our earlier caching example, a consistent hash function would

also be represented by an ASSESSOR, since it would “listen” to several peers’ best

estimates to generate its own assessment of the cache pool’s current membership.

Other examples of non-blocking decision functions eligible for use in an

ASSESSOR include taking the minimum, maximum, mode, median, or mean of the

set of corresponding values. These simple statistical functions allow multiple-

agency systems to continue operating with approximately equivalent values even in

the face of “lost updates.”

9.1.3  Validation

Adding decentralized decisions to ARREST+E induces consensus-freedom by

replacing all references to remote resources with an ASSESSOR component that does

not block trying to establish consensus with any other component.

Without a testable, declarative specification for a mechanism to enforce

consensus-freedom, it is not possible to validate ARRESTED in the same manner as
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our other proposed styles. Instead, we have an operation definition that calls for an

assessment function, af(), and a procedure for determining which resources are

sufficiently “similar”, correspondents(). Since ASSESSORs implement those two

functions (by definition), as long as all remote references are replaced with

assessments, there cannot be any scope for requiring consensus with any external

agency.

Goal New Elements New Constraints Induced Property

A
R

R
ES

TE
D Decentralize

control of a
shared
resource
across
disjoint ‘now
horizons.’

ASSESSOR
Component that
manages the risk
of inter-agency
disagreement
over the ‘true’
value using a
panel of
opinions.

Eliminate reliable
references to remote
resources; only
contingent estimates
remain.

Consensus-freedom:
must not presume
feasibility of
consensus at all.

Table 13: Summary of the ARRESTED architectural style.

ASSESSORs also do not interfere with the properties already established for

ARREST+E. The inputs to an assessment function can equally well be values known

with certainty or estimates with error bars. The subtler challenges of interference are

not between styles, but between different types of resources.

On one hand, our consensus-free styles for estimated and decentralized

resources automatically reduce to simple centralized and distributed resources if

the network latency is low enough and the Web of Trust is a complete graph. There

is no inherent computational overhead for ARREST+E because the ESTIMATORs

won’t be invoked unless representations expire in transit or bandwidth limits are
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exceeded. Similarly, an ASSESSOR can still implement a probabilistic locking

scheme that selects a leader’s value for the group.

On the other hand, if some components of the application do fall outside of

each other’s now horizons, we face the scepter of upgrading centralized or

distributed resources into estimated or decentralized replacements. Imagine using a

calendaring application that automatically worked with certainty at the office, but

still let the user schedule probable meetings while off-line. How can these types of

resources be combined or compared consistently when the user returns to the

office?

The problem is that components beyond the now horizon essentially must

‘secede’ from the rest of the application to continue operating. After that point, the

sum of decentralized variable and a centralized variable yields another

decentralized variable, thus “infecting” the rest of the system. A more familiar, and

formal, way to depict this is a lattice of security levels — how even public-domain

information incorporated into a ‘top secret’ report becomes classified, too [18].

The major implication of this line of research is that declassification — or, in our

case, re-establishing consensus once network conditions and credentials permit

— requires careful consideration, and possibly even human supervision [58].

Alternatively, architects will have to consider isolating aspects of their applications

that are consensus-based from those that are consensus-free.
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9.1.4  Implementation Issues

As with ESTIMATORs, we do not have enough implementation experience with

ASSESSORs to recommend an internal architecture for such functions. One intriguing

model for evaluating contingent offers from multiple agencies is the ‘option ladder’

[30]. Just as options on stocks represent traders’ assessments of prices an equity at

different points in the future, different paint suppliers’ bids could be considered

options to buy or sell paint. For non-numeric data, it may at least suffice to

enumerate various agencies’ possible alternative values and determine one’s own

probability distribution across those.

Such speculation aside, the more significant implementation issue for

ARRESTED-style applications is determining correspondence. Even our syntax for

delimiting an agency boundary could be considered suspect, since domain names

alone do not designate authority over an URL — consider the case of ‘personal

home pages within a departmental web site. Establishing syntactic and semantic

equivalence is a significant challenge on the Web today, and even on into the

promised Semantic Web of the future [24].

The two banks in our example at the beginning of this chapter used rather

different URLs to identify the resources they claimed represented the decentralized

concept “price of Japanese Yen.” It is difficult to discern a strictly deterministic rule

for establishing such equivalence, without also positing extensive common

knowledge such as “domain-names-that-belong-to-banks” and “abbreviations-for-

national-currencies.”
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Nevertheless, for some significant applications, literal pathname matching has

proven workable in practice. As a matter of convention, any Web server can

publish a /ROBOTS.TXT resource to control its use by non-human user agents, or a

/FAVICO.ICO resource to provide an image for a site’s bookmarks. In other cases,

international organizations have struggled to establish practically-universal

vocabularies, such as ISBN codes or airport location codes.

In our own implementations, we ended up relying on syntactic pathname-

equivalence: we cluster topics by dropping the domain name, port number, and (for

http: and https:) the scheme as well. The rest of the “ontology problem” was

represented by routes. For example, we had several newspaper headline feeds

flowing into topics organized by domain name; to create an orthogonal

classification by topic, we manually created routes from, say, /WSJ.COM/HEADLINES

to /FINANCE. Patterns also emerged for hierarchical taxonomies: by organizing

headlines by date in the form /YEAR/MONTH/DAY/HOUR, and creating routes back

“up” from each HOUR directory to each DAY directory, and so on, subscribers could

specify an appropriate timescale to fine-tune their queries (subscriptions).
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Chapter 10:   INFRASTRUCTURE

In this chapter, it falls to us to establish that our new architectural styles are

indeed implementable — without limiting the scalability or range of applications

built in those styles. Our primary evidence for validating these claims is found in

the MOD_PUBSUB open-source project, which adds an event notification service to

the Apache Web server {Khare, 1994-5 #1607}.

However, our investigation has been iterative, since we have developed new

insights about our styles and their relationships only by extending and applying

MOD_PUBSUB. In particular, its development predates our insight that there are four

separate types of resources (centralized, distributed, estimated, and distributed). As

a result, this chapter is organized into two portions: MOD_PUBSUB’s design and

implementation; and an analysis of the feasibility of each new architectural style.

10.1  THE Mod_PubSub PROJECT

In the summer of 1998, we convened the Workshop on Internet-Scale Event

Notification (WISEN) at UC Irvine, followed by some informal “birds-of-a-feather”

sessions at the fall Internet Engineering Task Force (IETF) meeting. These efforts

culminated in our earliest proposals for adding event notification to the Web

{Khare, 1998 #1650}. The common thread to the various experiments we have

undertaken with Internet-scale event notification is our vision for a “Two-Way

Web”: pairing HTTP client and server functionality at each node to form a simple,

effective, and familiar foundation for peer-to-peer architectural styles [97, 122].
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Later, we expanded our approach to embrace a broader concept called

Application-Layer Internetworking (ALIN, {Khare, 1994-5 #1829}) that casts

network messages between applications as convertible to a hypothetical

intermediate format analogous to IP, a generic Transfer Protocol (TP).

We have learned quite a bit from developing an experimental event-routing

infrastructure along these lines over the past five years. Our original prototype

implementations were released separately as an open-source project in November

2002 called MOD_PUBSUB (by analogy to the Apache MOD_* naming convention for

Web server extensions) {Khare, 1994-5 #1607}. Eventually, these experiments

became the foundation for the award-winning commercial edition sold by

KnowNow, Inc [220].
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Figure 20: Components of MOD_PUBSUB operate within several other systems.
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In this subsection, we will proceed to expand upon our approach to, design for,

and implementation of an event notification service built on top of existing REST-

style infrastructure.

10.1.1  Approach: Application-Layer InterNetworking (ALIN)

Rather than approximating the ideal of a single event notification ‘bus’

connecting all components of an architecture, we aim to implement a

decentralized event router: a network element that can be owned by independent

agencies yet still interoperate without presuming shared information about topics,

subscribers, or events. The advantages of this approach correspond to those of

connecting multiple agencies’ independent networks in an internetwork rather than

attempting to build a single, shared network: independent administration; improved

reliability, availability, and scalability; and interoperability with a wider range of

protocols.

By viewing event notification as a routing problem, we have mapped the

challenge of reliable, publish-and-subscribe messaging at the application layer

down to the precedents set by Layer 3 internetworking  (viz., IP and UDP). Unlike

prior generations of LAN-scale messaging systems, which merely exploited that

metaphor by relying on reliable multicast UDP at Layer 3, our effort begins by

positing a new Layer 7 abstraction, the Transfer Protocol (TP). TP represents a

lowest-common-denominator protocol, more or less, for HTTP, FTP, SMTP, NNTP,

and other Internet application-layer protocols, as well as messaging systems such as
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IBM’s MQSeries, Tibco’s Rendezvous, Microsoft’s BizTalk and myriad proprietary

JMS implementations.

Roughly speaking, an “IP datagram” corresponds to a TP message: IP’s 32-bit

addresses grow into topic name URLs; IP’s fixed-length payloads become arbitrary;

IP’s untyped (binary) payloads become richly typed; IP’s per-packet security

becomes per-message security; and so on. Originally, IP was grudgingly tolerated as

only a protocol for ‘networks of networks,’ insufficient to replace LAN protocols

inside organizations – just as SOAP [31] is viewed today. Eventually, though, IP

became the dominant Layer 3 protocol throughout the computer industry, on LANs

as well as WANs. We suspect there is similar potential for standardizing

communications between components of a software application.27

One reason we are attracted to the ALIN approach is that it leads to some novel

ways to describe the properties induced by an architectural style. For example, if

we can see that the only path between two networks crosses through a firewall, we

can immediately grasp that the only data flowing between them must be

trustworthy in the eyes of the firewall’s owner. Similarly, one can add security

policies for restricting access to selected hosts/components by deploying single-

sign-on appliances as bottlenecks. One can also improve reliability and capacity by

adding multiple links between subnetworks. In general, architectural diagrams can

                                               
27 Rose’s Blocks Extensible Exchange Protocol (BEEP, neé BXXP, [194]) is a related
approach that came out of the late-90’s interest in a unified application-layer
protocol toolkit {Khare, 1998 #1605}. Unlike TP, though, BEEP delves much deeper
into connection-management to provide finer-grained APIs.
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simultaneously be viewed as routing graphs and vice versa. This allows us to

describe new functionality by showing that all routes between two points must go

“through” the components that implement those constraints.

10.1.2  Design

The design we chose for extending Web tools to support event notification

reflects the symmetry of the ALIN approach: building a “Two-Way Web” where

data can flow asynchronously between peers, not just from servers back to clients.

The implementations in the next subsection are based on Web design precedents

for its protocols, event model, routers, microservers, and applications.

10.1.2.1  Protocol

The ideal Web event notification protocol would be a direct implementation of

the SUBSCRIBE method we posited when describing ARREST. It indicates a request

to “let <CALLBACK-URL> ‘watch’ all the traffic sent to this <REQUEST-URL>, by

proxying such requests onward to it.” This is a deliberate and appropriate extension

of HTTP because it directly builds upon its underlying hypertext model, addressing

well-known concerns about using HTTP as a substrate raised in [162].

In practice, though, we can’t modify Web browsers and Web servers to support

our new method. It has become notoriously difficult to advance the deployed

versions of HTTP [130, 131]. For convenience, we then mapped our ideal form into

a set of parameter names and values to use with X-WWW-FORM-URLENCODED

marshalling in ordinary POST requests. Any HTTP/1.1 field was imported using

the DO_ prefix; any private, experimental field not yet harmonized with HTTP was



193

relegated to KN_. Thus, method names, maximum ages and such parameters of

SUBSCRIBE are now DO_’s, but our non-standard Expiry field, which only accepts

integer positive seconds, is still only a KN_EXPIRES .

Finally, three additional, practical hurdles force us to reverse the physical flow

of messages over a single TCP connection. Since we want to send asynchronous

inbound IP traffic back to a desktop PC, we must contend with 1) browser scripting

security limitations that limit communications only to the same or subordinate

domain name as served the page; 2) firewalls that prevent externally-initiated

traffic; and, most perniciously, 3) Network Address Translators (NATs, [209]), which

make it impossible to identify unique (“routable”) IP addresses for clients.

10.1.2.2  Event Model

In the development of packet internetworking, all communications could be

reduced to a single packet format. Unlike IP, though, our event router uses a slightly

richer abstraction of the information it must process: a persistent identifier for each

event notification, including the topic that contains it.

Consider that “an email in a mailbox” is by no means a mere transcript of the

original SMTP network traffic. In fact, it took decades from there to the innovation

of Internet Message Access Protocol (IMAP, [53]), which does posit a richer storage

and security model for identifying emails and mailboxes. Similarly, our router is not

merely transcribing and reformatting bursts of HTTP traffic, but instead models

events and topics, respectively, as resources and collections per the WebDAV

specification [230].
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Because one original interpretation of WebDAV’s goal is “turning a website into

a filesystem,” many of its semantics are derived from experience with many prior

filesharing protocols. This gave us a simple yet flexible model for event contents:

files in directories represent different representations of the same event source

(‘topic’). More importantly, every event has a persistent, unique name (“event id” or

KN_ID) that is used for updating events previously-published events and suppressing

routing loops.

Our design goes even further by following the motto that “everything is a topic

or an event” to support reflection on metadata on events, topics, and subscriptions.

Unlike WebDAV’s additional unique methods to retrieve (PROPFIND) and modify

(PROPPATCH) resource metadata— who created it, when, and so on — we chose to

fold many of these items into the format of the event itself. Therefore, we added KN_

fields to report an event notification’s last-modified time, expiry time, purported

publisher, the last route it traversed, and so on.

The second type of reflection includes similar information for topics: who

created it, when, its maximum resource usage limits, degree of durability it should

be stored with, and so on. Not surprisingly, we chose to represent topics as events,

albeit within a special container: a KN_SUBTOPICS topic within every topic. This

makes it reasonable to discover new topics by ordinary Web crawling, as well as

eliminating the need for special methods to create, update, or delete routes — just

work with the corresponding entry in the parent topic’s KN_SUBTOPICS.
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Our third sort of reflection extends this solution to capture the state of the

routing table itself: Who’s listening? Who’s allowed to listen? Once again, every

topic has a ./KN_ROUTES subtopic that contain representations of every subscription

from that topic. For administrators to learn what routes exist, they need only

subscribe to that topic to be notified of changes to the routing table. Naturally, such

inspection also creates a ./KN_ROUTES/KN_ROUTES subdirectory, and so on. Access

controls applied to each level can be used to express more complex trust

management policies (see §10.2.3.3).

10.1.2.3  Router

The basic interface in and out of our routers is an HTTP/S POST request. Our

other supported protocols, such as FTP file sensors or outbound email alerts, are

gatewayed through this HTTP interface. Any MIME payload or HTML FORM element

is acceptable as the body of an event (KN_PAYLOAD). Here is the basic procedure for

processing incoming requests:

First, we rely on the built-in access controls of the host Web server’s security to

ensure this was a legitimate request. If so, the router takes care of automatically

filling in certain headers like the creation date, expiry, and KN_ID.

Next, the router determines whether this event is “new news.” If this event is

identical in every material way to the event currently stored under that KN_ID,

processing stops. Otherwise, it is added to our repository. In the current

implementation, this is a transactional commit; the router does not reply with 200

OK until the event is written to stable storage.
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If it is a request to create a subscription (publish into a KN_ROUTES topic), a new

route is created. If that new route request has a DO_MAX_AGE or DO_MAX_N option, it

looks in its cache to replay as much past event notification traffic as it may have

stored so the new subscriber can ‘catch up.’

Continuing as we would for any ordinary event notification, the router queues it

up for onward delivery to each of the eligible destinations found in that

event’s./KN_ROUTES subdirectory. At that point, we check whether it can be sent

(security), where it should be sent (including running it through a filter service,

optionally), what format it should be sent in (e.g. XML or JavaScript), and how it

should be sent (direct copy to tunnel socket or forwarding to another, external

router?).

Note that currently, MOD_PUBSUB uses a nested delivery loop. This leads to a

transitive closure (a depth-first search of the entire routing graph, in the worst case)

and requires every notification to be completed before the router can release the

publisher. Such reliability is a risky assumption, especially because it ought to be

best-effort, only forwarding events as spare processing power permits.

10.1.2.4  Microserver

Completing this design requires a modification to the communication pattern

between USERAGENTS and ORIGINSERVERS to permit sending and receiving multiple

responses. Clearly, an ordinary REST SERVER connector is already prepared to

accept asynchronous notifications. Client-side support is enabled by the

ASYNCSERVER and ASYNCCLIENT connector types. Unlike the ordinary SERVER and
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CLIENT connectors, the ASYNC extensions hold open a network connection for the

duration of a WATCH relationship. This approach is known as the ‘Two-Way Web’

since it essentially pairs a REST CLIENT and SERVER together. It shifts the discourse

from encapsulating notifications as multiple-responses (sent to a client) towards

multiple-requests (sent to a server) — hence our coinage of the term “microserver.”

While one could use any handy HTTP library to access a router, that is not the

same as providing a complete Internet-scale event notification framework. A

microserver is the whole kit of platform-specific code provided to developers. In

general, a complete microserver does at least three things: hook into the “local”

event model; manage stable queues for reliable pub/sub; and manage interactions

with the network layer.

The first aspect of microserver design is a ‘personality’ issue, in the sense

popularized by the Mach microkernel’s emulation layers for other UNIX interfaces

[5]. For example, the JavaScript microserver not only provides generic PUB(),

SUB(), and UNSUB() calls, but in conjunction with LIBFORM or KN_HTML, it also can

hook directly into the browser’s GUI event loop as specified by the Document

Object Model (DOM, [233]). This allows the model-view-controller architectural

style [129] to be applied naturally to previously static Web pages. Similarly, in

Excel we took pains to add ON_EVENT hooks that call users’ own macros when

events arrive, making event-driven development more familiar to power users. In

Java, we provide both low-level queuing and Java Message Service-compliant (JMS,

[113]) interfaces.
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The second aspect of microserver design concerns reliability. We claim PUB(),

SUB(), and UNSUB()are non-blocking calls. This means we maintain working

queues for pending inbound and outbound traffic. For applications where it is

critical that an event presumed published indeed will be (to a best-effort) local

stable storage is necessary.

Finally, of course, is the network layer. The microserver controls the two TCP/IP

connections to and from the router. Wherever possible, we use “native” libraries for

connecting to the Web. Part of the beauty of its ubiquity is that far more man-years

have been invested in optimizing, say, Microsoft Windows’ WININET, than any

homegrown HTTP stack might.

10.1.2.5  Applications

In addition to the event routing infrastructure per se, the MOD_PUBSUB package

also includes a set of test scripts, test applications, widgets, and a sophisticated

router administration tool called INTROSPECT. Figure 21 is a screenshot of the

developer tools and samples included with a recent release of MOD_PUBSUB.

The client and server test harness is a client-side JavaScript application that

invokes a corresponding series of some thirty-odd server-side CGI scripts that

publish and subscribe to the router, and then concludes with some additional,

browser-specific tests. Since the project was initially managed according to the

philosophy of “extreme programming” [17], it is significant that the server tests

were developed alongside the original PUBSUB.CGI code itself. For each new

proposed router feature, a corresponding test was written before implementation.
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Therefore, even with a very small development team, we were able to construct an

independently-developed test suite, rather than just adding diagnostic debugging

information to the router under development. This approach proved its worth when

the same test programs were applied to later commercial and Python editions of the

router.

Figure 21: A listing of sample applications in the MOD_PUBSUB distribution.

Along the way, we also developed a set of common components for application

developers. The majority are specific user interface elements for Web browsers —

bar charts, Miller columns, HTML parsers and validators — but a few are

interesting examples of server extensions. For example, the PAGER application

invokes a server-side script to “compress” text using a table of abbreviations (e.g.
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“Los Angeles” becomes “LAX”). By simply subscribing via the PGRSPK.CGI “filter,”

any application can take advantage of this event transformation.

Figure 22: The INTROSPECT application examining a for-sale event notification.

The INTROSPECT application is designed for administering an event router;

commercial versions even include an online editor for the router’s own

configuration files and credentials. As shown in Figure 22, it takes advantage of

many of our new widgets and libraries. It presents a browseable ‘topic hierarchy’ by

subscribing to ./KN_SUBTOPICS. It even continues that metaphor by browsing right

into the headers and values of an individual event notification; in this particular

case of an XML message, it even browses the JavaScript object constructed from its
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body. The entire user experience is “live,” so elements on display are modified as

soon as new information arrives.

10.1.3  Implementations

With a Web-centric design in hand, our informal justification for building yet

another Internet-scale event notification service was to replicate the ease of use and

deployment of the Web. HTTP servers support decentralized hypertext by serving

up a portion of the global URL namespace without any a priori coordination with

any other Web servers, clients, or proxies; we had the same goals for a small,

simple server for decentralized event routing.

Figure 23: A multi-protocol event router can interconnect multiple organizations.
(©2003, KnowNow Inc.)

Figure 23 sketches the wide range of programs necessary to develop working

experimental systems. To take full advantage of existing REST-style infrastructure,

these implementation efforts were dispersed across a wide range of systems, as

extensions written in a range of different programming languages.

On the left-hand side is a sample deployment across three organizations. Even if

placed inside or outside of a network firewall, each agency’s router can establish
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connections for forwarding event notifications, forming an application-layer overlay

network. On the right-hand side are two organizations, but the larger one includes

an internal network of routers as well.

In either case, though, the business processes at hand impact databases, custom

applications, Web browser-based and GUI-based interfaces, and a variety of other

legacy MOM systems. For example, many Web sites today are set up to send offers

and alerts via email; by using an SMTP gateway, an existing J2EE application merely

needs to be configured to send emails to the router rather than an end-user.

Alternatively, a Java developer may choose to send notifications to other Java

components using the JMS API; the commercial product includes a Java program

that provides such an API, but translates all traffic into standard HTTP messages to

communicate with the router. Similar adaptors have been developed for Tibco’s

Rendezvous bus and IBM’s WebSphere MQ.

The broader lesson of Figure 23 is the potential for an intermediate event-

notification protocol to dramatically simplify the burden of integrating ‘integrated’

applications. Whether by adding the adaptor to the router core, or to the client

program, the essential benefit of this solution is that developers need not change

their native messaging interfaces to take advantage of an interoperable protocol.

In the following sections, we will discuss both our open-source prototype and

commercial production versions of this architecture.
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10.1.3.1  Open Source

As Table 14 documents, MOD_PUBSUB is an extensive project, implemented in a

wide variety of programming languages and runtime environments. Broadly,

however, the various pieces fall into four categories: routers (“servers”),

microservers (“client libraries”), sensors (“gateways”), and sample applications.

The flagship event router is PUBSUB.CGI, which can run within virtually any web

server, but also provides additional performance in conjunction with Apache. The

other key router is a monolithic, single-threaded server written in Python. Not only

is PUBSUB.PY much higher performance, it is the more ‘readable’ version as well,

because the control flow did not need to inverted to fit into an enclosing Web

server.

Microservers, which both queue outbound messages and maintain tunnel

connections to receive inbound ones, are implemented in a wider range of

languages. There are even multiple implementations in the same language, because

the key is API support. As with the commercial edition, there is work underway on

both a simple Java library and more complex JMS provider.

Sensors are programs written to collect information from other news sites, stock

quote feeds, and even other protocols (e.g. email into a topic).

Using MOD_PUBSUB with existing web tools and browsers, web pages can

respond to incoming events from the network — in real-time; in plain text, HTML,

XML, or SOAP format; and without relying on Java or ActiveX plugins of any kind. It
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works with Mozilla, Netscape Navigator, and Microsoft Internet Explorer browsers

and any Web server with support for CGI scripts written in Perl [228].
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Item Description
Makefile Makefile to create PUBSUB.JS from PUBSUB_RAW.JS, the framework and tools in

the JS_PUBSUB directory, and a properly-permissioned KN_EVENTS/ directory. Use
"MAKE ALL" to create, and "MAKE CLEAN" to remove made files.

LICENSE Our BSD-style license.

kn_docs/ Documentation for this distribution, including Frequently Asked Questions
(FAQ), Developer Guide, PubSub Protocol Document, JavaScript PubSub Library
Reference, and JavaScript Options, Tricks and Debugging Guide.

cgi-bin/ 1. Perl PubSub Server: A mod_perl-based Apache module (MODPUBSUB.PM).

2. Some useful CGI scripts, including email notification (FORM2SMTP.CGI),
PubSub Server regression test (PUBSUB_TEST.CGI), a sample SOAP service proxy
(SOAP_FILTER.CGI), and some sample transformation scripts.

3. Perl PubSub Client Library (PUBSUB). It is single-threaded and partially non-
blocking (tunnel is non-blocking, other requests block).

4. SOAP Gateway (PUBSUBSERVICE.CGI). A preliminary SOAP interface to
mod_pubsub. When complete, the SOAP interface will include support for
incoming SOAP requests, off-host SOAP routes, and external SOAP service
invocation. (SOAP design)

perl_pubsub/ The Perl PubSub Client Library and Perl PubSub Server reside in the cgi-bin/
directory. Some sample apps that use the Client Library are CHAT, LIST_EVENTS,
LIST_ROUTES, and LIST_SUBTOPICS in the KN_TOOLS/ directory, and some sensors
in the KN_SENSE directory.

js_pubsub/ A directory of utilities and libraries that offer a framework for JavaScript
components, including sample applications, docs, and tests.

kn_apps/ A directory of PubSub-enabled Web Browser samples. Includes several
component JavaScript libraries, such as JavaScript PubSub Client Library
(PUBSUB_RAW.JS) that is single-threaded and non-blocking; and sets of helper
libraries KN_LIB and JSCOMPONENTS.

flash_pubsub/ Some early research into a Flash and ActionScript PubSub Client Library
(PUBSUB.AS).

php_pubsub/ PubSub Client Library for PHP (PUBSUBLIB.PHP), including a Publish example
(PUBLISH.PHP -- works in PHP3 and PHP4) and a server-side Subscribe example
(SUBSCRIBE.PHP -- only works in PHP4 with Sockets extension, and uses the
EVENTLOOP.PHP and PIPEFITTING.PHP libraries for network I/O.

ruby_pubsub/ Ruby PubSub Client Library (LIBKN.RB). It is multi-threaded and blocking.

python_pubsub/ 1. Python PubSub Server (PUBSUB.PY) that runs standalone from the command
line. It is our goal to have the functionality of PUBSUB.PY match that of CGI-
BIN/PUBSUB/MODPUBSUB.PM so we have two reference implementations.

2. Other helper Python libraries.

Table 14: An inventory of files in the MOD_PUBSUB project.
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Item Description
python_pubsub/
(cont’d…)

3. Python PubSub Client Library (PUBSUBLIB.PY). It is single-threaded and non-
blocking. There are also some sample apps that use this library: CHAT.PY,
PUBLISH.PY, SUBSCRIBE.PY, and REPEATER.PY. Works on Python 2.1+ for
Windows, and Python 1.5+ for Linux, Solaris, and Mac OS X.

4. An alternative Python PubSub Client Library (LIBKN.PY) that is multi-threaded
and blocking.

java_pubsub/ Java PubSub Client Library (client and chat app). It is multi-threaded and
blocking.

cxx_pubsub/ C++ PubSub Client Library (LIBKN) that can be compiled on Windows or
PocketPC. It is multi-threaded and blocking. There are versions for Visual Studio
6 and Visual Studio.NET; also included are sample apps such as an RSS
publishing program, and documentation that can be built using DOXYGEN.

c_pubsub/ ANSI C PubSub Client Library (LIBKN) that can be compiled on any flavor of
Unix. It is single-threaded and partially non-blocking (tunnel is non-blocking,
other requests block).

kn_sense/ Sample sensors for scraping data from websites and publishing them to a
PubSub Server. For example, see the RSS sensor (RSS.PLX).

kn_tools/ Useful ancillary utilities, including:

1. Command-line chat using the Perl PubSub Client Library (CHAT.PLX).

2. Command-line tools using the Perl PubSub Client Library (LIST_EVENTS.PLX,
LIST_ROUTES.PLX, and LIST_SUBTOPICS.PLX).

3. Command-line ping using the C PubSub Client Library (PUBSUB_PING).

4. Command-line throughput performance testing tool in ANSI C
(PUBSUB_THROUGHPUT).

5. Command-line performance testing tool in ANSI C (PERFTOOL).

6. Command-line throughput performance testing tool in Java
(PERFTEST_THROUGHPUT.JAVA).

7. JavaScript object serializer (JS_OBJECT_SERIALIZER.HTML).

8. JavaScript compressor (JS_COMPRESS.SH).

9. JavaScript localizer (KN_LOCALIZE.SH).

10. JavaScript character set browser (CHARAT).

11. Some useful JavaScript bookmarklets.

push_manager/ A connection pooler for use with CGI-BIN/PUBSUB/MODPUBSUB.PM to enable it to
serve thousands of simultaneous connections. Note that this program does not
currently work with most platforms (derived from thttpd).

Table 16: (continued)
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MOD_PUBSUB includes a set of JavaScript libraries that can be included in

Dynamic HTML pages. These files make available a set of objects and functions

that you use to subscribe, unsubscribe and send events. In addition, these scripts

can identify the current user. Getting the current user's identity requires both that

the PUBSUB.CGI instance is hosted on a password-protected site; and that the

JavaScript files are generated by PUBSUB.CGI. All of this can be done with a single

<SCRIPT> tag which points to the MOD_PUBSUB instance:

<!-- PubSub JavaScript Library for Live 2-Way Forms-->

<script src="../../cgi-bin/pubsub.cgi?

do_method=lib2form"></script>

<!-- Check it out, a two-line program! -->

<form action="kn:/what/chat/">

<input name="kn_payload" size="20" /></form>

Program 20: A sample JavaScript MOD_PUBSUB chat application.

The PUBSUB.JS JavaScript helper libraries also include support for sending and

receiving SOAP-formatted XML messages. Converting received SOAP-formatted

XML messages into JavaScript objects makes accessing the properties within it

much simpler, as well as strongly-typed (integers, booleans, strings, and so on) [72].

10.1.3.2  Proprietary

KnowNow’s commercial version is largely compatible with MOD_PUBSUB, but its

internal architecture is tuned for much greater performance and reliability. Rather

than plugging into an external Web server as a Perl CGI script, KnowNow

LiveServer™ is a complete event router for Windows, Solaris, and Linux written in

C++ that contains an embedded Web server of its own (AOLServer, [10]).
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Figure 24: A block diagram of the internal architecture of the commercial router.

(©2003, KnowNow Inc.)

Rather than using the filesystem as an event store and polling it for changes,

LiveServer uses an embedded BerkeleyDB [175] cache and a threaded connection

pool. Rather than process each event against each subscription individually and

using external scripts for content filtering, it can load parsers and query processors

into the kernel and cache parsed events to boost throughput.

It is also designed for tighter integration with security solutions, including SSL

support and integration with outboard SSL hardware accelerators. Using CONNECT

to tunnel SSL also ensures compatibility by circumventing proxy caches and other

network elements that might interfere with microserver tunnels [140]. It also

provides an authentication API to check credentials against external directories.
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LiveServer also supports up to 8-way clustering through the simple expedient of

replication by cross-routing. Any event notification sent to one cluster member is

relayed to the others before being acknowledged. Because of the reflection built

into the design, merely forwarding every event publication is sufficient to mirror the

entire router’s state — even the creation of subtopics or modification of

configuration parameters is caused by an event notification. Since writes still block

until replicated on all cluster members, though, this only increases notification

(read) throughput.

10.2  FEASIBILITY OF OUR NEW STYLES

Having described our infrastructure, in this section we will show that it can be

used in demonstrations of the feasibility of each of our new styles. It suffices to

show that each new component, connector, and constraint we have posited have,

in fact, been realized in some manner in our routers, microservers, and sample

applications. Since our implementation predates our styles, it is also important to

show that the various extensions work together, rather than interfere.

We will proceed in a slightly different order than we originally derived our

styles in the last few chapters. We will begin with our baseline style, REST; add

each of our four basic types of functionality to it (asynchrony, A+REST; routing,

R+REST; estimates, REST+E; and decisions, REST+D); and then combine those

facilities to support centralized (ARREST), distributed, (ARREST+D), estimated

(ARREST+E), and decentralized (ARRESTED) resources.
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10.2.1  Existing Elements

Our specific intention in designing MOD_PUBSUB as an extension to Apache was

to leverage as many of the benefits of REST as possible. Because of this, our

obligation to validate the feasibility of REST and REST+P only extends to defining

the specific new elements we added to the original definition of REST in §4.2.2.

10.2.1.1  Synchronization (REST)

All of our experiments with MOD_PUBSUB presumed that GLOBALCLOCK was

implemented by the host operating system(s) our components were executing upon.

This was reasonable because the smallest unit of time our system observed events

at was only one second (such low-resolution measurement of time was a

consequence of using the filesystem to communicate between PUBSUB.CGI

processes). The clock skews we observed while using Simple Network Time

Protocol (SNTP, [154]) synchronization were much less than one second.

We did not account for malfunctions or malfeasance. For example, we avoided

incorrectly-set locales (time zones) by opting to store and compare times in

seconds-since-UNIX-epoch format whenever possible. Similarly, we attempted to

mitigate timestamp fraud by ensuring that routers always updated creation

timestamps, KN_TIME_T, according to their own clocks, not the clients’.

Freshness was the only constraint we defined in REST, by using a GLOBALCLOCK

to enforce expiration deadlines. We enforced this lazily: whenever an event was

read from disk, it was immediately deleted if it had already expired (see
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EVENTFORMAT.PM). Note that this still does not prevent exhaustion of storage

resources: events that omit a KN_EXPIRES header remain valid indefinitely.

10.2.1.2  Polling (REST+P)

Because REST+P is a cul de sac on our path towards deriving a decentralized

version of REST, it should not be surprising that we did not implement it in our

project directly. Nonetheless, polling is already the most prevalent way to add

pseudo-“real-time” information to Web sites: the “META-REFRESH” facility instructs

Web browsers (USERAGENTs) to reissue the current request after a specified interval

(see §4.3.4). This transformed an ordinary USERAGENT into a REST+P POLLINGCLIENT.

Since MOD_PUBSUB also allows direct GET access to topics and individual events,

developers could configure it to add such a META-REFRESH header to the HTML

representations of directory listings and files it returned. Nevertheless, this simple

POLLINGCLIENT is much less powerful than using STOREANDFORWARD to retrieve

specific ranges of events, including use of checkpoints (see §10.2.3.3).

10.2.2  New Elements

The next step towards deriving a decentralized version of REST was identifying

four basic types of functionality to add on to it. Once again, it is worth noting that

our development of MOD_PUBSUB predates our understanding that these were four

orthogonal facilities. There is not necessarily a one-to-one correspondence between

our new components and connectors and the internal design of MOD_PUBSUB.

Rather, the various aspects of the MOD_PUBSUB project — along with services
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provided by the operating system and underlying Web server — can be combined

and configured to support each element of our new styles.

10.2.2.1  Asynchrony (A+REST)

A NOTIFYINGORIGINSERVER is obliged to transmit additional replies whenever a

resource’s representation changes, for the duration of the client’s WATCH request.

This is much less sophisticated than implementing a full-scale publish/subscribe

system — recall that the concept of SUBSCRIPTIONS will not arise until ARREST (see

§10.2.3.1).

One of our earliest experiments was to hold open a connection to a browser

and stream down to browsers isochronously (KNSERV.PL, deprecated in {Khare,

1994-5 #1607}). We found that, with sufficient padding to flush internal buffers,

incremental rendering of Dynamic HTML in modern browsers could enable us to

trigger alerts or modify the displayed document without dropping the connection.

We dubbed this technique “isochronous HTTP,” in part to differentiate it from the

better-known usage of the term “persistent connections” to refer to pipelining of

HTTP requests [157], but also to indicate that messages would arrive at the client

with the same relative delays as the changes at the server.

Extending this result to support asynchronous notification of resource changes

required an implementation of the WATCH method. We accomplished this in

PUBSUB.CGI by, first, formalizing the definition of a TUNNEL to send multiple

responses encapsulated within a single HTTP/1.1 200 OK response; and second,

by implementing an event-observation loop that monitored changes to a
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representation on the filesystem at 1Hz (since file modification times are only

measured in seconds in UNIX).

10.2.2.2  Routing (R+REST)

A ROUTINGPROXY is obliged to redirect its reply to another component, as

specified by the client. The simplest implementation would be to preserve as much

of the REST model (and existing implementations) as possible. For that reason, we

rewrite a response message as a new request message intended for the destination

URL. The details of such rewriting largely follow the rules for proxying requests in

HTTP/1.1.

This behavior is implemented by content transformation: before a reply message

is to be delivered, the KN_CONTENT_TRANSFORM header can specify another proxy

server it should be filtered ‘through’, with the output of that process replacing the

original reply.

However, this remains a nested call, meaning that not only does the

intermediate server add latency when transferring back a reply, the agency that

owns it must also be trusted not to modify the representation when doing so. In

practice, architects using MOD_PUBSUB can use SUBSCRIPTIONs to “dropbox” topics

to achieve the same effect in the ARREST style.

10.2.2.3  Delegated Decisions (REST+D)

The role of a MUTEXLOCK is fulfilled by filesystem locks, albeit indirectly. The goal

of the REST+D architectural style is to achieve pairwise ACID agreement between



214

one client and one server. MOD_PUBSUB relies on underlying locking mechanisms in

the operating system to enforce Atomicity, Isolation, and Durability.

ATOMICITY. Buffering incoming requests until the entire body is received

(according the stated CONTENT-LENGTH: of the request message) ensures atomicity

by preventing partial, corrupted event publication. This relies on locking of

independent temporary files by concurrent PUBSUB.CGI processes running within

the same Web server.

ISOLATION. Clients wishing isolation from other publications on the same topic

can simply omit an event’s KN_ID field. That way, the PUBSUB.CGI process receiving

it will generate a unique name for it. This is effectively using the topic’s directory

listing as a test-and-set atomic object. Admittedly, this does not enforce isolation for

concurrent writes to the same event, only for the same topic.

DURABILITY. Finally, durability of a write is indicated by the publication of a

status event. Whatever the particular level of durability the router administrator

chooses — tape drive or RAM disk or anything else — a PUBSUB.CGI process can

only generate a 200 OK reply after the write is completed. Note that the status

information can itself be represented as an event, and routed to another component

using the KN_STATUS_TO header.

To reduce the possibility of a lost-update further, there MOD_PUBSUB includes

another experimental router called PUBSUB.PY, written in Python [225].28 It enforces

                                               
28 Arguably, it is the clearest, most readable implementation in the whole project —
and it’s much faster than PUBSUB.CGI, even with MOD_PERL acceleration.
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serialization by handling all requests to publish or subscribe in a single thread

(rather than in concurrently-executing CGI scripts). In the commercial edition of the

router, an embedded BerkeleyDB is used to enforce transactional integrity [175].

10.2.2.4  Estimation (REST+E)

As we noted during our discussion of REST+E in §8.2.1, its implementation

reflects current practice on the Web. TCP/IP stacks built into modern operating

systems take care of retransmitting and re-ordering data to survive network outages

of several minutes. Access controls built into modern Web serves can protect

resources based on users, passwords, and pathname patterns, using a wide range of

cryptographic mechanisms. Content negotiation is less consistently supported on

the Web, but it typically offers automated selection of languages, file formats, and

file size limits. Web caching, in browsers and in proxy servers, can already return

stale representations of a resource when disconnected from the network.

All of these facilities come into play automatically when browsing event sources

(topics) or retrieving event representations from a MOD_PUBSUB implementation (as

long as the portion of the filesystem used to store events is itself accessible through

standard GET requests). Even for POST requests that publish new events, the

destination URL (KN_TO) must be re-validated using the user’s own credentials

(since every user is always accessing the ‘same’ /PUBSUB.CGI resource, automatic

path-based discrimination is not effective in this case — the relevant information is

actually encoded in one of the input parameters).
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10.2.3  Composite Elements

We can now proceed to addressing the specific requirements of centralized,

distributed, estimated, and decentralized resources by combining the four basic

facilities in ARREST, ARREST+D, ARREST+E, and ARRESTED, respectively.

10.2.3.1  Event Routing (ARREST)

The key distinction between a CENTRALIZEDEVENTROUTER and the

NOTIFYINGORIGINSERVER and ROUTINGPROXY it subsumes is the appearance of first-

class SUBSCRIPTION resources. In line with our emphasis on supporting reflection in

MOD_PUBSUB, this distinction takes the form of KN_ROUTES subtopics for every topic.

That is, the ‘routing table’ of all outstanding subscriptions with the same source can

itself be considered an event source, generating notifications for creation or

modification of new entries within it.

The behavior of a CENTRALIZEDEVENTROUTER is constrained by the same event

loop described for routers in §10.1.2.3. Reflection also makes it easy to explain

how subscriptions are later destroyed. Judicious choices of access controls on

recursively nested KN_ROUTES subdirectories also allowed us to reduce Access

Control Lists (ACLs, e.g. [163]) for publish and subscribe rights into publication

rights alone (since subscription is the side-effect of publishing into the KN_ROUTES

subtopic). Furthermore, by permitting SUBSCRIPTIONs to be independent events,

even 3rd and 4th parties can be authorized to connect components in the ARREST

style.
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10.2.3.2  Distributed Decisions (ARREST+D)

While the existence of distributed WebDAV repositories using locks to manage

synchronization shows promise (e.g. Subversion, [51]), we pursued an alternative

strategy for implementing FAIRMUTEXLOCK for ARREST+D. The Bakery algorithm

pseudocode provided in Program 19 can be implemented end-to-end (without

relying on a central router for arbitration).

However, on the real Internet, the average message latency is much less than

the maximum (d). Therefore, we combined the basic queuing mechanism with an

acknowledgement-counting protocol to block until delivery was assured. This

experiment, ZACK, is shown in Figure 25. Note that its correct operation does

assume reliable, ordered delivery of network messages eventually; it merely avoids

presuming that the central router is the sole transaction manager.

Part of what ZACK demonstrates is how to extend an event-based system

incrementally, since it is a voluntary additional protocol whose correspondents

discover each other using a user-defined ZACKING flag on their route events in

./KN_ROUTES. Note that since it was prototypes as a browser-based application, it

also depends on a single router to relay messages over tunnel connections; there

really aren’t N individual routers.
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Figure 25: The ZACK acknowledgment-counting sample application.

For our purposes, the goal is to share a queue that indicates what order lock

requests were made. Thus, one of the N possible publishers uses ZACK to publish

the timestamp of their request; and after writing the new value to the ‘real’ topic,

just deletes that request event (without ZACK, since the LockReleaseHandler() from

Program 19 doesn’t rely on simultaneous agreement over the queue by all

participants, just the new leader).

10.2.3.3  Prediction (ARREST+E)

The four types of ESTIMATOR connectors in REST+E become much more

powerful in ARREST+E. STOREANDFORWARD queues can replay past events;



219

SUMMARIZERs can coalesce or drop event notifications; PREDICTORs can generate

speculative values for disconnected resources; and a TRUSTMANAGER must enforce

local policies. Each of these can be implemented using MOD_PUBSUB.

STOREANDFORWARD. Because PUBSUB.CGI has access to a persistent store of past

events, organized by topics, it was straightforward to modify it to deliver past events

to new subscribers as well. Previously, many event-based application architects

built hybrid systems, accessing databases for “historical” data and merging it with

“live” data from an event bus. Not only does our approach unify these

programming models — using an indefinite KN_EXPIRES, it can be used a database

of sorts, as for buddy lists in KNOWBUDDY — it also lays the foundation for store-and-

forward event relaying.

The key is that occasionally-connected components can re-establish

subscriptions and request some number of recent notifications (DO_MAX_AGE), some

past time interval (DO_MAX_N), or since a pre-arranged ‘checkpoint’ from a prior

connection (DO_SINCE_CHECKPOINT). The next more sophisticated approach would

be to synchronize topic histories by merging lists of events, as in cache validation

or Usenet news.

Note that while MOD_PUBSUB includes adaptors for “push” notifications such as

sending events as email messages, it does so by using external components such as

FORM2SMTP.CGI (not to be confused with MAILFROM.PLX, an inbound sensor). In

practice, the prevalence of firewalls and NATs on the public Internet today makes it

essential to support on-demand event forwarding.
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SUMMARIZER. We can identify at least three major types of summarization, each

of which can be found in different portions of the MOD_PUBSUB project:

compression, coalescing, and expiration. The first is a mechanical matter of

negotiating the use of, say, GZIP to compress all downstream traffic to a modern

Web browser or other microserver. The second is an application-specific

transformation that, in effect, derives a new, lower-frequency or lower-bandwidth

event source from the original. Whether by discarding messages that don’t meet

some query (KN_CONTENT_FILTER), taking a derivative or integral of a signal (vote-

tallying in VOTE2 or leader-change alerts in FLASHDEMO1 voting), or another

application-specific rule for compensating transactions, the result ought to be a

reply stream that falls within the limits of the subscriber’s network connection. The

third is another mechanical test, to re-evaluate notifications queued for delivery in a

KN_JOURNAL topic once it is finally written to a socket (see §10.3.2.1).

PREDICTOR. Prediction functions are extremely application-specific. The only

generic behavior we identified is inertia, the principle behind REST+E. That is the

default behavior of all the microservers in MOD_PUBSUB; they do not trigger

invalidation notifications when events expire. Application developers are free to

enforce or ignore expiry deadlines as they see fit.

TRUSTMANAGER. The essential role of a TRUSTMANAGER  is to ensure that every

connection between components in the architecture is justified by a corresponding

edge in the Web of Trust (see §8.3.14). Since MOD_PUBSUB was first and foremost a

working testbed, rather than a theoretical exercise, almost all of our experiments
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relied on persistent tunnel connections. Without a mechanism for subscribers to

accept inbound messages from anywhere else on the Internet, ‘spam’ became

impossible by definition — the router was presumed to be a trusted third-party.

Where the role of a TRUSTMANAGER re-emerged was for managing permissions

within individual topics. Rather than merely controlling access to the server as a

whole, we needed to control who could publish or subscribe by pathname

patterns. Hence our convention for putting shared data under /WHAT (such as

/WHAT/AUTO-REQUEST), but putting private data intended for particular users under

/WHO/<USERID>/.

We used reflection and recursion to express fairly sophisticated access controls

using a single basic privilege: publishing event notifications. Consider privacy rules

for an instant messaging application. You might want to control who can join your

buddy list (anyone); who can send you messages (only buddies); and who can

enumerate your entire buddy list (only you). By analogy to file permissions in Unix,

that means /BUDDYLIST must be UG+RW (0660), /BUDDYLIST/KN_ROUTES must be A+W

(0622) and /BUDDYLIST/KN_ROUTES/KN_ROUTES must be U+RW (0600). This was easy

to implement with Apache, by logging into the host and configuring .HTACCESS

files.

Particularly dynamic filtering could also to be enforced at the edges. To launch a

game such as TICTACTOE, CONNECT4, or REVERSI, the application needed to use a

topic that only those two players could publish to, in strictly alternating order. We

could rely on the router’s clock to arbitrate who moved first, but rather than
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attempting to provision a new topic on the server with those permissions on the fly,

our applications merely blocked extraneous ‘moves’ by filtering on an event’s

KN_USERID header. All components still had to trust the router to label messages

correctly, but could implement their own policies on that basis.

10.2.3.4  Decentralized Decisions (ARRESTED)

We already established that ASSESSOR components are entirely application-

specific; the only generic support they require is the ability to subscribe to multiple

routers concurrently. Because of a quirk in the browser’s security model, our

primary development platform made it impossible to connect to more than one

router at a time, and none outside of a limited domain (suffix-matching rules). Only

later, in the commercial development of the platform did we develop .NET, JMS,

and Excel microservers that could manage multiple tunnels simultaneously. As for

the JavaScript microserver, our experiments were still limited to Web-of-Trust

topologies that allowed a single router to consolidate all traffic on behalf of a given

subscriber — all data from external agencies had to be proxied through it.

10.3  EVALUATION

It may seem remarkable that a development effort that preceded the invention

of our new architectural styles by several years still includes enough evidence to

validate their feasibility. Nevertheless, MOD_PUBSUB could be faulted for not

implementing the new elements we have introduced directly. Instead, our indirect

arguments are summarized in Table 15.
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Style New Element Implementation

REST GLOBALCLOCK Use NTP to measure ‘seconds since UNIX epoch.’

REST+P POLLINGCLIENT META-REFRESH already exists in HTML browsers.

A+REST NOTIFYING-
ORIGINSERVER

KN_SERV experiment held connections open to
stream multiple replies using Dynamic HTML.

R+REST ROUTINGPROXY KN_CONTENT_TRANSFORM relays the output of a proxy.

REST+D MUTEXLOCK Filesystem locks ensure durability, serialization.

TCP TCP/IP stacks handle retransmission and acks.

CACHE Browsers and proxies already return stale replies.

ACCESSCONTROL Web servers have many authentication schemes.

REST+E

CONTENT-
NEGOTIATION

Retrieving a single event as an ordinary resource
invokes existing ACCEPT- selection behavior.

ARREST CENTRALIZED-
EVENTROUTER

./KN_ROUTES “subdirectories” contain all subscrip-
tions originating from parent topic; can be nested.

ARREST+D FAIRMUTEXLOCK End-to-end implementation of BAKERY for clients.

STOREANDFORWARD DO_MAX_AGE and DO_MAX_N flags to replay events.

SUMMARIZER VOTE_COUNTER and KN_CONTENT_FILTER derive new
streams; tunneling can support ‘in-flight’ expiration

PREDICTOR N/A — Implementation is application-specific.

ARREST+E

TRUSTMANAGER Per-topic access controls and KN_USERID filtering.

ARRESTED ASSESSOR N/A — Implementation is application-specific.

Table 15: Summary of our new architectural elements and their implementations.

To validate our claims for the practicality of our new architectural styles, we

must go beyond the evidence of feasibility. We also need to evaluate whether our
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infrastructure unduly limits the scalability or the range of applications that can be

developed with it.

10.3.1  Scalability

MOD_PUBSUB has successfully been operated for months at a time; with up to

50M events stored; with hundreds of connected clients, with hundreds of events

published per second; with thousands of notifications per second; and total end-to-

end notification latency of as little as 50 milliseconds — but never at the same

time.

It is critical to isolate the figures of merit that can characterize a router’s

performance. We developed several tools specifically for this purpose, such as

PERFTOOL. This helped us identify several optimizations in the construction of our

routers, but these can be termed accidental, rather than essential challenges [37].

There are many variables one might measure: aggregate bandwidth, jitter, memory

usage, but only three suggest themselves as independent variables: the number of

connections terminated, events processed, and filtering/transformation overhead.

CONNECTIONS. The first axis is simply the number of concurrent persistent TCP

connections to be maintained. In future years, this may become less interesting as

operating systems mature and continue to tackle efficiency improvements such as

accounting for TCP control block interdependence [219]. Nonetheless, there will

always be some computational overhead for every connected user, active or not.

In the meantime, we also developed a simple elaboration of PUBSUB.CGI that

increased the number of concurrent connections dramatically. Our PUSH_MANAGER
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experiment split the tunnel-maintenance function from the event-publication and

routing functions. This accelerated performance by using a single Linux process to

terminate all tunnel connections separately, rather than using CGI’s process-per-

socket execution model.

FREQUENCY. The second axis is the event rate. It could be refined into average

and burst frequencies, and clearly could be overwhelmed by very large events. A

secondary level of detail would be characterizing peak event publication rates, as

distinct from event notification rates.

PROCESSING. That caveat is reflected, indirectly, in the third figure of merit. If we

assume that our capacity is limited by CPU speed and raw bandwidth, then the

only other major use of CPU time is filtering, which can be arbitrarily complex.

Under this category, too, are session-long transformations such as SSL, GZIP

compression, or delta-coding [159], for example.

10.3.1.1  Clustering

All of these factors could become bottlenecks for the performance of a single

router, but the ultimate basis for our claim that these styles can be implemented

without loss of scalability is that they do not limit the performance of a cluster of

routers.

When discussing the semantics of topics and events, we often related them to

the files on disk. This analogy helps explain how we envision tuning router clusters

to provide arbitrary levels of reliability, availability, and capacity.
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The simplest way to think about the problem is to represent a router as a single

disk. Suppose a disk can read (subscribe) and write (publish) complete files as a

reliable transaction.29 Then, with two disks, a mirroring strategy is to read and write

to both disks. If either operation might fail at probability p%, N-way mirroring

reduces it to pN %. This increases reliability/availability; furthermore, if you assume

you can read from either disk in parallel, then you can improve capacity, too. This

is the standard argument for Redundant Arrays of Inexpensive Disks (RAID, [178]).

Up to 8-way mirroring of this kind is already available in KnowNow’s

LiveServer. It can also be emulated with MOD_PUBSUB by setting up mutual

subscriptions to topics across a cluster (duplicate suppression ensures ‘flood-fill’

behavior). The only complication is the additional time lag for event propagation

across the cluster.

Within a single data center, one can assume the bandwidth and error rate is

much, much higher than the links to the outside world. Forwarding events across a

WAN soon encounters precisely the sorts of problems that motivate our

investigation of decentralization in the first place: excessive latency can force

cluster members ‘out of sync’ and the myriad agencies Internet transactions cross

en route can play havoc with security precautions.

Not surprisingly, our solution would be to view the “router” itself as an

application in ARRESTED style. In this case, the current representation of an event
                                               
29 If it does fail, we presume it fails permanently. “Backup recovery” or “log
reconstruction” are useful engineering techniques to reduce p, but they do not
affect our basic argument.
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source becomes a matter of opinion, and our goal has to be minimizing the risk of

such disagreement. As we have discussed earlier, the key challenge becomes

identifying which other router’s resources should be considered “equivalent,” a

matter of trust management.

 Simple mirroring would imply that all of the other routers are equally valid

authorities. Clearly, this cannot hold in the face of limited computing power,

storage, and bandwidth. The very reason we are proposing clustering is to divide

the load, so that only a subset of other routers must keep track of each event

source. A hash function would appear to be a simple solution: locally compute the

set of other routers which share responsibility for a given event source.

Consider a simple rule: that topics with an even number of letters go to router

A, and an odd number to B. This can be enforced either at the routers, by

redirecting users to the other, or at the clients, by widely publicizing the even/odd

rule and the addresses of A and B. This corresponds to “hashing” and “striping”

whole30 topics across several routers.

However, every client of this router cluster would have to agree in advance on

how many routers are in the cluster, their addresses, and the hashing algorithm.

Otherwise, havoc ensues when the membership of the cluster changes.

                                               
30 It is straightforward to automatically break “big” topics into subtopics (along the
lines of ‘inodes’ in the UNIX filesystem [221]). If there are too many events in one
topic, break it and cascade it to another, new topic on the other machine. If,
instead, there are few events, but too many subscribers, the same algorithm still
applies — since ./KN_ROUTES is itself just another topic.
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A better solution lies in the mathematical insight behind many Content-

Addressable Networks (CANs, [185]): a consistent hash function. Rather than

outputting a single, fixed value for each input like an ordinary hash, a consistent

hash generates several outputs, each with a declining probability of being correct

as the size of the cluster changes.

Using such a function, even clients that disagree about the current membership

of the cluster can all still cooperate to read and write data to approximately the

right disk. If one client thinks there are 3 members, and another thinks there are 4,

the consistent hash assures us that we both still would place 2⁄3 of the data on the

same disk, and that if not, with decreasing probability on the second or third disk.

The original application this was developed for was Web caching (later

commercialized by Akamai [117]). The same approach applies to our event

notification service because it is essentially another sort of Web cache. Publishers

must choose which caches to populate with their new representations; subscribers

must choose which ones to WATCH.

10.3.2  Applicability

We began our study of event-oriented systems by assembling a bibliography

enumerating over one hundred coordination and collaboration systems that build

on the notion of events {Khare, 1998 #1824;Khare, 1998 #1825}. Not all of these

systems are explicitly event-oriented, nor do they all employ “event notification

services” per se, but taken together, they revealed an evolutionary family tree. It is

illustrative to consider each of these application domains — messaging, presence,
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conferencing, simulation & graphics, and software integration — since they cover

different design regimes. As shown in Table 16 (excerpted from {Khare, 1998

#1826}), their events differ in frequency, distribution, and content; and have

different naming models, event transformation hooks, and security concerns.

Messaging Presence Conferences
Simulation &

Graphics
Software

Integration

Event
Frequency

Minutes
up to days

Minutes Seconds Milliseconds Milliseconds
up to hours

Topology

1-Many
(news),

1-Known
(mail)

1-K
(buddies)

1-1 (chat),
1-K (lecture),
K-K (forum)

1-1 or small
K-K groups

1-K or
anonymous
broadcasts

Content
Text to

multimedia
Short test Text to

multimedia
Small and

stateful
updates

Machine-
readable
streams

Naming
Newsgroups,

mailboxes
Users,
groups

Users,
handles,
channels

Participants,
simulated
elements

Processes,
hosts, tools

Transform-
ations

Compression,
batch

delivery

Batch
update,

state
timeouts

Rendering Aggregation,
filtering,

dead-
reckoning

Data type
conversion

Security
Authentica-
tion, confi-
dentiality

Privacy Authentica-
tion, confi-
dentiality

Closed
system

Access
controls

Table 16: Properties of five major categories of event-based applications.

The routers we have built can conceivably address most of the spectrum of

requirements identified for these application areas. The two fundamental limitations

to their applicability are that we did not design it for lossy or low-latency networks.
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This affects videoconferencing applications, for example, because multimedia

streams have been optimized to work around lost IP packets. All of our work has

focused on TCP sockets, which sacrifice real-time performance to avoid errors.

It also affects fast-paced multiplayer games. Traversing the public Internet

typically requires at least tens of milliseconds; that is the regime for which our

routers were designed. Achieving much lower latency for highly interactive

simulations requires alternative implementation techniques, ranging from high-

performance adaptive object brokers (TAO, [170]) up to hard-real-time scheduling

systems.

10.3.2.1  Journaling

An interesting example of “unintended consequences” crept into the initial

prototype design and still has not been polished out. A feature we created called

“journaling” prevents our current generation of routers from actually implementing

one of the most important aspects of event notification: the ability to update or

discard out-of-date events. This limits the applicability of MOD_PUBSUB for low-

bandwidth subscribers.

Since we emphasized portability for the PUBSUB.CGI prototype, we chose to use

the local filesystem to store its event cache. ‘Tunnel’ connections would

periodically poll the disk to detect updated event notifications to transmit. Since the

minimum timestamp resolution of the filesystem was 1 second, this limited every

subscriber to 1Hz — even if the event was being updated much more often.
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Since this was an artificial limit, not a fundamental network latency or

bandwidth problem, we decided to insert a filter that generated a unique sequence

number for each event notification destined for a tunnel. Thus, “new” events were

now generated for > 1Hz sources.

This was clearly inappropriate when the read frequency was lower than the

write frequency. We compounded the mistake by relying on this behavior to

simplify the microservers. If two local components held identical subscriptions, a

local microrouter would be able to dispatch a copy of a matching event to both;

but having the router send two copies of the same event only requires

demultiplexing.

This was just one of many lessons we learned from implementing new

applications using MOD_PUBSUB. The next chapter describes our experiences

building just one, an auction scenario to illustrate how our style’s claims are

induced in practice.
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Chapter 11:   APPLICATIONS

While we have already implemented a large number of sample applications,

including some key testing, development, and administration tools, in this chapter

we will focus on a specific auction scenario to illustrate our development

methodology and claims for each style. The AUTOMARKET auction (Figure 26) is an

archetypal example because its key resource, the price, can shift from sole control

(Figure 27), to shared control (Figure 28), and to decentralized control (Figure 29).

Figure 26: Screen shots of an example used-car marketplace.

In the following sections, we introduce different types of auction markets;

propose a development methodology for ARRESTED-style applications; apply that

methodology to the setting of a used-car marketplace; and recap our key

observations from that experiment.
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11.1  AUCTION MARKETS

Auction markets are an ideal setting for analyzing the consequences of

decentralization. The equity market provides a brief illustration of the critical

difference between centralized, distributed, estimated, and decentralized systems.

Each represents a different type of process for discovering an equilibrium (‘market-

clearing’) price.

Broker

Broker

Broker

Broker

Trader

Trader

Trader

Trader

Trader

Trader

Trader

Trader

Trader

Trader
Trader

Trader

Trader

Trader

Trader

Trader

Trader

Trader

Exchange
(Specialist)

Figure 27: Illustration of a centralized (exchange) market.

The price of IBM stock is a centralized resource determined by a single

‘specialist’ at the New York Stock Exchange (NYSE). The price of Microsoft stock, by

contrast, is determined by a consensus among a distributed set of dealers on the

National Association of Securities Dealers Automated Quotation System

(NASDAQ).
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Figure 28: Illustration of a distributed (brokered) market.

Nevertheless, in either case there is only one ‘true’ price. Even if that price is

changing as fast as 1Hz, a trader less than 500ms ‘away’ from the market can still

buy or sell with confidence that the price has not changed by the time the trade is

received.

Far more stocks, though, are traded on an ‘over-the-counter’ basis. The price of

such thinly-traded companies cannot be reduced to a single official quote, because

there is no such official authority. Every individual trade is a private matter, not an

offer to the general public. At best, industry clearinghouses aim to publish weekly

surveys of recent prices, hence the moniker ‘pink sheets.’
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Figure 29: Illustration of a decentralized (over-the-counter) market.

A much larger-scale example is the trillions of dollars’ worth of foreign

currencies that are traded daily, largely without official currency conversion rates.31

While there are many tradeoffs to such a decentralized market — the biggest

players, known as “money center banks” can manipulate markets in ways

considered illegal in stock trading — it is nearly completely fault-tolerant, proving

more scalable than centralized markets both in theory and in practice. The foreign

exchange market today is a continuous, 24-hour-a-day system. While equity

markets struggle towards finalizing trades within three days (“T+3”), the Continuous

Linking and Settlement Bank aims to settle within hours (“T+0”) [4].

                                               
31 Indeed, some financial research indicates that this uncertainty is the very reason
the trading volume is so much larger than the actual demand for foreign currencies
— all the ‘excess’ trades serve to signal information about the underlying market
[105, 145].
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11.2  METHODOLOGY

Since ARRESTED is an event-based architectural style, our development

methodology for a decentralized application starts with the usual event-based

modeling. One still has to identify the components, event sources, subscription

qualifiers, message formats, and the like.

The second phase of our methodology specifically addresses the unique

concerns raised by decentralization:

1. Identify the agencies.

2. Characterize the latencies.

3. Establish the web of trust.

4. Replace remote references with local estimates.

5. Expose the provenance of every event.

Consider how this methodology applies to an auction market. First, identify the

locus of business logic and persistent state. In this case, this includes components

representing traders, brokers, and an exchange. Next, identify the event model:

suppose there is a topic for every commodity being auctioned; the notification

format is to transmit the complete bid snapshot (rather than, say, a delta-coded

increment/decrement ‘ticker’); and that subscriptions can be based on the

commodity name and triggered by numerical trends. Even this very-high level

description is sufficient to sketch out a consensus-based application. It may perhaps

even be sufficient for immediate prototyping using a parallel discrete event

simulator [44].
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Moving on to applying our additional steps for decentralization, we must

elucidate the issues that arise once we consider the price to be a matter of opinion,

rather than a matter of fact:

IDENTIFY AGENCIES. In any real marketplace, the interests of traders, brokers, and

the exchange diverge significantly. None of the players are interested in complete

transparency; there’s far more money to be made in imperfect markets. That is the

root of why so many different marketplace designs exist. Therefore, the very first

step is acknowledging that every single component represents a separate agency —

sacrificing the conceit that a broker necessarily “represents” the best interests of its

customers.32

Note that agency boundaries may also demarcate the remit of the architect’s

control of the application. A single organization may develop the software used to

enact all of these agencies’ roles, but the design must also be robust in the face of

independent implementations. Part of the challenge of developing architectural

styles for decentralization is coming up with abstract models of software written by

others, software that may not even obey the architectural constraints one’s own

application relies on.

CHARACTERIZE LATENCIES. The next step is to characterize the latencies, both of

the networks the application will run on top of, and of the real-world phenomena
                                               
32 We the Subscribers, Brokers for the Purchase and Sale of Public Stock, do hereby solemnly

promise and pledge ourselves to each other, that we will not buy or sell from this day for any
person whatsoever any kind of Public Stock, at a less rate than one quarter percent Commission
on the Specie value of, and that we will give a preference to each other in our Negotiation.

— The “Buttonwood Agreement,” May 1792, forerunner of the NYSE.
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that it is attempting to represent. Some players must be inside the now horizon to

avoid taking on additional risks, and they might even cluster within the same city to

minimize their communication latency. So the maximum latency for a high-end

financial institution could easily be subsecond, necessitating the use of multiple

telecommunications carriers and backup sites. By contrast, players attempting to

trade stocks from PCs at home during volatile markets are well-advised to use limit

orders instead. By the time a slow website loads and submits a form, the price

could have shifted significantly.

That speaks to the second kind of latency we must characterize, namely that of

the underlying phenomenon. Today, the interval between updates on the NYSE can

range from fractions of a second to as long as three-day holidays (or even a week,

after 9/11). However, that is in itself a reflection of the constraints imposed by our

social and technological infrastructure, not the phenomenon itself.

Already, announcing news “after the closing bell” no longer permits the

breathing room it once did: global stocks trade in global markets, around the clock.

The valuation of something as complex as a company depends on so many inputs,

which in turn vary at rates from seconds (online orders) to months (oil futures), that

the end result could be said to be very high-frequency indeed. How high? Segments

of the interbank foreign exchange market are already trading with five-second

bid/ask exposures, worldwide. Stock prices could easily pass 1Hz as trading

volumes continue to compound. Architects must take care to ensure that both kinds

characteristic latencies are in equilibrium.
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WEB OF TRUST. The third step is establishing which resources controlled by other

agencies ought to be considered equivalent — a web of trust between resources. In

many consensus-based event-based architectural styles, the naming model alone

determines equivalence — anything published by a duly authorized user to the

/STOCK/IBM/BID/ topic must be a price quote to buy IBM stock. In a less certain

world, though, there are many other criteria. Do you include the crazy fellow

who’s willing to bid twice as high as anyone else? Is the news feed entitled

BUSINESS MACHINES, INTERNATIONAL relevant? Are brokers under indictment

according to this other SEC.GOV website to be excluded from your view of the

market? And why trust what the possibly-hacked SEC.GOV site says, anyway?…

ELIMINATE REMOTE REFERENCES. This web of trust is critical for accomplishing the

fourth step, eliminating all references to remote resources. Each reference must be

replaced by two elements: a local proxy resource, and a formula for determining

which other agencies’ resources are considered trusted correspondents for that

issue.

To isolate this complexity, our model guides architects to explicitly assessing the

import of new information from foreign agencies before modifying private beliefs. It

is an architect’s choice between different prediction engines, compression engines,
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and other types of estimators. The result is a system that does not block

unnecessarily while awaiting consensus with some remote resource.33

TRACK PROVENANCE. The final recommendation of our methodology for

decentralization is to track the provenance of every piece of data processed. In an

era of profligate computing resources, event notification is an appropriate use of

surplus bandwidth and audit trails are an appropriate use of surplus storage. Ideally,

every datum displayed by a user interface ought to indicate its confidence interval,

as well as the ability for a user to challenge the system to justify that estimate. This

requires assessment functions that do not throw away provenance data, but rather,

mine the data for patterns and other conclusions. After all, rumors from other

traders that the crazy fellow is actually paying double might eventually tempt you

into taking advantage of that offer as well — information from some players may

affect your confidence in others, dynamically.

11.3  AUTOMARKET

To experiment with our new styles, we chose the domain of used-car sales.

Following our methodology, the first phase of developing the AUTOMARKET

application identified the components and events involved. BUYER and SELLER

components publish BID events to separate /BUY and /SELL topics (rather than, say,

BUY- or SELL-type BID notifications from a single /MARKET topic). Each user’s BID

                                               
33 “A distributed system is one in which the failure of a computer you didn't even
know existed can render your own computer unusable.”
         — Leslie Lamport [137]
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events, in turn, must specify the make, model, mileage, and price; sellers must be

specific, while buyers can specify ranges for acceptable mileage and price values.

We can now proceed to discuss the first three of the five steps specific to

decentralization (the last two only arise later, in §11.3.3 and §11.3.4 respectively).

IDENTIFY AGENCIES. Each user is presumed to own his or her browser

components, whether in the role of BUYER or SELLER. There must also be a single

trusted-third-party operating the AUTOMARKET, who owns the web server running

MOD_PUBSUB. Note that this third party is merely being trusted to run the event

notification service honestly, not as a counterparty to any sale transactions.

CHARACTERIZE LATENCIES. In comparison to equity markets, used car sales are

much slower-paced. It’s a less liquid market, with nonuniform goods to boot.

Considering the experience of current automobile auctions on the Internet, it’s fair

to say that while auctions may last for days, bids in the last few minutes may occur

as frequently as 1 Hz. As for network latency, we are discounting the possibility of

arbitrage by assuming every trader encounters the same distribution of latencies.

WEB OF TRUST. The only firm rule is that each trader must trust the agency

operating the AUTOMARKET server. Any trader can choose to accept or discard bids

from others, depending on their own preferences. Nonetheless, there is an implicit

assurance that all traders are using the same syntax for their BIDS, including

common vocabularies for makes and models.
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In the next four subsections, we will describe how this basic design was

adapted to enact centralized, distributed, estimated, and decentralized auctions,

respectively.

11.3.1  Centralized Auction

In a centralized market, a single agency controls which goods are for sale and

their prices, without becoming a buyer or a seller itself. An informal model is the

role of newspaper’s classified ads. If we can term this agent a DEALER, then we can

implement this kind of marketplace by assigning the DEALER control of the Web

server running the AUTOMARKET.

Our simple expedient for testing this was by writing BID events directly into files

on the server’s disk. MOD_PUBSUB includes this ‘backdoor’ by virtue of the fact that it

uses the filesystem as a backing store; it uses SOAP for its structured data format

[31], as shown in Program 21; and it scans the disk at 1 Hz for new files or

modified files to appear. This allows us to experiment with event notification

without relying on any remote access for publishing new events (which would

require the distributed decision functions of ARREST+D).

Because we synthesized BID events with a minimum lease time of one day

(+86,400 seconds in the units shown above), it was clear there was enough time for

BUYERs and SELLERs to learn of new offers while they were still valid, even if that

made the centralized market quite low-frequency indeed.

Nevertheless, using this jury-rigged mechanism to publish and update BIDs,

AUTOMARKET still exhibits the key properties we claim for ARREST-style applications:
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userid: rohitkhare
soapaction: true
kn_id: rohitkhare_buy
kn_route_checkpoint: 1058752933_1076_82
kn_time_t: 1058752933
content-type: text/xml
displayname: Rohit Khare
kn_expires: 1058839333

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<offer xsi:type='xsd:string'>

<type xsi:type='xsd:string'>buy</type>
<make xsi:type='xsd:string'>GMC</make>
<model xsi:type='xsd:string'>Yukon</model>
<year xsi:type='xsd:string'></year>
<miles xsi:type='xsd:int'>10000</miles>
<min xsi:type='xsd:int'>10000</min>
<max xsi:type='xsd:int'>12000</max>

</offer>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Program 21: Format of a BID event in AUTOMARKET.

SIMULTANEOUS AGREEMENT. Because users could WATCH the /BUY and /SELL topics,

it was easy to see that all could stay synchronized even as new cars came on the

market rapidly.

MULTILATERAL EXTENSIBILITY. A related aspect of the AUTOMARKET application is that

traders could chat directly with each other by extracting their respective

KN_USERIDs from BIDs. Either party could then choose to have the conversation

abbreviated to take less space by using the KN_CONTENT_TRANSFORM facility to

invoke PGRSPK.CGI. Another related experiment is to use the SOAP parsing and

data-typing facilities shown in Figure 22 to extract and forward prices to a currency

conversion service from XMethods Inc.’s online registry.
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11.3.2  Distributed Auction

In a distributed market, multiple agencies control which goods are for sale and

their prices. The first sense in which AUTOMARKET requires distributed control is that,

in order to eliminate the role of an external DEALER, BUYERs and SELLERs have to be

able to publish their own BIDs. This requires the AUTOMARKET server to delegate

control over each user’s offers to that user.

The second sense in which it calls for distributed control is that the price a

SELLER is willing to accept becomes the best price from multiple BUYERs. That is, in

an increasing-price (‘English’) auction, the current price of a good is the maximum

of all BUYERs’ BIDs.

2-WAY ACID SIMULTANEOUS AGREEMENT. The first sense calls for 2-way sharing, or

delegated decision making (REST+D). A user must acquire a lock from the

AUTOMARKET server to update his or her own BID events. This is implemented in

MOD_PUBSUB by pushing the concern for ACID transactions down to the level of the

filesystem. The host operating system’s filesystem arbitrates mutually-exclusive

control over the shared resource between the various concurrent executions of

PUBSUB.CGI.

N-WAY ACID SIMULTANEOUS AGREEMENT. The second sense — calculating the

maximum price — calls for N-way sharing, or distributed decision-making

(ARREST+D). This experiment is as simple as embedding the same (shared) decision

function in the BUYER and SELLER user interfaces (namely, displaying the maximum

matching bid at all times).
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Note that because there is no ‘lost-update’ problem — the only agency that can

update a BID is its owner — there is no particular need to upgrade the system to use

a FAIRMUTEXLOCK. Whereas, if the architect were to insist on distribution across

multiple AUTOMARKET servers to increase reliability, that could still be

accommodated by using the ZACK protocol for guaranteed delivery (see §10.2.3.2).

11.3.3  Estimated Auction

As we pass beyond AUTOMARKET’s ‘now horizon,’ keeping the application

responsive requires following the next step in our application development

methodology. By replacing references to the DEALER’s event sources with local

estimates, ARREST+E can at least maintain the property of BASE Approximate

Agreement. As discussed in §10.2.3.3, the primary application-specific component

we are obliged to provide is a PREDICTOR.

ELIMINATE REMOTE REFERENCES. Since our example is not particularly high-

frequency, the primary type of latency risk is disconnection rather than a few

seconds’ arbitrage. Per REST+E, the browser version of AUTOMARKET defaults to a

policy of inertia by displaying any recent bid within the last 24 hours as its

estimate.

To experiment with ARREST+E for SELLERs, we connected the same feed to

KnowNow’s Excel spreadsheet adaptor and used Microsoft® Excel’s built-in time-

series data processing functions to extrapolate current prices once disconnected.

Given the specific behavior of an increasing-price auction, a logarithmic trend had

a higher R2 than a linear or polynomial curve fit. A similar risk-management



246

approach applies for BUYERs: the use of range specifications in offer BIDs, which was

merely a user-interface convenience until now, can now be cast as a limit-order.

11.3.4  Decentralized Auction

To complete the range of AUTOMARKET scenarios, we need to identify an abstract

concept that multiple parties can legitimately disagree about. That is, an essential

requirement for consensus-freedom, rather than the accidental consequences of

network or process failures. We propose working with a characteristic of the market

not already represented in a BID data structure: market segments. Using ARRESTED

style to model an abstract category such as “trucks” obliges us to provide an

ASSESSOR, as well as complete the fifth step in our development methodology.

TRACK PROVENANCE. With all of the SUV’s and ‘crossover’ vehicles on the

market, it’s clear that the Federal regulatory definition of “trucks” encompasses far

more than many users’ notions of a pickup truck. However, since truck-ness is in

the eye of the beholder, it isn’t the place of SELLERs to classify their vehicles as cars

or trucks; nor of the DEALER to enforce a single hierarchy such as /TRUCKS. Only the

BUYER can say, and the application interface is obliged to justify why certain

vehicles are included or excluded.

To experiment with ARRESTED, we used the ‘command-line’ parameter

KN_TOPIC to redirect AUTOMARKET from using its default topic, /WHAT/AUTO-REQUEST/,

to using an individual /WHO/<BUYER>/AUTO-REQUEST/ topic. Of course, sellers aren’t

aware of this switch, so they can’t post offers directly to the BUYER’s personal topic.

Using INTROSPECT, a BUYER can proceeded to add routes connecting the public
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market to his or her view, while filtering certain models in or out of scope. As a

simple example, adding a route with a KN_CONTENT_FILTER of “Escalade SUT”

would only pass BIDs for the truck-like variant of the Cadillac Escalade (but not the

regular SUV variety).

Formally, an ASSESSOR is responsible for two aspects of the Web of Trust: both

establishing equivalence between others’ names for the same concept, and the

more common variety of authentication & authorization policy. The content-routing

experiments focus on the former, rather than investigating security issues more

thoroughly. To be sure, as long as network topology forces all traders to establish

persistent TCP tunnels to a single router to circumvent firewalls and NATs, the Web

of Trust between participants must also be restricted to star-topology trusted-third-

party relationships. This makes experiments in security trust management somewhat

artificial until multiple routers are involved.34

11.4  EVALUATION

Our new architectural styles and development methodology enabled us to

transform an off-the-shelf auction application into a decentralized one. The

MOD_PUBSUB project provided the infrastructure for a real-time event-based user

interface, while we provided the application-specific prediction and assessment

                                               
34 While KnowNow’s commercial product line includes microservers that can
connect to multiple event routers (as a Windows DLL and in Java), the browser’s
security model restricted our early prototypes to only working within the same
domains. So far, none of the open-source microservers in MOD_PUBSUB support
connections to multiple routers in multiple domains.
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logic. This demonstrated that not only was it feasible to implement a generic

infrastructure for our family of architectural styles, but that it was also practical to

apply them in a realistic problem domain.

Auctions are a familiar application on the Web, but the usual REST-style

experience leaves much to be desired. Users must poll for updated prices, while

also deferring to the Web site owner’s sole judgment of which buyers and sellers

are reputable enough to trade with.

As our methodology suggested, the first step was developing an event-based

model of an auction market. To complete this phase, we needed to identify the

conflicting interests of BUYERs and SELLERs; ensure that the network latency was

lower than the rate of price changes; and overlay our desired trust relationships on

an underlying trusted-third-party network.

This enabled us to describe, first, a centralized market with a single advertiser of

new offers; and then a distributed market with a shared decision function to

determine prices. In either case, traders’ browser-based user interfaces presumed

consensus with remote resources managed by the router.

Shifting towards consensus-freedom, though, required us to provide two

application-specific components beyond those in MOD_PUBSUB. The fourth step from

our methodology required replacing references to the router with local estimates, in

this case generated by a spreadsheet with logarithmic forecasting. The final step

was shifting from monitoring individual vehicles to abstract categories like “trucks.”
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The decentralized variant of AUTOMARKET tracked the provenance of such averages

by creating personalized views for each trader that only filtered in qualifying BIDs.

In Table 17, we would like to recap our evidence that our styles deliver on our

claims. As in the prior chapter, our original implementation of AUTOMARKET

considerably predates the invention of our new architectural styles. As a result,

some of our arguments are based on configurations for using it, rather than directly

implementing new components.

Claim Experiment Observation

Simultaneous
invocation of
multiple
services.

Operating the router
like a ‘classified ad’
server by writing new
BIDs directly to disk.

New information triggered
updates of users’ displays; could
invoked per-user active proxies
like abbreviation/conversion.

Allow many
clients to read
and write to a
shared resource
reliably (ACID).

Operating the router as
a passive relay of BID
events controlled
directly by each user.

Event notification enabled users
to update all copies of their BIDs
in all other components as soon
as possible.

BASE allows
disconnected
users to predict
current prices.

Connecting the prices to
an Excel spreadsheet to
plot trends; using
constraints on BIDs.

Fitting a logarithmic curve allows
SELLERs to model increasing-
price auctions; buyers can place
‘limit orders’ in advance.

Consensus-
freedom permits
assessment of
concepts.

Deriving a private topic
from the public market
data according to a
trader’s own filters.

Note how AUTOMARKET can
provide synthetic estimates of the
“truck” market, per each user’s
definition of a truck.

Table 17: Summary of observations from implementing AUTOMARKET in each style.
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Chapter 12:   CONCLUSIONS

In this dissertation, we proposed a new approach to decentralization, based on

testable definitions and analysis of a formal model; new architectural styles that

induce properties relevant for developing software for centralized, distributed,

estimated, and decentralized systems; and developed infrastructure for, and

applications in, each of our new styles. This chapter concludes by summarizing our

contributions and proposals for future research.

12.1  SUMMARY

Consensus-based architectural styles provide a simple and familiar

programming model. When we refer to a register on a microprocessor, we expect to

load its immediate value, not its past state. However, we cannot expect the same

fidelity when memory and processors are decentralized across the Internet. In that

case, we need new architectural styles that cope without consensus, permitting

independent agents to hold multiple, simultaneously valid opinions about the value

of a shared variable.

12.1.1  Problem Statement

We can decompose our research objective — designing styles of software

architecture for decentralized systems — into a series of three sub-problems: What

is the nature of  “decentralization”? What architectural styles can induce properties

that enable software engineers to cope with the challenges of decentralization? and



251

Are such styles practical to implement and apply? These general questions, in turn,

can be refined and restated as:

What are the properties of centralized, distributed, estimated, and
decentralized variables and resources?

What new architectural elements and constraints can be added to
REST to derive new architectural styles that support the use of
centralized, estimated, distributed, and decentralized resources?

Are there practical implementations for each new architectural
element and constraint? Are these new styles usable for designing
centralized, distributed, estimated, and decentralized applications?

12.1.2  Problem Analysis

Making a remote reference indistinguishable from a local one requires

consensus over its value at each location. It becomes even more complex once that

location can be overwritten with a new value. In that case, we need to first

establish consensus over the initial symbol and set an expiry deadline; then we can

re-establish consensus over its new value (with a new lease). We termed this

condition simultaneous agreement, since it connotes that it is not sufficient to

establish that “the follower’s value, once defined, is equal to the leader’s value,”

but, rather, that “the follower’s value, if defined, is equal to the leader’s value right

now.”

This requirement induces a frequency limit for updating consensus-based

resources. As a direct consequence of the well-known impossibility of consensus

using asynchronous networks with faulty processes, no centralized (single-writer)

resource can be modified more often than 1⁄d Hz, nor can any distributed (N-writer)
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resource be modified more often than 1⁄N·d Hz, where d is the maximum latency of

at least a partially synchronous network. The minimum interval between updates

also lengthens in direct proportion to the number of possible process failures the

system is designed to tolerate.

For any resource R changing at a maximum frequency F, then, we defined a

boundary around the set of remote resources that can possibly establish

simultaneous agreement with the value of R “right now.” Our so-called now

horizon denotes the subset of agents and resources that both trust R’s owner and

that are closer than 1⁄F seconds away from R.

Beyond the now horizon, there is uncertainty regarding both precision and

accuracy when measuring R. Each local agent A, B, C, … will be forced to

decentralize R into local proxy resources RA, RB , RC, … and so on. Communication

between local proxies is subject to network loss, delay, and congestion, all three of

which increase message latency further. Depending on the degree of auto-

correlation R exhibits, relying on older information can reduce the precision of

local proxy estimates of R’s the putatively current value. Furthermore, once local

proxy resources are fully decentralized into an ensemble of independently

controlled, local resources, such estimates also become less accurate. That is

because there is no single ‘true’ value any more, since the fact of R has been

replaced by a host of agency-specific opinions about R.
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12.1.3  Insight

Our analysis identified clear reasons why practical large-scale systems cannot

afford the absolute certainty of simultaneous agreement. Instead, such systems need

to accept the risk of manipulating out-of-date or untrusted data and manage that

risk explicitly. That was our central insight for developing decentralized, or

consensus-free, systems.

In particular, we organized our insights for risk management as a counterpoint

to the well-established ‘ACID’ properties for maintaining simultaneous agreement

in distributed systems. Our so-called ‘BASE’ properties identified the requirements

for decentralized systems to rely solely on Best-effort network messaging; to

Approximate the current value of remote resources; to be Self-centered in deciding

whether to trust other agencies’ representations; and Efficient in using network

bandwidth.

12.1.4  Approach

In the second phase of our investigation, we proposed several new styles of

software architecture that induce the properties necessary for manipulating

centralized, distributed, estimated, and decentralized resources. We chose to start

with REST, a network-based architectural style, and C2, an event-based

architectural style.
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REST

A+REST R+REST

ARREST

ARREST+D

ARRESTED

ARREST+E

REST+DREST+E

REST+P

Figure 30: Diagram summarizing derivation of our four new architectural styles.

From REST, we derived several orthogonal features, each shown in the gray row

of Figure 30. These features could be combined with each other to address the

challenges of crossing the “now horizon” (Figure 31) and crossing agency

boundaries (Figure 32).
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ARRESTED

ARREST+E

REST+E

REST

A+REST R+REST

ARREST

ARREST+D

REST+D

"now horizon"

Consensus-based
styles

Consensus-free
styles

REST+P

Figure 31: Consensus-based styles only work when the entire application is inside
of the now horizon.

ARRESTED

ARREST+D

REST+DREST+E

Master-slave
styles

Peer-to-peer
styles

REST

A+REST R+REST

ARREST

ARREST+E
agency boundary

REST+P

Figure 32: Master/slave styles only work for applications controlled by one agency.
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12.1.4.1  New Centralized Styles

Unmodified, REST only enables consensus for write-once centralized resources.

Even with synchronized expiration times and client-driven Polling (REST+P), its

maximum update rate is three times slower than the theoretical limit. Thus, our first

goal was to support mutable centralized resources. This requires simultaneous

agreement over time, which Asynchronous REST (A+REST) enforced by replacing

the RPC-like GET method with the event-based WATCH method. That enables a

resource’s origin server to broadcast notifications to its followers each time its

representation(s) change.

We also want to generalize REST to permit more than one independent agency

to extend an application. Its key restriction was that a linear proxy-chain model

only allows hop-by-hop control of the entire path. More significantly, linear

chaining also requires complete mutual trust, otherwise data could be modified by

hostile upstream or downstream resources. Our approach is to pair both client and

server connector types to simulate peer-to-peer connectivity, and then proceed to

replace the ad hoc selection of proxy chains in REST with explicit control for

message Routing (R+REST).

The combination of both techniques — routing event notifications across a

graph of software components — yielded a new architectural style that enforced

simultaneous invocation using publish/subscribe integration to synchronize local

processing of centralized resources (ARREST).
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Goal New Elements New Constraints Induced Property
R

ES
T Refer to a

centralized
resource.

GLOBALCLOCK makes
explicit how clients,
servers, and caches
are synchronized.

ORIGINSERVER must
always specify a
consistent expiry
deadline if the
resource is ever to
be updated.

Consensus:
Ensures that local
resource proxies
could agree with
leader’s value.

R
ES

T+
P Refer to a

mutable
centralized
resource.

POLLINGCLIENT that
reissues a new GET
immediately upon
each expiration.

Polling request rate
must exceed 1⁄2d  Hz.

“Slow” Simultan-
eous Agreement:
Local proxies will
agree with leader
if its update rate is
less than 1⁄3d Hz.

A
+

R
ES

T Refer to a
mutable
centralized
resource.

NOTIFYINGORIGIN-
SERVER that can send
multiple responses to
a WATCH request.

Every resource
update must lead to
transmission of a
new representation
to all watchers.

Simultaneous
Agreement:
Ensures that local
resource proxies
will agree with
leader’s value,
even if it is being
updated at 1⁄d Hz.

R
+

R
ES

T Compose
services
provided by
multiple
agencies.

ROUTINGPROXY
Component that
permits clients to
control relaying.

Every representation
transfer must be
justified by a
corresponding edge
in the web of trust.

Multilateral
Extensibility:
Can compose
trusted invocations
without requiring
mutual trust.

A
R

R
ES

T Refer to the
results of
services that
depend on
centralized
event sources.

CENTRALIZEDEVENT-
ROUTER Component
combines facilities to
recast Resource/
Representation as an
Event Source/ Event
Notification model.

Notifications are
relayed directly
through services
(proxies) to
minimize latency.

Simultaneous
Invocation: Ensure
that services are
invoked with the
same inputs at the
same time, every
time.

Table 18: Summary of our centralized architectural styles.
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12.1.4.2  New Distributed Styles

Having created a subscription mechanism for consensus-based systems, our

second goal was to add a mechanism for other agents to publish updates. This

requires distributing control of a resource amongst all the possible publishers. We

add end-to-end Decision functions to share control across an ensemble of

individual resources. To enforce ACID transaction properties, we mandated total

serialization of updates by requiring simultaneous agreement over the decision

function and all of its inputs (ARREST+D).

Goal New Elements New Constraints Induced Property

R
ES

T+
D Refer to a

pairwise
distributed
read/write
resource
reliably.

MUTEXLOCK
Component
ensures only
one client at a
time has write
access to the
origin server.

Lock must be
acquired before
attempting write;
then current state of
the resource must
be re-read before
writing.

ACID (Pairwise)
Simultaneous Agreement:
Clients can modify
centralized resources
within 3d — but only in
the absence of
contention.

A
R

R
ES

T+
D Refer to an

N-way
distributed
read/write
resource
reliably.

FAIRMUTEXLOCK
Component
to arbitrate
shared locks
with bounded
bypass.

For a peer-to-peer
solution, all N must
cross-subscribe to
each other’s
centralized ticket
variables.

Atomic, Isolated,
Durable:
Ensure updates apply to
all N resources reliably
within 2d and at most
N⋅d.

Table 19: Summary of our distributed architectural styles.

12.1.4.3  New Estimated Styles

Ultimately, our aim is to keep entire applications functioning in the absence of

consensus through decentralization: permitting independent agents to make their
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own decisions. Thus, our third goal was adding support for estimates that stand-in

for remote resources that lie beyond the now horizon or agency boundaries.

This requires accommodating four intrinsic sources of uncertainty that arise

when communicating with remote agencies: loss, congestion, delay, and

disagreement. Their corresponding constraints are Best-effort data transfer, Efficient

summarization of data to be sent, Approximate estimates of current values from

data already received, and Self-centered trust management.

Our first exercise was to show how REST exhibits BASE properties once its

standard components are deployed on an asynchronous, faulty network. Since

REST was developed to explain the success of a robust, practical system, it is no

surprise that it already includes features for coping without consensus (REST+E):

BEST-EFFORT representation transfers are pushed down to the presentation layer

of the network using TCP’s sliding window acknowledgement and retransmission

protocols.

APPROXIMATE representations are returned by caches of several sorts: browser

histories, caching proxies, and content distribution networks. Staleness is generally

acceptable, even preferred in some cases.

SELF-CENTERED trust management is enforced by the use of server-based access

controls, such as usernames and passwords.

EFFICIENT representation formats are selected by client-driven content

negotiation and dynamic content-transfer-encodings such as compression.
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Goal New Elements New Constraints Induced Property

R
ES

T+
E Refer to a

read-only
centralized
resource
beyond its
‘now
horizon.’

[TCP/IP]

[CACHE]

[ACCESSCONTROL]

[CONTENT-
NEGOTIATION]

Inertia assumes that
the most recent
representation is
still valid, until
cache revalidation
fails.

Approximate
agreement.
The local proxy
should be in
agreement P% of
the time.

STOREANDFORWARD
Connector that
adds end-to-end
retransmission and
acknowledgement
policies.

End-to-end
retransmission of
notifications and
acknowledgments.

Best-Effort data
transfer:
Cope with
message loss.

PREDICTOR
Connector for
encapsulating
Turing-complete
prediction
functions of past
states.

Predict probable
current state from
past data (when
possible).

Approximate
estimates:
Cope with
message delay.

TRUSTMANAGER
Connector that
drops notifications
from untrusted
sources.

Ensure that all
reachable endpoints
are also trusted.

Self-Centered trust
management:
Cope with
dynamic
participation.

A
R

R
ES

T+
E Refer to a

read/write
resource
connected by
a faulty
network
beyond its
‘now
horizon.’

SUMMARIZER
Connector to
resample queued
events at lower
frequency.

Enforce bandwidth
limits; Prohibit
transmission of
superceded data.

Efficient data
transfer:
Cope with
network
congestion.

Table 20: Summary of our estimated architectural styles.
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Once we move to an event-based setting (ARREST+E), we can define more-

sophisticated elements for each of the BASE properties because we have time-series

data to work with. End-to-end Estimator functions manage private proxy resources

to replace references to shared resources. We introduced estimators that mitigate

each of the BASE challenges: store-and-forward retransmission of lost or delayed

notifications, predicting future values from past information already received,

discarding information from untrusted sources, and summarizing past data so as to

send only the latest information. Such extensions to REST can increase precision of

an estimate of a single remote resource (ARREST+E).

12.1.4.4  New Decentralized Style

Increasing accuracy, however, depends on assessing the opinions of several

different agencies (ARRESTED). In this case, though, each agency can use a private

decision function rather than a shared one; and the inputs can be estimates rather

than certain values (thus avoiding waiting for simultaneous agreement with every

other peer).

Goal New Elements New Constraints Induced Property

A
R

R
ES

TE
D Decentralize

control of a
shared
resource
across
disjoint ‘now
horizons’

ASSESSOR
Component that
manages the risk
of inter-agency
disagreement
over the ‘true’
value using a
panel of
opinions.

Eliminate reliable
references to remote
resources; only
contingent estimates
remain.

Consensus-freedom:
must not presume
feasibility of
consensus at all.

Table 21: Summary of our decentralized architectural style.
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12.1.5  Evaluation

With the derivation of these new styles in hand, the third phase of our

investigation was to implement the infrastructure for our proposed new types of

components and connectors; and to implement applications in each style that

indeed exhibit the predicted properties. We discussed several interoperable open-

source and commercial event routers, each of which successfully supported a wide

range of implementation languages and communication protocols by judicious

extension of existing REST infrastructure, such as standard Web clients, servers,

proxies, and the HTTP/1.1 protocol.

Finally, we illustrated our claims for our new architectural styles using both a

wide range of application samples from the MOD_PUBSUB project, as well as a

coherent series of auction applications that span the range of centralized,

distributed, estimated, and decentralized marketplaces. Specifically, we adapted a

used-car marketplace to support: centralized control of sale prices; distributed

control in a best-price auction; estimated control in a GUI interface that continues

to display a price range when disconnected from the network; and decentralized

control of a generic concept such as “Truck prices,” assessed from a series of

individual vehicle auctions.

12.2  CONTRIBUTIONS

Our contributions fall into three categories: our models, our styles, and our

infrastructure.
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First, we specified a formal model and definitions of the ill-defined terms

centralized, distributed, estimated, and decentralized, as well as testable properties

of each type of variable and resource:

A centralized variable requires simultaneous agreement between a
leader and its followers.

A distributed variable is determined by applying a shared decision
function over all participants’ input variables.

An estimated variable is in simultaneous agreement only a fraction of
the time.

A decentralized variable is determined by applying a private
assessment function over other trusted participants’ variables (or
estimates of those variables).

Second, we derived an entire family of architectural styles from REST using

several orthogonal features to induce several new properties, as shown in Table 22.

Style Induced Property

A+REST Simultaneous Agreement

R+REST Multilateral Extensibility

ARREST Simultaneous Invocation

ARREST+D ACID Simultaneous Agreement

ARREST+E BASE Approximate Agreement

ARRESTED Consensus-Freedom

Table 22: Six new properties and the styles constructed to induce each.

Third, we developed open-source implementation for these styles, including

multi-protocol application-layer event routers, management tools, and sample

applications:
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♦ The MOD_PUBSUB event routing module for Apache and other HTTP
servers.

♦ The INTROSPECT application for monitoring and configuring an event
router.

♦ The AUTOMARKET series of auction marketplace applications.

12.3  FUTURE WORK

Finally, let us return to the problems posed in the scenario of §1.1. What

guidance can our ideas offer to an architect developing control software for a

decentralized power web?

The challenge of writing an embedded control application for a household fuel

cell may prove to be an instructive example. The goal, after all, is a worthy one:

Development of a self-healing transmission and distribution system
— capable of automatically anticipating and responding to
disturbances while continually optimizing its own performance —
will be critical for meeting the future electricity needs of an
increasingly digital society. The benefits of a self-healing grid would
include not only enhanced reliability, but also innovative customer
services, real-time load management, reduced costs, and increased
throughput on exiting lines via more-effective power-flow control.
Standardized “plug and play” interfaces for both power and
communications systems would allow distributed generation to
proliferate. The self-healing grid would also increase grid security in
response to the threat of terrorism. [232]

WHAT OUR MODELS CAN EXPLAIN. Designing software that reflects society requires

representing the ‘real world’ — respecting the rights of citizens, communities, and

corporations to make their own decisions independently.

First, our architectural styles prescribe a more detailed representation of a “fuel

cell” than its physical properties alone. Any data structure representing a cell must

describe it with respect to the interests of the agency that owns and operates it.
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Second, our infrastructure also explains how a cell interacts with the network.

By relying only on the BASE properties, the control software is in a better position

to take advantage of any form of connectivity it has access to, from fiber and

wireless Internet access to ‘sneakernet’ transfers by physical media — not limited to

the real-time telemetry channels of today’s grid control protocols (Supervisory,

Control and Data Acquisition, SCADA [234]). Furthermore, it would be prepared

from the ground-up for sustained network attacks, both in terms of degraded

performance and partitioning, but also in terms of Byzantine deception.

Third, our design methodology prescribes a fundamental abstraction for the

whole system: market equilibrium. In this case, the very purpose of a fuel cell is

seen as participating in a local market with its neighbors. The basic coordination

mechanism for all these independent agencies is to balance electricity production

and consumption in real-time by setting market-clearing “prices” — whether or not

that software abstraction is ever settled in terms of real-world currencies.

WHAT OUR MODELS CAN’T EXPLAIN. Architectural styles alone cannot solve the

“essential” problems of controlling a fuel cell. Our job is to provide a framework

(generic software infrastructure) for slotting in solutions to those parts of the

problem. For example, we don’t know what pattern of voltage fluctuations might

indicate a dying cell, but ARRESTED at least can specify where to put the complex

chemistry-simulation code that could make such predictions.

BENEFITS. How would decentralized fuel-cell-control software help society?

Well, it can help us address some problems: how do emergency-services personnel
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shut it down — on whose authority? How might it react to active attacks that

exacerbate price volatility?

On a more technical level, architectural models of applications that include

annotations of agency boundaries and typical connector latencies hold promise for

automating architectural critiques. Future work along these lines could even guide

the physical layout of feasible configurations of processors, networks, and

databases to meet the requirements of an application that requires a given update

frequency.

UNSOLVED PROBLEMS. Of course, there are still myriad problems beyond the

scope of our work at this point. Social challenges are among the most significant.

By that, we mean that software is almost never a matter of programming to a

mechanical, formal specification, but is an ongoing process of capturing and

automating socially-constructed processes. This problem is simply not as closed-

ended as steam-boiler-control.

A fuel cell exists not in isolation, but at the nexus of many different social

processes. Its inputs depend on the price of oil — so should it issue commands to

turn down the heat if CNN reports a missile strike in the Persian Gulf? Its power

output is only a means, not an end in itself: should your fuel cell notice that your

flight home has been canceled and turn off the power to the air conditioner

tonight? Was that the only reason you needed it cooled, or are there pets? How sure

would you want it to be that you hadn’t caught another flight home? Should it



267

check your cellphone records for confirmation of your whereabouts? What are the

limits to this expanding model of integration into human planning?

This is a vaster canvas for application integration than anyone would imagine

addressing today. Even scratching the surface of this vision depends on several new

areas of future research: inference engines, assertion/metadata databases, and

semantic web infrastructure. New techniques for decentralization could even assess

event notifications using historical trends, statistics, and even economic models —

options, futures, Monte Carlo value-at-risk portfolio testing — in order to recover an

approximate consensus even where it is no longer formally feasible.

UNSOLVABLE (?) PROBLEMS. Finally, in conclusion, it is useful to consider a simple

problem that we are even now powerless to solve: reasoning around fraud.

An archetypal example of the phenomenon we’d like to explain is the fake

Emulex press release debacle [222], which temporarily wiped out $2B of investors’

capitalization.

The first problem is how a fake press release gets to be circulated at all. When

the latest news feeds from Reuters and AP both include a story about the press

release from PRNewswire that Emulex was under investigation, one has a very

strong estimate that, indeed, “PRNEWSWIRE.COM says Emulex is under investigation.”

However, this was still a highly inaccurate statement, even as it slipped by the

wire services’ fact checkers. The additional layer of concern for decentralized

systems is to ask, “Do I believe that Emulex is actually under investigation?” To

answer that, one might use software simulations that can juggle the possibility of
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both a true or a false outcome. It may well decide that the rewards for buying up

the possibly-falsely-depressed stock exceed the likelihood that an actual scandal is

occurring.

This seems much closer to the actual social model of trading. Software that

purports to automate interaction with a decentralized stock market ought to reflect

that. Perhaps, by putting a little colored indicator next to a news story reflecting

how many organizations corroborate it, and how recently. Nevertheless, these are

only technical means of testing whether an agency said something — not whether

that statement is true.

After all, the credo of our postmodern age is that “truth is relative.” If the urge

for order and consistency is the wellspring for modern software architectures,

perhaps our work can point the way towards postmodern software architecture.
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